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Abstract—In order for cognitive radio systems to fulfill their
potential of enabling more efficient spectrum utilization by means
of opportunistic spectrum use, significant advances must be
made in the areas of spectrum sensing and “cognitive” spectrum
access. In this paper, we discuss two research efforts relevant
to these areas; namely the development of distributed (cyclic
feature-based) spectrum sensing algorithms and of available
resource maps-based cognitive radio systems. It is shown that
distributed spectrum sensing is a practical and efficient approach
to increase the probability of signal detection and correct modu-
lation classification and/or to reduce sensitivity requirements of
individual radios. Additionally, numerical results are presented
that show significant reduction of harmful interference and
greater spectrum utilization efficiency of available resource maps-
based cognitive radio systems.

I. INTRODUCTION

Cognitive radios can be broadly defined as radios that are
capable of learning about their environment, resources, and
requirements, adapting their behavior, and optimizing their
performance subject to pre-defined rules [1], [2]. It is due to
their learning and adaptation capabilities that a great deal of
research has focused on the use of cognitive radios to achieve
more efficient spectrum utilization. In this context, cognitive
radios have been considered to act either as secondary users
of spectrum (by means of opportunistic spectrum reuse, as is
currently being evaluated by the IEEE 802.22 working group)
or as users of unlicensed spectrum (possibly co-existing and
even interoperating with other unlicensed systems) [1]-[3].

In this paper, we address two problems which are at the
heart of cognitive radio systems when used in spectrum-
sharing scenarios: spectrum sensing and “cognitive” spectrum
access. More specifically, we give an overview of two projects
currently underway at Wireless @ Virginia Tech: the design
and analysis of algorithms and methods for distributed spec-
trum sensing (i.e., multiple radios performing signal detection
and modulation classification collaboratively) based on cyclic
feature analysis, and the development of an approach to
cognitive radio systems based on the use of available resource
maps (ARMs). Our goal here is to discuss key concepts and
present some key results of such projects; the reader is referred
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to [4]-[7] for a more detailed description and further results
of this research.

II. SPECTRUM SENSING: DISTRIBUTED CYCLIC-FEATURE
ANALYSIS FOR SIGNAL DETECTION AND MODULATION

CLASSIFICATION

Cognitive radio systems have the potential to achieve a more
efficient spectrum utilization by estimating the radio spectrum
activity in its surroundings (spectrum sensing) and transmitting
on unused frequency bands. In this paper, we define spectrum
sensing as the combination of signal detection and modulation
classification, and use the general term Automatic Modulation
Classification (AMC) to denote this combined process.

Cognitive radios must perform AMC with no a priori knowl-
edge of received signal characteristics, such as the bandwidth,
carrier frequency, and chip-rate. In this scenario, it is known
that cyclic feature-based AMC is a possible approach with
many advantages, including reduced sensitivity to unknown
and changing noise levels and the capability to differentiate
temporally and spectrally overlapping signals. This approach
exploits the statistical characteristics of communication signals
that vary periodically with time.

In order to take advantage of radio signal variability,
and therefore allow for more reliable sensing, we present a
distributed approach to cyclic feature-based AMC in which
spectrum sensing is performed collaboratively by a network of
radios. The distributed AMC system to be considered is seen in
Fig. 1. In this system, we assume the radios are comprised of
two stages: an AMC stage and a Decision Making (DM) stage.
In the AMC stage, we utilize a cyclic spectrum feature-based
method and a feed-forward back-propagation neural network.
The output of this AMC stage, yn (1 ≤ n ≤ N ), is then
used by the radios DM stage to make the local decision un

(1 ≤ n ≤ N ). The local decisions from all radios are sent
to a fusion center that makes a global decision based on
the output of its own AMC stage, y0, as well as the radios’
decisions. In order to optimize this global decision, a nonlinear
Gauss-Seidel iterative algorithm is used to develop “person-
by-person” optimal decision rules for the fusion center and
DM stages of the system.



Fig. 1. Distributed AMC system block diagram.

A. Radio-level AMC stage

The radios’ AMC stage, seen in more detail in Fig. 2, can
be broken up into two main functions, feature extraction, in
which the received signal’s α-profile is estimated, and pattern
matching, in which a trained feed-forward back-propagation
neural network performs pattern matching on the α-profile.
The α-profiles, first defined for use in AMC in [8] and [9],
are extracted from an estimate of the limit cyclic spectrum
(often abbreviated to cyclic spectrum) of the received signal
x(t), defined as [10]

Ŝα
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Here we estimate the cyclic spectrum through the use of a
time-smoothing algorithm known as the FFT accumulation
algorithm. For more details on this process, please refer to
[4] and [11].

Once the cyclic spectrum of the received signal has been
estimated, the α-profile is created by taking the maximum
value along the spectral location parameter f for each spectral
separation parameter α of the cyclic spectrum,

profile(α) = max
f

[Ŝα
x (f)]. (4)

This process greatly reduces the size of the data to be used,
as compared to using the cyclic spectrum itself, allowing for
a more computationally efficient pattern matching algorithm
without significantly reducing performance. In Fig. 3, typical
α-profiles can be seen for BPSK, FSK, MSK, and QPSK
modulations, assuming square pulses and an Eb/No value of
10dB.

After the α-profile is created, a trained two-layer feed-
forward back-propagation neural network is used in order to
perform pattern matching on the profile. This neural network

Fig. 2. AMC stage block diagram.

is trained on a set of α-profiles, with Eb/No values in the
dB range of interest, through the use of a Delta-Bar-Delta
adaptive learning rate algorithm (see [12]) to give a modulation
dependent output between -1 and 1.

As an example of the functionality of a radio’s AMC stage,
we assume a case in which there are four possible modulation
schemes; BPSK, QPSK, FSK, MSK, as well as the case in
which no signal is present. The neural network is trained
with α-profiles in the -2 to 5dB Eb/No range to yield the
following outputs: -1 for BPSK, -0.5 for FSK, 0 for noise
only, 0.5 for MSK, and 1 for QPSK. Conditional probability
density functions of the output of the AMC stage trained in
this way are shown in Fig. 4 for an Eb/No of -2dB. From this
figure it can be observed that the probability density functions,
conditioned on each of the possible 5 hypotheses, have a
relatively small overlap even at this low Eb/No value. From
this result, it is clear that the proposed feature-based scheme
has the potential to be of great use in detecting and classifying
signals.

B. Distributed system setup and optimization

The configuration of the distributed AMC system considered
can be seen in Fig. 1. In this system, we assume that each radio
uses a cyclic spectrum feature-based AMC stage to obtain yn

and then sends a local decision un to a fusion center in the
form of messages that take on values in a finite alphabet (i.e.,
1 ≤ un ≤ M , where M is the number of hypotheses). For this
system, assuming that the local decisions made by the DMs are
conditionally independent and that each radio can observe all
possible hypotheses, we have the following person-by-person
optimal decision rules for the fusion center

u0=arg min
i∈(1,...,M)

M∑
j=1

p(y0|Hj)
N∏

n=1

P (un|Hj)P (Hj)Cij (5)

and the DMs

un =arg min
k∈(1,...,M)

M∑
i=1

M∑
j=1

P (u0 = i|un = k,Hj)p(yn|Hj)

·P (Hj)Cij ; (6)

where Cij is the cost of deciding u0 = i given Hj (the actual
modulation scheme of the received signal) and P (Hj) is the
probability of occurrence of Hj [13].

It can be seen from (5) and (6) that these person-by-person
optimal rules form a system of nonlinear coupled equations.
Tsitsiklis and Athans show, in [14], that decentralized decision
making is hard from an algorithmic viewpoint even for the
simplest of systems. Therefore, in order to avoid the “brute-
force” approach to solving for these rules, we use an iterative



Fig. 3. α-profiles for BPSK, FSK, MSK, and QPSK at an Eb/No of 10dB.

Fig. 4. Conditional probability density functions for the output of the AMC
stage at an Eb/No of -2dB.

method known as the Gauss-Seidel algorithm. This algorithm,
defined in detail in [13], allows for these rules to be solved in
a computationally efficient manner, at the expense of requiring
messages to be passed between the radios and the fusion
center [4].

In order to show the effects of performing distributed AMC,
using the defined person-by-person decision rules and the
Gauss-Seidel algorithm, over a single radio case, we expand
on the AMC stage example given in Sect. II.A. Using the
empirical conditional density functions shown in Fig. 4, we
obtain the results shown in Tables I and II. From these tables,
it can be seen that performing AMC in a distributed manner
greatly improves the detection and classification of signals
over the single radio system. This can be seen by observing
the average probability of classification error. In the single
radio case this error is approximately 5.16% but drops to
approximately 0.21% for the distributed case with three radios
and fusion. As another example, in the case of classifying
MSK, the probably of correct classification rises from 86.28%
for the single radio case to 99.70% for the distributed case with
three radios and fusion.

III. AVAILABLE RESOURCE MAPS: CONCEPT AND
APPLICATIONS TO IMPROVING THE PERFORMANCE OF

SPECTRUM-SHARING COGNITIVE RADIO SYSTEMS

Available Resource Maps (ARMs) are defined as databases
containing multi-domain information, such as the locations
and activities of radios, spectral regulations, and geographi-
cal features, that characterize the spectral environment in a

TABLE I
PROBABILITY OF CLASSIFICATION FOR THE SINGLE RADIO CASE

Hypothesis

Noise BPSK QPSK FSK MSK

Noise 0.9721 0.0020 0.0003 0.0000 0.0150
BPSK 0.0062 0.9780 0.0015 0.0067 0.0780
QPSK 0.0000 0.0000 0.9357 0.0000 0.0420

FSK 0.0001 0.0103 0.0001 0.9933 0.0022
MSK 0.0216 0.0097 0.0624 0.0000 0.8628

TABLE II
PROBABILITY OF CLASSIFICATION FOR THE DISTRIBUTED CASE

(3 RADIOS WITH FUSION CENTER)

Hypothesis

Noise BPSK QPSK FSK MSK

Noise 0.9985 0.0000 0.0000 0.0000 0.0000
BPSK 0.0001 0.9998 0.0000 0.0008 0.0003
QPSK 0.0000 0.0000 0.9949 0.0000 0.0027

FSK 0.0000 0.0000 0.0000 0.9992 0.0000
MSK 0.0014 0.0002 0.0051 0.0000 0.9970

given geographical area [5]-[7]. The application of ARMs
to cognitive radio systems was first proposed in the context
of unlicensed wireless WAN in [15] and [16]. Cognitive
radios use the information present in the ARM to make
situation-aware adaptations in various layers, such as transmit
frequency, power, timing, and routing protocol, to optimize
their performance according to pre-established rules.

ARMs can be divided into two categories, depending on
the origin and extent of the information it contains. A global
ARM contains a global view of the spectral environment,
with information obtained by the spectrum sensing of multiple
cognitive radios and by possible connections between the
global ARM and control entities of other cognitive or non-
cognitive systems. Cognitive radios can access the contents
of the global ARM through a dedicated control channel, for
example. While global ARMs contain information on the
spectral environment in the geographical area in which a
cognitive radio system is deployed, local ARMs are generated
individually by each radio from its own spectrum sensing, and
contain information that characterize the spectral environment
in the vicinity of that individual cognitive radio only. Using the
shared-spectrum system simulation platform presented in [17],
we present link-level and network-level performance results of



Fig. 5. Typical link-level simulation scenario.

Fig. 6. Performance comparisons under different IR/SR ratios.

global and local ARM-based cognitive radio systems.

A. Link-level simulations

Consider the scenario depicted in Fig. 5, where a single
cognitive radio randomly moves in an open area (path in red)
and shares the spectrum with a primary user (PU) network.
Assuming that the ARM-based cognitive radio switches off its
transmission once a PU is found to be within its interference
range (based on ARM information), the average signal-to-
interference-and-noise-ratio (SINR) improvement at the PU
receivers (compared to the case in which the cognitive radio
is always transmitting) is shown in Fig. 6. In Fig. 6, IR/SR
stands for interference-radius-to-sensing-radius. As expected,
the performance of local ARM-based systems greatly depends
on the IR/SR ratio. However, it is also seen that the global
ARM-based system is not as dependent on this parameter;
this is due to the fact that the cognitive radio in this case has
complete knowledge of the spectrum (as opposed to only in
its vicinity)1.

The performance improvement obtained by having a global
ARM comes at the cost of having to first acquire and then

1It should be noted that because we assume the ARM information to be
perfect (i.e., no propagation delays or noisy spectrum estimates, for example),
the curves in Fig. 6 are expected to be constant. However, due to the limited
simulation time used to generate these results, the curves do show some
variation.

Fig. 7. Average SINR degradation comparison under various PU moving
speeds.

Fig. 8. Network-level simulation scenario.

broadcast the contents of this global database to all cognitive
radios. Obviously, there are a number of practical issues that
affect these operations and will ultimately result in perfor-
mance degradation. In order to better understand the effects of
such practical implementation issues, we evaluate the system
performance assuming PU mobility and information dissemi-
nation delay. The simulation scenario is similar to Fig. 5 but
with non-stationary PUs. The average SINR degradation at the
PU nodes and the corresponding 95% confidence interval are
shown in Fig. 7. As expected, the simulation results indicate
that the higher the moving speed of the PU nodes, the greater is
the SINR degradation at the PU nodes due to the global ARM
dissemination delay. This is due to the fact that the locations
of the PUs in the ARM are out of date and the cognitive radio
uses this noisy information to adjust its transmissions.

B. Network-level simulations

The network-level simulation scenario is shown in Fig. 8,
where twenty cognitive radios are moving along the streets
and another twenty PU nodes are stationary and clustered at
a street crossing. In this analysis, two typical geographical
environments are considered; an open area and a dense urban
area, where the two-ray ground reflection model and the
Manhattan model are employed, respectively. The simulation
parameters can be found in [17]. The following utility function



Fig. 9. Network utility comparison when the cognitive radio system uses
different adaptation schemes.

is proposed in order to evaluate the performance of the two
networks,

u =
sum throughput of both primary and cognitive networks

average packet delay experienced by the PUs
.

Fig. 9 shows the increased network utility obtained when
cognitive radios use the ARM concept, in the context of
spectrum sharing with incumbent PUs. As depicted in this
figure, three different adaptation schemes are evaluated:
• Case 1: The cognitive radios are unaware of the topo-

graphical environment. Therefore, they take a conserva-
tive approach; when any PU node falls into their free-
space interference range, they stop transmission.

• Case 2: The cognitive radios first estimate the path loss
to the PU nodes by using the two-ray ground model and
then adaptively adjust their transit power if any PU is
within their interference range.

• Case 3: The ARM-enabled cognitive radios are fully
aware of the radio environment and apply the Manhattan
propagation model for path loss prediction. Based on this
estimate, the cognitive radios then adaptively adjust their
transit power if any PU is within their interference range.

The Manhattan propagation model differentiates the line-
of-sight (LOS) and non-line-of-sight (NLOS) conditions for
appropriate path loss prediction. The simulation results show
that the high penetration loss due to the buildings in a dense
urban area creates many “spectrum holes” that enable much
higher spectrum reuse by the ARM-enabled cognitive radios.
Therefore, the network utility for Case 3 is higher than that
for Cases 1 and 2.

IV. CONCLUSIONS

Performance analysis demonstrates that distributed spectrum
sensing provides a significant increase in the probability of
signal detection (there are radios using this frequency at
this location) and correct modulation classification (and these
signals are from primary users of the spectrum) of a cognitive
radio system, at the expense of requiring messages to be

exchanged among the radios of the system. This performance
improvement ultimately leads to a lower probability of in-
terference among systems, enabling cognitive radio systems
to achieve a more efficient utilization of the spectrum. Addi-
tionally, in order to achieve a given probability of detection
and correct modulation classification for the cognitive radio
system, the required sensitivity for each radio (e.g., probability
of detection for a given probability of false alarm) reduces as
the number of radios collaborating in sensing the spectrum
increases. In this paper, we also show that available radio
maps-based cognitive radio systems are an efficient approach
to achieve a more efficient utilization of the spectrum in
both space and time domains, helping to reduce harmful
interference between cognitive radio systems and possible
primary users of the spectrum.
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