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Abstract— Given the n-dimensional space Fn
q , the elements of

the projective spaces are all subspaces of Fn
q . Recently these codes

have found application in error-correction of network coding.
In this paper we examine a few interesting aspects of coding
theory in projective spaces. We present codes and bounds in the
projective spaces metric and prove that there are no perfect codes
in this metric. We consider linear codes and complement codes
in this metric and show some interesting phenomena. Lot of open
interesting question arise from our discussion.

I. INTRODUCTION

Given the n-dimensional space Fn
q (Fq = GF(q)), the

projective spaces metric consists of all subspaces of Fn
q as

elements; for two subspaces X and Y the distance between X
and Y is defined as d(X ,Y) = dim(X )+dim(Y)−2dim(X∩
Y). Let P (Fn

q ) denote the set of all subsets of subspaces from
Fn

q . A code C in the projective spaces is an element of P (Fn
q ).

For a subset W ∈ P (Fn
q ), let Grk(W) denote the set of all

k-dimensional subspaces of W . Recently these codes have
found application in error-correction of network coding [13].
This application is the motivation for our interest in these
codes and for this research. All k-dimensional subspaces of
Fn

q with the distance d(X ,Y) = dim(X )+dim(Y)−2dim(X∩Y)
2

for two given k-dimensional subspaces X and Y form what
is known as the Grassman scheme. The Grassman scheme is
akin to the well-known Johnson scheme and the projective
spaces metric is akin to the Hamming scheme. We note that
the distance in the Grassman scheme is half of the distance
in the projective spaces metric. This is akin to the situation
in the Johnson scheme and the Hamming scheme. As we will
consider throughout this paper codes in the projective spaces
metric, we will always take the distance as the one of this
metric even if all codewords are from the Grassman scheme.

With respect to coding theory, the Grassman scheme was
considered during the last twenty years only in connection
of perfect codes and tilings [1], [6], [15], [17], but there were
related works on intersecting families [11] and byte-correcting
codes [10]. Specifically, the nonexistence of perfect codes in
the Grassman scheme was proved first in [6] and later in [15].
In [1] it was proved that Steiner structures are the diameter per-
fect codes in this scheme. Properties of these structures were
discussed in [17]. Koetter and Kschischang [13] discussed
the applications of projective spaces codes as error-correcting
codes in network coding. They discussed the Singleton bound,
the sphere packing bound, and the Gilbert-Varshamov bound

in the Grassman scheme and gave a construction of Reed-
Solomon like codes. More applications for codes in the Grass-
man scheme were given in [24] in the context of authentication
codes.

Subsets from the projective spaces were considered in the
literature during the last thirty years in various aspects combi-
natorics, design theory, and extremal combinatorial problems.
In many places they are called the q-analogues of the problems
related to subsets of an n-set. Two interesting books which
consider q-analogues are [2], [25]. Partitions of Fn

q into
subspaces were considered in [3], [5], [7], [9], [12], [20].
Designs over the projective spaces were considered in [4],
[16], [18], [19], [21], [22]. A q-analogue to the well known
Sperner’s Theorem is given in [25]. Many more problems are
considered with a rich literature.

In this paper we discuss two issues of code in projective
spaces. Lower and upper bounds on the sizes of codes are
discussed in Section II. Linear codes over projective spaces
and complements of codes are discussed in Section III.

II. BASIC DEFINITIONS AND BOUNDS

In the same way that binomial coefficients play an important
role in enumeration of subsets, Gaussian coefficients play an
important role in enumeration computations for the projective

spaces metric. The q-ary Gaussian coefficient
[

n
k

]

q

is de-

fined by

[
n
0

]

q

= 1 ,

[
n
k

]

q

=
(qn − 1)(qn−1 − 1) · · · (qn−k+1 − 1)

(qk − 1)(qk−1 − 1) · · · (q − 1)
.

A Steiner structure S[t, k, n]q is a collection S of k-
dimensional subspaces from Fn

q such that each t-dimensional
subspace of Fn

q is contained in exactly one element of S . The
following results were given in [17].

Lemma 1: If a Steiner structure S[t, k, n]q exists then a
Steiner structure S[t− 1, k − 1, n− 1]q exists.



Theorem 1: A necessary condition for a Steiner structure

S[t, k, n]q to exist, is that the numbers

2
4 n− i

t− i

3
5

q2
4 k − i

t− i

3
5

q

, must be

integers, for all 0 ≤ i ≤ t.
A constant dimension code [n, 2δ, k]q is a code whose code-

words are k-dimensional subspaces of Fn
q and its minimum

distance is 2δ. An [n, d]q code is a code whose codewords
are subspaces of Fn

q and its minimum distance is d. The
code has dimension distribution D0,D1, · · · ,Dn, where Di

is the number of codewords with dimension i. Finally, let
Aq[n, 2δ, k] be the maximum number of codewords in an
[n, 2δ, k]q code, and let Aq[n, d] be the maximum number of
codewords in an [n, d]q code. For an [n, d]q code C, the dual
code C⊥ is defined by C⊥ = {P⊥ : P ∈ C}.

Koetter and Kschischang [13] presented an analog to the
Singleton bound.

Theorem 2: Aq[n, 2δ, k] ≤
[

n− δ + 1
k − δ + 1

]

q

.

Xia and Fu [26] proved analogs for two of Johnson
bounds [14]. The one of more interest is the following.

Theorem 3: Aq[n, 2δ, k] ≤ qn−1
qk−1

Aq[n− 1, 2δ, k − 1].
Theorem 3 has a similar proof to the analog theorem in the
Johnson scheme. An analog to the dual theorem in the Johnson
scheme can be also given, although the two proofs we have
for it are completely different from the proof of its analog.

Theorem 4: Aq[n, 2δ, k] ≤ qn−1
qn−k−1

Aq[n− 1, 2δ, k].
By using iterations of Theorem 3 we obtain [26].
Theorem 5:

Aq[n, 2δ, k] ≤ bq
n − 1

qk − 1
bq

n−1 − 1
qk−1 − 1

· · · bq
n−k+δ − 1
qδ − 1

c · · · cc .

The bound of Theorem 5 is always better than the bound
of Theorem 2 [26].

An important result on a dual code is the following.
Lemma 2: If C is an [n, d]q code then C⊥ is an [n, d]q code.

Xia and Fu [26] stated Lemma 2 for constant dimension codes
and used it to prove.

Lemma 3: Aq[n, d, k] = Aq[n, d, n− k].
For the projective spaces metric a Gilbert-Varshamov lower

bound on Aq[n, d] can be given by using the method of
Tolhuizen [23].

A trivial upper bound on Aq[n, d] is Aq[n, d] ≤∑n
k=0 Aq[n, d, k]. This bound is improved by using linear

programming [14]. We demonstrate it for d = 3.

maximize
n∑

k=0

Dk ,

subject to

qn−i+1 − 1
q − 1

Di−1 +Di +
qi+1 − 1

q − 1
Di+1 ≤

[
n
i

]

q

, 0 ≤ i ≤ n,

and Di ≤ Aq[n, 4, i], 0 ≤ i ≤ n,

where D−1 and Dn+1 are defined to be 0.
Clearly, the target function maximize

∑n
k=0Dk is an upper

bound on Aq[n, d].
By using several computational methods for finding codes

with certain structures, certain interesting codes were found.
As examples, we have A2[5, 3] = 18 and A2[9, 3, 4] ≥ 5694.

If k divides n then there exists a Steiner structure
S[1, k, n]q [1], [17] which is equivalent to a perfect byte-
correcting code [10], [17]. By Theorem 1, such structures can
exist only when k divides n. When k does not divide n we
have the following two results.

Theorem 6: Aq[n, 2k, k] ≤ b qn−1
qk−1

c− 1 if n is not divisible
by k.

Theorem 7: If n = sk + m, where m > k, then
Aq[n, 2k, k] ≥ qm(qsk−1)

qk−1
+ 1.

The nonexistence of perfect codes in the Grassman scheme
is well known [6], [15]. The related graph is distance-regular
and hence standard methods can be applied on it for a proof of
such result. The related graph for the projective spaces metric
is not distance-regular and hence the proof for the nonexistence
of perfect codes in this metric requires different techniques.
Anyway, the definition of a perfect code is given in the usual
way. By using Theorem 1, Theorem 3, and Theorem 6 we
obtain the following result.

Theorem 8: There is no nontrivial perfect code in the
projective spaces metric over Fq .

III. LINEAR CODES AND COMPLEMENTS

There are many basic properties of codes in the Hamming
scheme which are used for code construction. Linear codes are
with no doubt the most basic one and over F2 complement is
another one. In this section we will restrict ourself only to the
binary case, even so most of the results can be extended for Fq .
If C is a binary code in the Hamming scheme, the complement
of C, C̄ has the same size as C and the same minimum distance.
The complement of a code C consists of complements of its
codewords. The usual definition of a complement for a k-
dimensional subspace P of Fn

q is an (n − k)-dimensional
subspace Q such that P ∩ Q = {0}. But, in contrast to
the binary Hamming scheme, this definition does not produce
a unique complement over Fn

2 . This immediately raise the
question whether there exists a definition of complements such
that the complement of any code C over Fn

2 is a code C̄ with
the same size. We will prove that the answer to this question
is positive, but any definition will suffer from two faults. The
first one is that if n = 2k then Q might be the complement
of P , while P is not a complement of Q. The second fault is
that the minimum distance of C and C̄ might be different.

Having explained the problems, that might occur, in the
definition of complements, we turn to the more basic concept
of linear codes. Linear codes are the most comfortable codes
to handle in the Hamming scheme as they have simple
representation and relatively simple encoding and decoding
algorithms. Therefore, it is natural to ask whether there exist
linear codes in the projective spaces metric? This natural



and simple question is in fact quite complicated. We start
with seven definitions of the properties we require from
a linear code and complements. We will show why these
properties are necessary. After that we discuss which linear
codes and complements exist in the projective spaces metric.
Let W,W ′ ∈ P (Fn

2 ).
Definition 1: A function + : W×W →W is a group addition
on W if {W, +} is a group.
Definition 2: A function + : W × W → W is an abelian
group addition on W if {W,+} is an abelian group.
Definition 3: A function + : W×W →W is a linear addition
on W if {W,+} is vector space over F2 and the identity is
the null-space, i.e. {0}.
Definition 4: The addition functions defined above are said
to be isometric (so isometric group addition, isometric linear
addition, etc) if the following condition holds:

For all V,U1,U2 ∈ W , d(V + U1,V + U2) = d(U1,U2).
Definition 5: A function f : W →W ′ is a complement if the
following conditions hold:
• For all k = 0, 1, ..., n, the restriction of f to Grk(W) is

a bijection between Grk(W) and Grn−k(W ′).
• For all U ∈ W , U ∩ f(U) = {0}.

Definition 6: A function f : W → W ′ is a symmetric
complement onW if, in addition to the conditions of Definition
5, W = W ′ and for all U ∈ W , f(f(U)) = U .
Definition 7: A function f : W → W ′ is an isometric
complement onW if, in addition to the conditions of Definition
5, for all U1,U2 ∈ W , d(f(U1), f(U2)) = d(U1,U2).

If W = Fn
2 , can we have functions + and f such that all the

seven definitions are satisfied? Unfortunately, we don’t have
such functions which satisfy a smaller subset of the definitions.
Therefore, we will examine now for which functions + and f
a large subset of the definitions are satisfied, when W = Fn

2 ?
We will also examine what is the largest subset W of Fn

2 for
which there exist functions + and f which satisfy the seven
definitions (or subsets of these definitions)? Finally, we want
to explain why we need all these seven definitions?

Clearly if there exists a group {G, +}, |G| = g, then there
exists an addition function + which satisfies Definition 1 for
any W such that |W| = g. The same is true if {G,+} is an
abelian group and Definition 2. Any bijection between G and
W , will imply a group addition which satisfies Definition 1
(or Definition 2).

Theorem 9: There exists a subset W of Fn
2 , |W| = 2n, and

functions + and f , which satisfy Definitions 1 through 7.
We conjecture that there is no subset W of Fn

2 , |W| > 2n,
and functions + and f , which satisfy Definitions 1 through 7.

It is easy to define an addition which satisfies Definitions 1
through 3 if W has cardinality 2m, {0} ∈ W . Definition 4 is
the one which makes the difference. Definition 4 implies that
the minimum distance of a linear code in projective spaces is
preserved under addition of a constant subspace from W . It
implies several other results such as:

Lemma 4: If S1 and S2 are two subspaces in W then
d(S1,S2) = dim(S1 + S2), i.e., dim(S1 + S2) = dim(S1) +
dim(S2)− 2dim(S1 ∩ S2).

Lemma 5: If S1 and S2 two disjoint subspaces in W then
S1 + S2 = span(S1, S2).

Lemma 6: The number of 1-dimensional subspaces of Fn
2 in

a set W with a function + which satisfy Definitions 1 through
4 is at most n.
Can Lemma 6 be extended for any k-dimensional subspaces,
i.e., is there a set W with a function + which satisfy
Definitions 1 through 4 with more than

(
n
k

)
k-dimensional

subspaces? We believe that the answer is NO if Fn
2 ∈ W , i.e.,

when there exists a function f such that Definitions 5 through
7 are also satisfied. In this case we beleive that all codes are
isomorphic to the one constructed in Theorem 9. Otherwise,
the answer is YES whenever n ≥ 3.

By using a recursive construction we are able to prove the
following theorem.

Theorem 10: There is a function f which satisfies Defini-
tion 5 when W = Fn

2 .
Finally, we ask whether Definitions 5 through 7 can be

satisfied? For this we have the following results.
Lemma 7: There is no function f which satisfies Definition

6, when W = Grk(F2k
2 ).

Lemma 8: There is no function f which satisfies Defini-
tions 5 and 7, when W = Gr2(F4

2).
Lemma 9: There is no function f which satisfies Defini-

tions 5 and 7, when W = Gr1(F3
2).
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