Title: Functional Monitoring Without Monotonicity Abstract: The notion of distributed functional monitoring was recently introduced by Cormode, Muthukrishnan and Yi (2008) to initiate a formal study of the communication cost of certain fundamental problems arising in distributed systems, especially sensor networks. In this model, each of k sites reads a stream of tokens and is in communication with a central coordinator, who wishes to continuously monitor some function f of the union of the streams. The goal is to minimize the number of bits communicated by a protocol that correctly monitors f, to within some small error. In previous work, some upper and lower bounds were obtained for this problem, with f being a frequency moment function, e.g., F_0, F_1, F_2. Importantly, these functions are monotone. Here, we further advance the study of such problems, proving three new classes of results. First, we prove new lower bounds on this problem when f = F_p, for several values of p. Second, we study the effect of non-monotonicity of f on our ability to give nontrivial monitoring protocols, by considering f = F_p with deletions allowed, as well as f = H, the empirical Shannon entropy of a stream. Third, we provide nontrivial monitoring protocols when f is either H, or any of a related class of entropy functions (Tsallis entropies). These are the first nontrivial algorithms for distributed monitoring of non-monotone functions.