Iterated Decoding of Modified Product Codes 1n
Optical Networks

Jgrn Justesen
Department of Photonics
Technical University of Denmark
DK-2800 Kgs.Lyngby, Denmark
Email: joju@fotonik.dtu.dk

Abstract— Appendix I of the standard ITU-T G.975 contains
several codes that have been proposed for improved performance
of optical transmission. While the original application was sub-
marine cables, the codes are now also used in terrestrial systems
where wavelength-division multiplexing (WDM) is introduced.
Currently codes suitable for data rates of 100 Gbits/sec in each
channel are being studied. We discuss performance limits for
codes with the specified block lengths of about 130,000 and rates
about 15/16. The most promising codes appear to be modified
product codes, and iterated decoding is used in several cases.
We discuss the construction, decoding, and performance of such
codes.

I. INTRODUCTION

In the ITU-G975 standard, Appendix I [1], several codes are
suggested for use in optical networks. Here the frame length
is N = 255 % 512 and the rate is 239/255 (since the codes
replace interleaved 8-error correcting Reed-Solomon codes).
The target performance is an output bit error probability of
101 for a channel error rate of about 10~3. The improved
error-correcting power was first used on submarine cables,
but is now required when wavelength-division multiplexing in
introduced in existing systems. The errors are mostly caused
by non-linear interference between channels, and soft-decision
information is not assumed to be available (or useful). The
decoder has to operate at the channel bit rate of 10-40 Gbit/sec,
but future codes for 100 Gbit/sec are currently being studied.
The complexity of the proposed schemes clearly demonstrates
that this application represents a significant challenge, both in
terms of the code construction and the decoder implementa-
tion.

II. PERFORMANCE LIMITS FOR RANDOM CODES

As a starting point we specialize well-known results for the
performance of long codes on the binary symmetric channel
to the given parameters. Asymptotic results indicate that for
high rates, the error exponent is given by the sphere-packing
bound, and this exponent can be reached with a randomly
chosen code. Translated to a fixed long code and varying
channel error probability this means that for poor to moderate
channels, the decoding error probability can be estimated by
the performance of a code meeting the Hamming bound. For
the rate in question we find the upper limit on the error
probability, p, as

H(p) = 0.063,p = 0.0073.

If the block length is limited to 130,560 bits, the average
number of errors per block could be at most ¢ = 953. But
to get an error probability of 107° we need to accommodate
about ¢ + 8 % v/t errors. The margin depends on the number
of errors that are left in frames that are not correctly decoded.
Assuming that this is on the order 100, the probability of such
an event must be at most 10712, Thus the average number of
errors in a block cannot exceed 735 and p < 0.0056.

If a code with the given parameters is decoded maximum-
likelihood (ML), the performance curve can be calculated as
the probability that the number of errors on the channel ex-
ceeds 950. For channels with p < 0.005, the error probability
will eventually be dominated by error patterns of lower weight,
and we need to know the weight distribution of the code.
However, for an average code this is not necessary in the range
of interest.

A code with low minimum distance has the same perfor-
mance on weak channels, but the performance curve will have
a smaller slope on better channels. If the decoding is not ML,
the performance is worse, mostly because of decoding failures,
i.e. cases where the decoder does not reach a codeword.

We do not know of code constructions or decoding methods
that come close to the optimal performance. The various
sections of the standard propose methods than range from a
single algebraic code to iterative decoding of LDPC codes.
Several of the codes fail to reach the required performance.
The most successful proposals are based on a modification of
product codes or concatenated codes. Such codes are analyzed
in the remaining part of the paper.

III. MODIFIED PRODUCT CODES AND CONCATENATED
CODES

A codeword in a product code can be described as an
array of symbols where each row and column is a codeword
of a component code. In a concatenated code the columns
are Reed-Solomon(RS) codes, but the rows are encoded by
a binary code with a suitable mapping of the RS symbols
as binary vectors. For simplicity we refer to all these codes
as product codes. Since the size of the codewords would
allow only an array of, say 255 by 512 bits, a code on



a single row would be too short to give the required rate.
Thus the constructions use component codes that cover several
rows or columns. We refer to such codes as block product
codes. In this section we give a few properties of such codes,
and in particular we note the changes compared to usual
product codes. For simplicity we assume that all row codes are
identical and binary, and that the same is true for the column
codes, although the column codes may differ from the row
codes. Extension of these remarks to the case where one of
the codes is an RS code is straight forward.

Let the codeword be an 7 by s array of vectors of length b,
and require each row to be a codeword of a component code
of length n; = rb, and each column to be a codeword in a
component codeword of length ny = sb. Thus the overall code
has length N = rsb = niny/b. The parity check matrix can be
described as a block matrix consisting of b by b sub-matrices,
and the 'check on check’ rectangle of the codeword will be
the same when computed rows first or columns first only if the
sub-matrices commute. If this is not the case, the dimension of
the code is reduced, or we may prefer to calculate the ’checks
on checks’ only in one dimension. The minimum distance of
the code no longer follows directly from the two minimum
distances.

We may assume that the row codes correct the larger
fraction of errors, and thus they are decoded first. Since the
rate of the component codes is high, only error patterns within
half the minimum distance are corrected, and most heavier
error patterns cause decoding failure. The best approach is
to leave uncorrected codewords unchanged. Since the initial
distribution of errors in the rows is binomial, the average
number of remaining errors can easily be calculated. When
the columns codes are decoded, the total number of remaining
errors is reduced, but in general the resulting bit error probabil-
ity is not sufficiently low. For this reason several iterations of
decoding rows and columns is specified in the standard. After
several iterations either all errors are corrected, or there are
more than t1, ¢ errors left in each of the remaining rows and
column. The number of remaining errors in this situation is
not directly related to the minimum distance. The cases where
the decoding leads to a codeword different from the one that
has been transmitted usually do not contribute significantly to
the output error probability.

In a usuval product code the smallest error pattern that is
not decoded by iterated decoding has weight (¢ + 1)(¢2 + 1)
or a little more than one quarter of the minimum distance.
However, in a block product code, a single block may contain
enough errors to cause decoding failure.

Since an analysis of iterated decoding of product codes has
only recently be presented, we summarize the result in the
next sections.

IV. CORES IN RANDOM GRAPHS

We describe the product of two codes of lengths n; and ng
as a complete bipartite graph. The right vertices represent row
codes and the left vertices column codes. The code symbols
are labels on the branches, and symbols on the branches that

connect to a given vertex have to satisfy the parity checks of
the corresponding code.

The row codes correct all error patterns of weight at most
t1, the column codes correct to errors. A total of W errors
are assumed to occur at randomly chosen positions. Since the
decoding is independent of the codeword and the error values,
it is sufficient to consider the error graph, a bipartite graph
with n; 4+ ng vertices and W randomly chosen branches.

In the present analysis we make the simplifying assumption
that the decoder of the component code corrects ¢; or fewer
errors, and in other cases the symbols are left unchanged. If
t; is not too small, the probability of decoding errors when
more than ¢; errors occur, is approximately 1/¢;!. This result
is well known for RS codes, but it also true for high rate
BCH codes. For binary codes correcting a small number of
errors, we always prefer codes of even distance to reduce the
probability of decoding error.

If {1 = ty and the decoding of the component codes is
repeated until a stable result is obtained, decoding failure is
described by the following concept:

Definition: A k-core in a graph is a subgraph with the
property that all vertices have degree at least k.

Lemma 1: Tterative decoding of the product code fails if
and only if the error graph contains a ¢ 4 1 core.

The well-known procedure for finding a core in a graph
consists in successively removing any vertex of degree less
than k& and all branches connected to it. In terms of the product
code, this procedure clearly amounts to decoding component
codes and correcting all error patterns of weight at most ¢.

The existence of cores in random graphs has been a subject
of considerable interest in graph theory. In particularly the
following result due to Pittel et al. is important [2]: Let G
be a random graph with n vertices and m edges. For any
k > 2, a k connected core exists with high probability when
m > cxn/2, but not for smaller m. The core includes a large
fraction of the vertices. Here

Cl = TTL”L'TL)\[/\/W]C()\)],A >0
7k (A) = P[Poisson(\) > k — 1]

Thus c3 = 3.35, ¢4 = 5.14, ¢5 = 6.80, cg = 8.37, cg = 12.78.
Asymptotically ¢ ~ k + v/klogk.

The result applies without change to random bipartite
graphs. The argument can be based on a simplified proof of
the basic result [3].

The result in [2] is asymptotic, i.e. k is fixed while the size
of the graph increases. Thus the result for product codes is
exact for codes of increasing length and fixed error-correcting
capacity.

V. ALTERNATING BETWEEN DECODING ROWS AND
COLUMNS

We can get a model that is closer to the actual decoding
of product codes. Initially the number of errors in each row
follows a Poisson distribution since n is large compared to t.
The fraction of the W errors which are decoded when all row
codes are decoded can then be found from this distribution as



dec e M /!

We now introduce the simplifying assumption that these
decoded positions are randomly distributed in the columns.
Clearly this is not exactly the case, since ¢ errors in a particular
row must be located in different columns. However, as long
as the total number of errors is large, the approximation is
extremely close. Thus the first decoding of the column codes
operates on a Poisson distribution with a reduced mean value.

Lemma 2: If the errors decoded by the row codes are
randomly distributed in the columns and visa versa, the
distribution after each decoding step is a truncated Poisson
distribution.

We can now follow the progress of the decoding:

- Initially the number of errors is W = Mn, and the num-
ber of errors in each row follows a Poisson distribution
with mean M.

- Let w(m) indicate the probability that a random variable
with Poisson distribution of mean m has a value greater
than or equal to ¢. The expected number of errors after
the first decoding is

anthe’M]Wj/j! =nMn(M)
using an equality for the truncated Poisson distribution
that is commonly known in traffic theory. If we make the
approximation that these errors are randomly distributed
in the columns, then the number of errors per column
follows a Poisson distribution with mean
m(1) = M (M)

- Starting from these initial values we prove by induction
that the Poisson parameters after the following stages of
decoding are

m(j) = Mm(m(j —1))

- If the initial value, M, is less than min{m/m(m)}, m(j)
converges to zero, while for M less than this threshold, m
converges to the largest value such that m’ = Mn(m’).

The results of this analysis coincide with the properties of
random graphs found in [2]. Simulations of decoding with
t = 8 confirm that the truncated Poisson distribution of errors
at each step of the decoding closely approximates the actual
values.

The iteration can be illustrated graphically as a sequence
of points on the line m = = and the graph of Mx(x). The
graphic also indicates how the expected number of iterations
increases as the number of errors approaches the threshold.

For small values of ¢, experiments indicate that the best
performance (highest rate for a given fraction of corrected
errors), is obtained with different values of ¢, £ and ¢5 on
the right and left respectively. For small values of ¢ + to, the
difference in rate is small, but it increases with the value of
the sum. Thus the choice of 8 and 5 errors in the DVD code
is good also for iterated decoding.

The original proof of cores in random graphs is not easily
modified to work with different values of ¢ in subsets of the
vertices. However, in our analysis such a change is easily
made. If the definition of the function 7 is modified to alternate
between t; and to, the parameters are still updated by

m(j +1) = Mr(m(j))

The errors are corrected if the initial number of errors is
below a certain threshold, but for larger values the decoding
process reaches a stationary point with a pair of parameters,
(m/,m”).

The iteration can be illustrated graphically (in the form well-
known from EXIT graphs) as a staircase line between the
graph of 7(x) for t; and a reflected version of the graph of
m(x) for to. The graphic indicates that the decoding threshold
is reached when these two curves touch.

Modified product codes are similarly described by bipartite
multi-graphs, and the errors by randomly selected sub-graphs.
Thus much of the analysis is still valid, but the approximation
is not so close, since the number of component codes is
smaller. Nevertheless it is still true that for ¢1,t9 > 2, if the
average number of errors in each row is initially not much
larger than ¢, and the average number of errors in a column
after the first decoding is not larger than %o, all errors are
decoded with high probability.

VI. PERFORMANCE OF BLOCK PRODUCT CODES

For block product codes we can still find a good approx-
imation to the average number of errors at each step of
the decoding by assuming truncated binomial distributions
and applying the approximation that errors corrected in one
dimension are randomly distributed in the other dimension.
However, this analysis does not give a bound on the probability
of decoding failure in cases where the decoding succeeds on
the average.

The asymptotic analysis referenced above does include a
bound on the probability that a core exists, but it is not
sufficiently tight for our purpose. Thus an estimate of the
performance of a specific code must in part be based on
simulations. The performance for low bit error rates can be
calculated based on our understanding of the properties of the
iteration.

When the channel is good enough for the decoding to
succeed in most cases, the step curve discussed above passes
through a relatively narrow gap between the two limiting
graphs. Thus most cases of decoding failure occur when the
decoding stops in this bottleneck, and the number of remaining
errors is roughly constant (and a large fraction of the initial
number of errors). This part of the performance curve can
easily be simulated, and it can be verified that the number
of remaining errors does not change much with the channel
parameter. Thus the error probability falls off steeply, and if
continued, the slope of the performance curve in the usual
log-log plot would equal the expected number of remaining
errors. The observable part of the curve does not reach this
slope, but we can get an upper bound on the error probability
by extending it with the observed slope.

If the decoding passes the bottle neck region, it is unlikely
to stop until very few errors are left, since the boundary
graphs are far apart. Clearly the error probability on very
clean channel is given by the minimum weight error pattern



that cause decoding failures, i.e. the smallest possible cores.
However, it is easy to count the number of such cores and
thus to give a close bound on the probability of these events.
As noted previously the smallest cores in usual product codes
have t; + t2 nodes, but in a block product code, a decoding
failure may be caused by t; errors in a single block (assuming
t1 > t2). The output bit error probability due to such an event
is upper bounded by

b
P, <rs <t )ptltl/N
1

Again this is a straight line with slope ¢; in the usual format.
Since there are no other significant contributions to the error
probability, the result is the sum of these two terms, and the
performance curve changes quite sharply from the initial steep
decline to the ’error floor’ of the second term. It may not be
practical to simulate the performance at low bit error rates for
the codes under consideration, but the behavior described here
can be verified in smaller codes.

Example: The block product code of Section 4. One of
the codes that has been used is the RS-BCH block product
code in Section 4 of the Appendix. Here we give a slightly
simplified description, and use the above analysis to derive
the expected performance. In this code the components are 16
RS codes over F'(21) shortened to 781 symbols and 64 BCH
codes of length 2047. All component codes correct 8 errors.
Two component codes intersect in about 120 bits. The (inner)
BCH codes are corrected first. Since they correct a fraction
of 8/2047 = 0.004 errors, we expect the code to start being
effective at this point, which is confirmed by simulations. At
p = 0.003 the output error probability is 107>, and decoding
failures typically leave about 200 errors. For decreasing values
of p, the slope of the performance curve is at least 50. However
9 errors in a single block causes decoding failure leading to

an ’error floor’ of
12
P, = < 90> 9p°/120

This gives a line that reaches 10715 at p = 10~3. The two lines
intersect for an output error rate of 10~12, and thus the ’error
floor’ is important for the desired performance, but difficult to
observe in simulations.

VII. DECODING AT HIGH DATA RATES

One reason for the choice of modified product codes is that
the decoders can be implemented in gate-array technology at
very high data rates.

Since the component codes are BCH (or RS) codes, the
initial step in decoding of the row codes is the syndrome
calculation. In many real decoders this is the step that requires
most resources. Working in parallel on the rows gives a
significant reduction of the clock rate, but it is not sufficient
to reach the target rate. In an RS code, the clock rate in the
symdrome calculation is further reduced by the number of
bits in each symbol. In a binary BCH code, the division by
a polynomial can be performed on blocks of input symbols

using an xor function of more variables. Solving for the error-
locator is a complex calculation, but it requires relatively few
steps when the component code is long and has high rate. It is
an advantage if the search for error locations can be replaced
by a more direct factorization of the locator polynomial.

The first decoding of the columns is similar, and the
two steps are pipelined. When the decoding is iterated, one
possibility is again pipelining of identical decoders. However
at least in principle, a faster approach is to modify the
syndromes to account for the corrections in the previous steps,
thus avoiding the relatively expensive syndrome calculation.
With this method, the problem is not so much the amount of
computation as the problem of routing the data to the locations
where they are needed.

The existing implementations indicate that the target data
rate of 100 Gbit/sec (producing 100 Merrors/sec!) is a signif-
icant technical challenge, but not unrealistic.

REFERENCES

[1] International Telecommunication Union, ITU-T Recommendation
G.975.1 Forward error correction for high bit-rate DWDM submarine
systems, 2004,

[2] B. Pittel, J. Spencer, and N. Wormald: "Sudden emergence of a giant
k-core in a random graph”, J.Comb.Theory, Series B, vol.67, pp. 11-151,
1996.

[3] J. Justesen and T. Hoeholdt: ”Analysis of iterated hard decision decoding
of product codes with Reed-Solomon component codes”, Proceedings
ITW 2007.



