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Abstract—A multi-relay network is studied in which com- Y Rei1 LG
munication from source to relays takes place over a Gaussian .
broadcast channel, while the relays are connected to the receiver \ Yo [ ey p |G| Erasure Vi
via orthogonal finite-capacity links. Unbeknownst to the source ™22 g0 X0 oy 1w ¢ chamel | 1l pec M
and relays, link failures may take place between any subset of : M, <M <M, |M
relays and the destination in a non-ergodic fashion. Upper and yr
lower bounds are derived on average achievable rates with respect = Rel MTL'
to the prior distribution of the link failures. It is first assumed
that relays are oblivious to the codebook shared by source
and destination, and then the results are extended to the non- ) ) ) ) )
oblivious case. The lower bounds are obtained via Strategies that Flg 1. A smgle transmitter communicates to a remote receiver via M

combine the broadcast coding approach, previously investigated
for quasi-static fading channels, and different robust distributed
compression techniques.

|. INTRODUCTION

This work is motivated by two major characteristics of
modern packet data networks. On the one hand, in the presence
of delay-sensitive applications, link failures are often appropri-
ately modelled as being unpredictable and non-ergodic. While
the conventional transmission design is based on constant-rate
data delivery (possibly with an associated outage probability),
it is often feasible, and desirable, to deploy transmission
strategies that are able to provide variable-rate data delivery
depending on the current state of the involved links [1]-[3].
On the other hand, data communication networks are typically
envisaged to include distributed nodes, whose operation is
decentralized. In this paper, we consider a baseline model for
communication networks that include these two basic elements
of non-ergodic link failures and decentralized operation.

Consider a scenario in which a single source communicates
with a remote destination via a number of relays (also referred
to as "agents" in related literature), with no multi-access
interference at the destination (i.e., orthogonal finite-capacity
links, see Fig. 1). This model provides a basic framework to
address the problem of decentralized processing. In [6] the
multi-relay network described above was studied under the
assumption that the relays are either oblivious to or informed
about the codebook shared by the source and destination. In
the former case, unlike the latter, processing at the relays
cannot depend on the specific codebook selected by the
source (as in, e.g., compress-and-forward or amplify-and-
forward achievable strategies). This assumption is of particular
relevance for nomadic applications (in which no signalling is
in place to exchange information regarding modulation and

relays connected to the destination through unreliable finite-capacity links
(non-ergodic erasures). The number of functioning links M is unknown to
source and relays (uninformed source and relays).

coding used at the source) or in networks with inexpensive
relays whose processing cannot adapt to the specific source
operation. A related model that includes also non-ergodic
failures was studied in [4] and [5] in the context of distributed
indirect source coding, also referred to as the CEO problem, in
which the source is a given random process to be reproduced
at the destination. Therein, it is assumed that, unbeknownst
to the agents, the links to the destination may not be active.
In this work, we are interested in the communication (channel
coding) scenario of Fig. 1, and we extend the analysis in [6] by
accounting for unreliable links between relays and destinations
(non-ergodic failures) in the sense of [4] and [5].

The basic idea behind our approach to the analysis of
the system in Fig. 1 is to exploit the synergy between the
broadcast (BC) coding approach of [3] at the source, which
allows for variable-data delivery to the destination depend-
ing on the current connectivity conditions, and the robust
distributed compression strategies of [4] and [5]. It is noted
that a related idea was put forth in [1] and [2] (see also
references therein), in which the BC coding approach was
combined with successive-description compression techniques
for transmission of a Gaussian source over a slowly fading
channel without channel state information. For lack of space,
in this paper results are provided only for the Gaussian model
and without formal proofs. Extension to the discrete model
and full proofs can be found in [7].

Notation: The notation [a, b] with a and b integers represents
the interval [a,a + 1,..., b], with the convention that if a > b
then [a, b] = (). Similarly, the subscript notation X, ;) denotes



the vector [X,, ..., X}] with the same convention that, if a > b,
Xia,p) = 0. In general, lower-case letters represent instances of
the random variables denoted by the corresponding upper-case
letters. Moreover, using standard notation, we will sometimes
use superscripts to denote index bounds in sequences as in
x' = [x1,---,x;]. The use of the superscript will be made
clear by the context. Probability distributions are identified by
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their arguments, e.g., px(x) = Pr[X = z] = p(x).

Il. SYSTEM MODEL

We consider the decentralized communication scenario of
Fig. 1, in which a source communicates to a destination via
M "agents" or relays, connected to the receiver via orthog-
onal finite-capacity (backhaul) links of capacity C. No direct
connection from the source to the destination is available. The
channel from source to relays is memoryless and Gaussian.
The signal Y; ; € R received by the agent ¢ € [1, My] at time
instant j € [1,n] is given by

Yiij=X;+ Z;, 1)

with X; being the jth transmitted symbol and the noise Z; ; ~
N(0,1) being independent and identically distributed (i.i.d.)
over both ¢ and j. Notice that the observations Y; ; for different
1 are statistically exchangeable (see, e.g., [4]). VXe assume an
average input power constraint of P: 1/nz_ 22 < P.

To account for a nomadic scenario and/or tojgimplify the
operations at the relays, we assume at first, as in [6], that
the relays are not informed about the codebooks used by the
transmitter (oblivious agents); see below for details. The non-
oblivious case is then considered in Sec. V.

The model described above coincides with the one studied
in [6]. Here, however, we are interested in investigating the
scenario in which the backhaul links from relays to destination
present non-ergodic failures. Specifically, following [4], we
assume that only a number M < My of links are functioning
at a given coding block, while the remaining My — M are
erased (e.g., in outage) for the entire duration of the current
transmission (non-ergodic scenario). We define the probability
that M = m as p,, and collect the probabilities p,,, in vector
p = (PmMos--sDPMy), Where My represents the minimum
guaranteed number of active links [4] (this implies p,,, = 0 for
m < My). We remark that, by the symmetry of (1), the system
configuration for a given M depends only on the number M
of active links and not on which links are active. Finally,
in keeping with the models of [4] and [5] (for distributed
source coding), we are interested in scenarios in which no
instantaneous information regarding the current state of the
unreliable links (i.e., the value of M) is available a priori to
the source and the agents (uninformed source and agents).
More precisely, the only information that is available at source
and relays is the probability mass function p.

A. Average Rate and Formal Setting

We are interested in average achievable rates, where the
average is taken with respect to the a priori connectiv-
ity probability vector p. Specifically, we consider a de-

graded message structure in which the overall source message
of rate Ty, [bits/ channel use] is split into submessages
(Whato, s Watz) 2 Wiagg,arp OF rates Rag, ..., Ry, re-
spectively, i.e., W,,, € [1,2"f'=]. When M = m links are
active, with m € [My, Mr], the receiver decodes messages
Wintgsm) = Wy, -, Win) of total rate 7,,, = 321", Ri.
Notice that the more links are active the more bits (and
messages) are decoded. The average rate R is defined as

M~
R=Y" puTn @)
m=DMpyp

We remark that, as in [3], the average rate (2) does not have
the operational significance of an ergodic rate, the channel
being non-ergodic. It is instead a measure of the rate that
could be accrued with repeated, and independent, transmission
blocks, or of the "expected" rate or throughput. The setting is
briefly formalized in the following (see [7] for details) for the
oblivious case, which is studied throughout the paper, except
in Sec. V.

(i) The encoder performs a (stochastic) mapping qﬁ}E)
(the superscript (E) denotes the encoder) from the messages
Wiate,n1,) 10 @ codeword z™, namely z" = ¢}E)(W[MO,MT])
with 7 € F = [1,|X]"2""™7] being a random key that
runs over all possible codebooks of size 277™r. The key
F € F is revealed to the destination, but not to the relays
(oblivious relays), and formalizes the fact that the relays
have no prior knowledge of the codebook. As detailed in
[6], by appropriately choosing the probability Pr[F = f] of
selecting a given codebook ¢(E), one can model a scenario
in which the signal transmitted by the source X", in the
absence of knowledge of F' (i.e., at the relays), isndistributed
i.i.d. according to the distribution pxn(z") = H_f1 px (),
where px(x;) is constrained to be a Gaussian distribution
with zero mean and power P, and similarly the received
signals Y at the relays appear i.i.d.; (ii) Each ith relay
(¢ € [1, M7]), unaware of the codebook F' (oblivious relays)
and of M, maps the received sequence y; into an index
s; € [1,2"C] via a given mapping s; = ¢ (y™); (iii) The
decoder, if M = m links are active, decodes messages
Wintg.m) = Wy, ..., Wi,) based on its knowledge of the
codebook key F' and the received indices s; over the m active
links (these can be assumed by symmetry to be si,...,5)
via a decoding function qb(FD); (iv) The probability of error
when M = m links are active (averaged over F') is defined
as P, = Pr¢% (Spm)) # Wiasem)]- An average rate R
(2) is achievable if there exists a sequence of codes such that
all rates T,,, = 7", R; for m € [My, Mr] are achievable,
i.e., max,, P, — 0 as n — oco. The average capacity C,g

e,m

is the supremum of all average achievable rates (2).

I11. UPPER BOUNDS

In this section, we start the study of the system presented
above by deriving upper bounds on the capacity C,y,. It is
recalled from the previous section that, as in [6], we a priori
restrict the input distribution to be Gaussian.



Proposition 1: (Cooperative relays) The following is an
upper bound on the capacity Cave
(ijjwo

< max E
Cave m= M0
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5 082
k= m+1

for m € [My, Mr|, where the maximization is taken with
respect to parameters 3, ..., 8y, > 0 with By, + ... +
B, =1and o2, = (1/m+ P)/(2*™C —1).

Remark 1: The upper bound of Proposition 1 is obtained
by assuming that all of the M relays that are connected to the
corresponding active links can fully cooperate in processing
their received signals (notice that this implies that they are
also informed of which links are active). The upper bound
can be interpreted as stating that, under this assumption: (i)
The best way to operate at the source is to use a standard BC
code characterized by powers 3,, P (m € [MO,MT])' such
powers correspond to the transmission of message W, to be
decoded at the receiver when M = m; (ii) The M =m
fully cooperative relays can employ without loss of optimality
compress-and-forward (CF) techniques with a Gaussian test
channel (see also sketch of proof below) to communicate to
the receiver, where the parameter o2, is the compression noise
power. Notice that the optimality of CF in this context is a
consequence of the obliviousness assumption (see also [6]).

Proof: (sketch) Assume that the relays are perfectly
cooperating so that, when M = m links are active, they can
be seen as a unique compound agent with m measurements

(smce the signals are statistically equivalent, there is no
Ioss |n generality in this choice of Y"). It is easy to see that
the compound agent can be equwalently considered as havmg
scalar measurements (recall (1)): Y(m) = 1/m2 Y,

since there is no performance loss in projecting the ?ecelved
signal over the signal space, the noise in (1) being uncorrelated
over the agents. From [6], it is known that, under the given
assumptions, the optimal operation at the compound agent
(which is clearly aware of the capacity mC toward the
destination) is to quantize to a rate mC bits/ source symbol the
received signal via a Gaussian test channel V,, = Y™ +@Q,,
with @Q,, ~ N(0,02,) independent of V(™). From standard
arguments in rate-distortion theory, in order to have vanishing
probability of error in the quantization process (as the block
size n increases), we can set mC = I(V,,;Y (™), thus
obtaining o2, = (1/m + P)/(22™¢ — 1). As a result, since
the source is not informed about the current value of M = m,
the equivalent channel can be seen as a degraded Gaussian
broadcast channel, in which the My — My + 1 destinations
observe received signals V,,, with equivalent noise variances
1/m+ a2, for m € [My, M7]. Notice that such variances are
clearly decreasing with m. Recalling the capacity region for
the Gaussian broadcast channel, bound (4) then easily follows.

|

It is interesting two consider two further enhanced systems
that provide alternative upper bounds. The first is obtained
by assuming an “ergodic” system, in which any ith link is
always active (fully reliable) with capacity equal to the average
E[C;] = C-(1—Pr[A; = 0]), where A, is a random variable
accounting for whether the ith link is active (4; = 1) or
not (A; = 0). One can choose different joint distributions
Pr[Ay, ..., Apr,] that are compatible with the probabilities p
(i.e., Pr[M = m] = p,,), and any such distribution generally
leads to different E[C;] and thus different upper bounds. Here,
for simplicity, we focus on joint distributions such that the
marginals Pr[A;] are the same for each links (it can be seen
that these can be found for any My).

Proposition 2: (Ergodic) The following is an upper bound
on the average capacity:

Cavg < {k(E[C] =) (5)

max min
r>0 k€[0,M7]

+% log, (1 + P (Mr —k)(1— 2_27'))} )

where E[C] = C - (1 — Pr[4; = 0]) with Pr[A;] being the
marginal distribution of the ith link corresponding to any joint
distribution Pr[Aq, ..., Aas,] such that Pr[A; = 0] = Pr[4; =
0], for i # j, and Pr[M = m| = p,, for m =0, ..., M.
Proof: Rate (5) is the (Shannon) capacity of the system
for the case in which py;,. = 1 (fully reliable links) and
the links have the same capacity E[C] (“ergodic" system)
[6]. Now, it can be seen that the (Shannon) capacity for the
“ergodic” system provides an upper bound to the average rate
of the non-ergodic model at hand. In fact, any average rate
achievable in the non-ergodic model can be achieved in the
“ergodic” system by time-sharing. [ ]
A second alternative upper bound can be obtained by
assuming informed source and relays.
Proposition 3: (Informed source and relays) The follow-
ing is an upper bound on the average capacity: Cuyy <

Z%TM pm T, With

T, = E(C —1m) (6)

max min {
m >0 ke[0,m]

+1 logy (14 P(Mrp —k)(1— QQM))} :

Moreover, rate Zm M, Pm Ly, With (6) is the capacity for
the system at hand if we assume that both source and relays
are informed about the value of M (while the relays are still
oblivious to the source codebook).

Proof: Assume that the relays are aware of the current
number M = m of active links (while still being oblivious
to the source codebook). The upper bound then follows
from Theorem 5 in [6]. Moreover, the capacity result is a
consequence of the fact that assuming informed source and
relays amounts to considering a model with fully reliable links,
which was solved for the Gaussian case in [6]. ]

IV. ACHIEVABLE RATES

In the following, motivated by the upper bound of Proposi-
tion 1, we propose achievable schemes based on the BC coding



strategy of [3] and CF at the relays. The source transmits a
superposition of Mt — My + 1 codewords of rates R,, for
m € [Mo, Mr]. When M = m, the receiver decodes Wiz, .-
The two techniques proposed in the following differ in the way
the CF strategy is implemented in terms of compression at the
agents and decompression/ decoding at the receiver, and entail
increasing levels of complexity.

A. Broadcast Coding and Single-Description Compression
(BC-SD)

In this section, we consider a transmission strategy based
on BC coding and single-description (SD) compression at the
relays. In other words, each relay sends over the backhaul
link a single index (description), which is a function of the
received signal. The compression/decompression scheme is
inspired by the technique used in [4] for robust distributed
source coding in a CEO problem. The technique works by
performing random binning at the agents, as is standard
in distributed compression. Moreover, the test channel (i.e.,
equivalent compression noise) and binning rate are selected
so that the receiver can recover with high probability the
compressed signals on the M active links irrespective of the
realized value of M as long as it is M > M, (as guaranteed
by assumption). In other words, design of the compression
scheme targets the worst-case scenario of M = M,. Notice
that, should more than M links be active (M > M), the
corresponding compressed signals would also be recoverable
at the receiver, since, by design of the binning rate, any
subset of M, descriptions can be decompressed [4]. After
decompression is performed, the receiver uses all the A
signals obtained from the relays to decode the codewords
up to the Mth layer (that is, the layers with rates R,, with

Proposition 4: (BC-SD) The average rate (2) is achievable
for

P
logy | 1+ M m Vi (7
1+ o? +mP Zk:qjm—i-l ﬁk

and o2 satisfying
MyP \ ™0 1
<1+1+02) (1+§)], ®

for any power allocation 3, , ..., 85z, > 0 with 8, + ... +
Brry = 1.

Remark 2: Similar to the discussion around Proposition 1,
the power 3,,, P, m € [My, Mr—1], accounts for the codebook
used for the transmission of the mth layer to be decoded at
the receiver when M = m. Moreover, Gaussian test channels
are used at each relay for compression, and condition (8)
is shown in [4] to guarantee that the decoder is able to
decompress the descriptions corresponding to any subset of
My, agents. We finally notice that the only difference between
the achievable rate of Proposition 4 obtained with BC-SD and
the upper bound of Proposition 1 is related to the powers of
the equivalent compression noise (compare (7) with (4)).
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Remark 3: For My = My (fully reliable links), the achiev-
able rate of Proposition 4 coincides with the one presented in
Theorem 1 of [6].

Remark 4: (Joint Decompression/Decoding) A potentially
more efficient (but also more complex) implementation of a
system working with BC coding and SD compression can be
designed based on joint decompression/decoding, similarly to
the scheme proposed in [6]. We refer to [7] for further analysis
and discussion.

B. Broadcast Coding and Multi-Description Robust Compres-
sion (BC-MD)

In this section, we propose to couple the BC coding ap-
proach considered throughout the paper with multi-description
(MD), rather than SD, compression at the agents. The idea
follows the work in [5] , which focused on the CEO problem.
Accordingly, each relay shares the nC bits it can convey to
the destination between multiple descriptions of the received
signal to the decoder. The basic idea is that different descrip-
tions are designed to be recoverable only if certain connectivity
conditions are met (that is, if the number of functioning links
M is sufficiently large). This adds flexibility and robustness
to the compression strategy.

To simplify the presentation, here we focus on the two-agent
case (M7 = 2). Dealing with the more general setup requires
a somewhat more cumbersome notation, but is conceptually a
straightforward extension. Moreover, without loss of general-
ity, we assume My = 0 or My = 1, since with My = My =2
the system coincides with the one with fully reliable links
studied in [6]. The two agents send two descriptions: a basic
one to be used at the receiver in case the number of active
links turns out to be M = My = 1 and a "refined" one that
will be used only if M = Mpr = 2. It is also noted that
for the scheme at hand the only difference between the cases
My =0 and My = 1 is in the prior p =(po, p1, p2), where in
the former case, unlike the latter, we have py > 0.

Proposition 5: (BC-MD) For My = 2, My = 0 or 1, the
average rate (2) is achievable for

1 3P
3 1082 <1+ 1+ (1 —5)P+a§+ag) (%2)

1 2(1 - B)P
< = _
and Ry < 5 log, <1 + 1102 > (9b)

Ry

IA

with any power allocation 0 < 3 < 1, and any o3 and o3

such that
1 1 14 P+1
2 8 G’% + 0%

e (03 +03)" (2P +03+1) (63 +1)
18\ 2P+t +ok+1) (0302 +1)08

c > (10)

Remark 5: In the MD scheme achieving the rate above,
each transmitter divides its capacity C' in two parts, say with
a fraction 0 < X < 1 devoted to the first (m = 1) and
(1 — X) to the second (m = 2) description. Denote as V,,;
the auxiliary random variable defining the mth description of



the ¢th agent. For both descriptions, Gaussian test channels
are used. For the first description, no random binning is used
and the rate of the compression codebook is A\C = I(V;;Y7)
to guarantee correct compression from standard rate-distortion
theoretic arguments. For the second description, test channel
and binning rate are selected so that the two descriptions
of both agents are recoverable at the destination whenever
M = 2. To ensure this, it is sufficient to impose the condition
2(1 = N)C > I(Vay,Va;Y1,Ys|Vi1,Via) from distributed
lossy rate-distortion theory, see, e.g., [5]. Notice that the latter
inequality exploits the fact that the first descriptions V;; and
V1o have been correctly decompressed at the decoder when
M = 2, and thus provide side information. Variances o?%
and o3 in (9)-(10) account for the compression noises for the
first and second description, respectively, and condition (10)
follows from the discussion above. The powers (5P, (1—3)P)
represent, as in the rest of the paper, the BC code.

Remark 6: On letting 02 — oo for the Gaussian model,
Proposition 5 reduces to Proposition 4 for My =2, My =0
or 1.

V. NON-OBLIVIOUS AGENTS

In this section, we briefly consider the model in which the
agents are informed about the codebook used at the source,
that is, equivalently, about the key F. A similar model was
considered in [6] for the case of fully reliable links, My =
M. We first consider a simple upper bound on the capacity
(i.e., maximum average achievable rate) for this scenario that
is a direct consequence of cut-set arguments. Specifically, it
can be seen that the average capacity for the setup at hand is
upper bounded by

M

1
Cave < Y Pm min{§1og2 (14+mP), mC’}, (11)
m:M(]

where the first term in the min{-,-} follows by considering
the cut between source and agents (agents not connected to
the destination cannot contribute to the rate) and the second
depends on the cut from agents to destination.

As for an achievable strategy, we propose the following
scheme that generalizes the BC-SD strategy considered in the
previous section. In the proposed scheme, the source uses BC
coding with Gaussian codebooks as considered throughout the
rest of the paper. However, on top of the My — My + 1 layers
assumed in the schemes described in Sec. 1V, here the source
superimposes a further layer carrying a common message, say
Wy, with rate Ry, to be decoded by all agents (recall that
in our model all agents are statistically equivalent) and then
forwarded to the destination. We would like the destination
to be able to recover such a message at all times, that is, as
long as the number of active link M satisfies M > M. This
is akin to the SD approach to compression studied in Sec.
IV-A. Towards this goal, each agent reserves a rate of R/Mjy
on its outgoing links to send an index computed as a random
function of the decoded Wj. It can be easily seen that, even
though the agents are unaware of which links are currently

active (but only that M > M,), the receiver will be able to
recover Wy with vanishing probability of error as n — oo
(this is a special case of the Slepian-Wolf problem). The extra
layer carrying Wy, is decoded first by the agents and cancelled,
and the rest of coding/ decoding takes place as for the BC-SD
scheme of Sec. IV-A with the caveat that now the remaining
link capacity to forward compression indices is C' — R/M.
Proposition 6: The average rate (2) is achievable in the
presence of non-oblivious relays for the Gaussian model with

R, < Rag, + Ry, (12a)
R < Ry, form =My +1,..., My (12b)
and . 5P
=_1 14 —200 13
Ry 2°g2(+1+(1_50>p)’ 13)

with rates R,, satisfying the inequalities in (7), and o2

satisfying
MyP(1 — e 1
(1+ oP( 260)) (1+_2) 7
1+o0 o

(14)
for any power allocation 8, 8y, ---» B = 0 With g+, +
Proof: This result follows easily from the proof of Propo-
sition 4 and the description of the scheme provided above. B
Remark 7: The parameter (3, in (13)-(14) represents the
amount of power spent for transmission of message Wj.
Moreover, if 5, = 0, the rate of the proposition above reduces
to the BC-SD scheme of Proposition 4.

Ry 1
c- 205 2
M, = 2 82

V1. NUMERICAL RESULTS

Consider a two-agent system (Mp = 2) with My, = 1
guaranteed functioning links. We start by considering the
performance with oblivious agents. We compare the per-
formance of the schemes described above, with single de-
scription (SD) or multi-description (MD) compression. For
reference, we consider the upper bound (4) corresponding
to cooperative relays (labelled as "cooperative™). To assess
the impact of non-ergodic link outage, we also show the
ergodic upper bound (5) with average link capacity E[C] =
(1 = p1/2)C (which corresponds to assuming identically
distributed links), which leads to [6] Cavy < 1/2log,(1 +
2P(1 — 27 4FlCl(\/P? 4+ 24E[CI(1 4 2P) — P))) (labelled as
"ergodic"). The informed upper bound is not shown since
for this example it is very close to the ergodic one. Finally,
the rate of a baseline single-layer (SL), or non-broadcast,
transmission in which the source only sends one information
layer to be decoded in the worst case scenario M, = 1 and the
relays perform SD compression is shown for reference. The
rate of this SL-SD scheme is easily seen to be Rsy,_sp =
1log, (14 P/(1+0?)), with 0% = (1+ P)/(22¢ — 1).

Fig. 2 shows the average rates of the proposed schemes for
P = 15dB and C = 0.5 versus the probability po =1 — p;
of having M = 2 active links (rather than the minimum
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Fig. 2. Average achievable rates (2) for the proposed BC-based schemes
with single description (SD) or multi-description (MD) compression, versus
the probability po = 1 — p; of having M = 2 active links. For reference,
the upper bound (4) achievable with cooperative relay, the upper bound
corresponding to ergodic link failures and the rate of single-layer (SL), or
non-broadcast, transmission with SD compression are also shown (P = 15dB
and C = 0.5).

guaranteed M, = 1). The rates are optimized numerically over
the parameters at hand (i.e., the compression noise variances
o? and power allocation ). It can be seen that the BC
coding strategy provides relevant advantages over SL as long
as the probability p, is sufficiently large, since it offers the
possibility to exploit better connectivity conditions when they
arise. Moreover, MD compression clearly outperforms the SD-
based approach for all values of p, for which BC coding is
advantageous, due to the added flexibility in allocating part
of the backhaul link rate for the case of full connectivity
(M = Mr). In particular, BC-MD performs very close to the
upper bound of cooperative relays and for po = 1 achieves the
capacity for My = My = 2 of [6] (that is, the ergodic bound
above with p; = 0).

We now consider non-oblivious agents. Fig. 3 shows the
average achievable rate for a two-agent system (Mp = 2)
versus capacity C with My = 1, for various values of p;
(probability of M = 1) and P = 10dB. The rates are com-
pared with the upper bound (11) drawn for two representative
values of p;, namely 0 and 1. From (11) and Proposition 6,
it is noted that the cut-set bound for p; = 1 coincides with
the rate achievable by sending only the message W, that is,
by setting 3; = 0 for j € [Mo, Mr] in (12). Therefore,
for p; = 1, the proposed scheme is optimal for any value
of C, and there is no need for compression of the received
signal. Considering then the other limiting case, p; = 0, it is
seen that the proposed scheme achieves the cut-set bound, and
specifically the fully cooperative rate 1/21og, (1 + 2P), for C
sufficiently large. Moreover, this result is achieved by setting
By = 0 or equivalently Ry = 0, that is, by not exploiting the
decoding capability of the agents. This fact is immediate if one
notices that for C' large and p; = 0, the two received signals
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Fig. 3. Average achievable rate (12) with non-oblivious agents versus
capacity C, for various values of p; and P = 10dB. (M = 2 with
My = 1). Also shown is the cut-set bound (11) for p; =0 and p; = 1.

can be sent by two agents with full reliability to the destination
via quantization (see also [6]). Increasing p;, the proposed
scheme does not achieve the cut-set bound (not shown), even
though the loss is rather limited. Furthermore, in general, for
p1 < 1 one can gain by using the backhaul links to send "soft"
(quantization) information, along with the "hard" information
on Wy, as is clear by comparing the performance with the cut-
set bound with p; = 1 (see discussion above). In the example
at hand, for p; > 0.4 such gain vanishes.

VII. CONCLUDING REMARKS

Focusing on a multi-relay network with one transmitter-
receiver pair and unreliable orthogonal link between each
relay and the destination, we have exploited the synergy
between the BC approach of [3] and the distributed source
coding techniques of [4] and [5] to propose a number of
robust communication strategies. This work opens a number
of possible avenues for future research, such as the extension
to multi-user scenarios with more than one source.
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