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Abstract—Outer bounds on the admissible source region for
broadcast channels with dependent sources are developed and
used to prove capacity results for several classes of sources and
channels.
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I. INTRODUCTION

Consider a two-receiver broadcast channel (BC), say
PY Z|X(·), and a discrete memoryless source (S, T ) with finite
alphabet S×T . Source (S, T ) is said to be admissible for this
BC if for any λ, 0 < λ < 1, and for large enough n there is a
code with length-n codewords such that Pe1 ≤ λ and Pe2 ≤ λ,
where Pe1 and Pe2 are the respective error probabilities for
receivers 1 and 2. The set of all admissible sources is called
the admissible source region.

Han and Costa [1] developed a coding strategy that admits
certain sources. Let K = f(S) = g(T ) be the common vari-
able in the sense of Gacs and Körner (and also Witsenhausen),
and consider auxiliary random variables W,U, V that satisfy
the Markov chain property

ST −WUV −X − Y Z. (1)

Then the source (S, T ) is admissible if (see [1], [2])

H(S) < I(SWU ;Y )− I(T ;WU |S) (2)
H(T ) < I(TWV ;Z)− I(S;WV |T ) (3)

H(ST ) < min{I(KW ;Y ), I(KW ;Z)}+ I(SU ;Y |KW )
+ I(TV ;Z|KW )− I(SU ;TV |KW ) (4)

H(ST ) < I(SWU ;Y ) + I(TWV ;Z)− I(SU ;TV |KW )
− I(ST ;KW ). (5)

Our paper is concerned with ”outer bounds” on the set of
admissible sources, i.e., we wish to determine a superset of the
admissible source region. To do so, we borrow tools from [3]
and modify them to include dependent sources. We remark
that a more general class of outer bounds for BCs is presented
in [4]. Nevertheless, we use the approach of [3] because the
auxiliary random variables are simpler and they can be used
to prove capacity theorems. For example, it is not obvious
how to choose the auxiliary random variables of [4] to even
determine the capacity region of degraded broadcast channels.

II. OUTER BOUNDS ON THE ADMISSIBLE SOURCE REGION

Consider the source sequences Sm, Tm where m may be
different than the code length n. Let R = n/m be the
source-channel “bandwidth expansion”. Further let the aux-
iliary random variables (K̃, S̃, T̃ ) have the same distribution
as (Km, Sm, Tm) and let them form the Markov chain

K̃S̃T̃UV −X − Y Z. (6)

We may also let X be a deterministic function of (S̃, T̃ ). We
have the following outer bound.

Theorem 1: An admissible source (S, T ) satisfies the fol-
lowing bounds for some Markov chain (6):

H(K)/R ≤ min{I(K̃;Y |U), I(K̃;Z|V )} (7)

H(S)/R ≤ I(S̃;Y |U) (8)

H(T )/R ≤ I(T̃ ;Z|V ) (9)

H(ST )/R ≤ I(S̃;Y |T̃UV ) + I(T̃U ;Z|V ) (10)

H(ST )/R ≤ I(T̃ ;Z|S̃UV ) + I(S̃V ;Y |U) (11)

H(ST )/R ≤ I(K̃UV ;Y )

+ I(S̃;Y |T̃UV ) + I(T̃ ;Z|K̃UV ) (12)

H(ST )/R ≤ I(K̃UV ;Z)

+ I(T̃ ;Z|S̃UV ) + I(S̃;Y |K̃UV ). (13)

Remark 1: Consider the case R = 1, K,S, T statisti-
cally independent, KST statistically independent of UV , and
(H(K), H(S), H(T )) = (R0, R1, R2). The bounds (7)-(13)
are then a subset of those given in [3, Thm. 1].

Theorem 2: A weaker set of conditions than (7)-(13) is as
follows, where Q = (K̃, U, V ):

H(K)/R ≤ min{I(Q;Y ), I(Q;Z)} (14)

H(S)/R ≤ I(QS̃;Y ) (15)

H(T )/R ≤ I(QT̃ ;Z) (16)

H(ST )/R ≤ I(S̃;Y |QT̃ ) + I(QT̃ ;Z) (17)

H(ST )/R ≤ I(T̃ ;Z|QS̃) + I(QS̃;Y ) (18)

H(ST )/R ≤ I(Q;Y ) + I(S̃;Y |QT̃ ) + I(T̃ ;Z|Q) (19)

H(ST )/R ≤ I(Q;Z) + I(T̃ ;Z|QS̃) + I(S̃;Y |Q). (20)



Remark 2: Consider the case described in Remark 1. The
bounds (14)-(20) are then identical to those in [3, Thm. 3].

III. EXAMPLES

We continue by considering only R = 1 for simplicity.

A. Separating Source and Channel Coding

A natural approach is to decouple ST from WUV , i.e.,
choose WUV independent of ST . Effectively, we convert the
source strings to (compressed) bit strings and apply channel
coding. The bounds (2)-(5) are then

H(S) < I(WU ;Y ) (21)
H(T ) < I(WV ;Z) (22)

H(ST ) < min{I(W ;Y ), I(W ;Z)}+ I(U ;Y |W )
+ I(V ;Z|W )− I(U ;V |W )− I(S;T |K) (23)

H(ST ) < I(WU ;Y ) + I(WV ;Z)− I(U ;V |W )
− I(S;T |K)− I(ST ;K). (24)

B. Markov Sources

Consider the case where S−K−T forms a Markov chain,
that is I(S;T |K) = 0. This situation seems to be effectively
the classic case where there are three independent messages
W0,W1,W2 with nR0, nR1, nR2 bits, respectively. In fact, for
any BC for which we know the capacity region, we can match
the outer bound of Theorem 2 to the admissible bounds (21)-
(24). For example, consider a semi-deterministic BC where Y
is a deterministic function of X . We have the following result.

Theorem 3: A source for which S−K−T forms a Markov
chain is admissible for a semi-deterministic BC where Y is a
deterministic function of X if ST satisfies

H(K) < min{I(W ;Y ), I(W ;Z)} (25)
H(S) < H(Y ) (26)
H(T ) < I(WV ;Z) (27)

H(ST ) < H(Y |WV ) + I(VW ;Z) (28)
H(ST ) < I(W ;Y ) +H(Y |WV ) + I(V ;Z|W ) (29)

for some Markov chain ST −WV − X − Y Z. Conversely,
such a source is not admissible for such a BC if for every
Markov chain ST −WV −X − Y Z the direction of one of
the (strict) inequalities is reversed.

Proof: For admissibility, choose U = Y and observe
that the bounds (25)-(29) imply the bounds (21)-(24). For the
converse, consider (14)-(17) and (19), identify Q, K̃, T̃ with
W,K, V , respectively, and use

I(QS̃;Y ) ≤ H(Y ) (30)

I(S̃;Y |QT̃ ) ≤ H(Y |QT̃ ). (31)

C. More Capable BCs

Theorem 3 does not give the admissible source region since
it requires S −K − T to form a Markov chain. In fact, Han
and Costa showed in [1, Example 2] that separating source
and channel coding (implied by decoupling ST and WUV )
is suboptimal in general. The decoupling also doesn’t seem
to work for the expressions (2)-(5) for an important class of
channels where one might guess that it should.

Consider the class of more-capable BCs defined by the
constraint that

I(X;Y ) ≥ I(X;Z) for all PX . (32)

This class includes both physically and stochastically degraded
BCs. If we choose WUV independent of ST then (21)-(24)
still exhibit the rate loss I(S;T |K) in (23)-(24). However,
choosing W differently we have the following result.

Theorem 4: The admissible source region for more-capable
BCs is defined by the bounds

H(ST ) ≤ I(X;Y ) (33)

H(T ) ≤ I(W̃ ;Z) (34)

H(ST ) ≤ I(X;Y |W̃ ) + I(W̃ ;Z) (35)

for some Markov chain ST − W̃ −X − Y Z.
Proof: We choose

W = TW̃ where ST is independent of W̃UV (36)

U = X = a noisy function of W̃ (37)
V = a constant. (38)

The bounds (2)-(5) are then simply (33)-(35). Furthermore, for
any Markov chain ST − W̃ − X − Y Z we can achieve the
right-hand sides of (33)-(35) since these depend on ST only
through W̃ . For the converse, consider (16)-(18) and identify
QT̃ , S̃ with W̃ , U , respectively. The bounds (33)-(35) follow
from (16)-(18) and the bounds

I(T̃ ;Z|QS̃) ≤ I(X;Z|QS̃)

=
∑

PQ eS(ab)I(X;Z|QS̃ = ab)

≤
∑

PQ eS(ab)I(X;Y |QS̃ = ab)

= I(X;Y |QS̃) (39)

where the second inequality follows by applying (32).
We remark that the choice W = TW̃ does, in fact,

permit separating source and channel coding because W̃ is
independent of T . The coding approach is to simply compress
T to its entropy-rate H(T ) and consider the resulting bits
as a common message. Next, compress S to the conditional
entropy-rate H(S|T ) and consider the resulting bits as a
private message. Decoder Y first decodes and decompresses
T and then decodes and decompresses S. Decoder Z decodes
and decompresses T only. This natural approach is included
in the Han-Costa coding method, but only indirectly.



IV. PROOF OF THEOREM 1

Let |S| be the cardinality of the set S and let (K̃, S̃, T̃ ) =
(Km, Sm, Tm). Fano’s inequality [5, Sec. 2.11] gives

H(Km|Y n) ≤ H(Sm|Y n) ≤ Pe1 ·m log2 |S|+ 1 (40)
H(Km|Zn) ≤ H(Tm|Zn) ≤ Pe2 ·m log2 |T |+ 1 (41)

Let δ1 = Pe1 log2 |S|+1/m and δ2 = Pe2 log2 |S|+1/m, and
observe that reliable communication (Pe1 → 0 and Pe2 → 0)
means that δ1 → 0 and δ2 → 0 as m → ∞. We define the
following auxiliary random variables

Ui = Y i−1, Vi = Zn
i+1 (42)

PI(i) =
1
n
, i = 1, 2, . . . , n (43)

U = (UI , I), V = (VI , I) (44)
X = XI , Y = YI , ZI = Z (45)

and observe that we have the Markov chain

K̃S̃T̃UV −X − Y Z. (46)

Furthermore, the definition (45) of XY Z is consistent with our
BC in the sense that PY Z|X(·) is the same in Sec. I. Fano’s
inequality (40) implies

m[H(K)− δ1] ≤ H(Km)−H(Km|Y n) (47)
= I(Km;Y n) (48)

=
n∑

i=1

I(Km;Yi|Y i−1) (49)

=
n∑

i=1

I(K̃;Yi|Ui) (50)

= nI(K̃;YI |UII) (51)

= nI(K̃;Y |U) (52)

We similarly have

m[H(K)− δ2] ≤ nI(K̃;Z|V ) (53)

m[H(S)− δ1] ≤ nI(S̃;Y |U) (54)

m[H(T )− δ2] ≤ nI(T̃ ;Z|V ). (55)

To develop our other bounds, we will use the following
identities (see [6, p. 332] and [7, Lemma 7]).

Lemma 1: For any random variables W,Y n, Zn we have

I(W ;Zn) =
n∑

i=1

[
I(WY i−1;Zn

i )− I(WY i;Zn
i+1)

]
(56)

where Y 0 = Zn
n+1 = 0.

Proof: By direct calculation.
Lemma 2: For any random variables W,Y n, Zn we have

n∑
i=1

I(Zi;Y i−1|WZn
i+1) =

n∑
i=1

I(Yi;Zn
i+1|WY i−1). (57)

Proof: See [7, Lemma 7].

Consider the following steps:

m[H(S) +H(T )− δ1 − δ2] (58)
≤ I(Sm;Y n) + I(Tm;Zn) (59)
≤ I(Sm;Tm) + I(Sm;Y n|Tm) + I(Tm;Zn) (60)

= mI(S;T ) +
n∑

i=1

[
I(Sm;Yi|TmY i−1)

+ I(TmY i−1;Zn
i )− I(TmY i;Zn

i+1)
]

(61)

where the last step follows from Lemma 1. Continuing, we
have

m[H(ST )− δ1 − δ2] (62)

=
n∑

i=1

[
I(Sm;Yi|TmY i−1) + I(TmY i−1;Zi|Zn

i+1)

− I(Yi;Zn
i+1|TmY i−1)

]
(63)

=
n∑

i=1

[
−H(Yi|TmSmY i−1) + I(TmY i−1;Zi|Zn

i+1)

+H(Yi|TmY i−1Zn
i+1)

]
(64)

≤
n∑

i=1

[
−H(Yi|TmSmY i−1Zn

i+1)

+ I(TmY i−1;Zi|Zn
i+1) +H(Yi|TmY i−1Zn

i+1)
]

(65)

=
n∑

i=1

[
I(S̃;Yi|T̃UiVi) + I(T̃Ui;Zi|Vi)

]
(66)

= n
[
I(S̃;Y |T̃UV ) + I(T̃U ;Z|V )

]
. (67)

Similar arguments give

m[H(ST )− δ1 − δ2] ≤ n
[
I(T̃ ;Z|S̃UV ) + I(S̃V ;Y |U)

]
.

(68)

Next, consider the following steps:

m[H(S) +H(T )− δ1 − δ2] (69)
≤ I(Sm;Y n) + I(Tm;Zn) (70)
≤ I(Km;Y n) + I(Sm;Y n|Km)

+ I(Km;Tm) + I(Tm;Zn|Km) (71)
≤ I(Km;Y n) + I(Sm;Tm|Km) + I(Sm;Y n|KmTm)

+ I(Km;Tm) + I(Tm;Zn|Km)
± I(Tm;Y n|Km) (72)

= I(KmSmTm;Y n)− I(Tm;Y n|Km) + I(Tm;Zn|Km)
+m(I(S;T |K) +H(K)). (73)

The reader can check that

I(S;T |K) +H(K) = I(S;T ). (74)



The first expression in (73) is bounded as

I(KmSmTm;Y n) =
n∑

i=1

I(KmSmTm;Yi|Y i−1) (75)

=
n∑

i=1

I(K̃S̃T̃ ;Yi|Ui) (76)

≤
n∑

i=1

I(K̃S̃T̃UiVi;Yi) (77)

The second and third expressions in (73) can be manipulated
as follows:

− I(Tm;Y n|Km) + I(Tm;Zn|Km) (78)

=
n∑

i=1

[
− I(Tm;Yi|KmY i−1) + I(Tm;Zi|KmZn

i+1)
]
(79)

=
n∑

i=1

[
− I(TmZn

i+1;Yi|KmY i−1)

+ I(Zn
i+1;Yi|KmTmY i−1)

+ I(TmY i−1;Zi|KmZn
i+1)

− I(Y i−1;Zi|KmTmZn
i+1)

]
(80)

=
n∑

i=1

[
− I(TmZn

i+1;Yi|KmY i−1)

+ I(TmY i−1;Zi|Km, Zn
i+1)

]
(81)

where the last step follows from Lemma 2. Continuing, we
have

− I(Tm;Y n|Km) + I(Tm;Zn|Km) (82)

=
n∑

i=1

[
− I(Zn

i+1;Yi|KmY i−1)

− I(Tm;Yi|KmY i−1, Zn
i+1)

+ I(Y i−1;Zi|KmZn
i+1)

+ I(Tm;Zi|KmZn
i+1Y

i−1)
]

(83)

=
n∑

i=1

[
− I(Tm;Yi|KmY i−1Zn

i+1)

+ I(Tm;Zi|KmZn
i+1Y

i−1)
]

(84)

=
n∑

i=1

[
− I(Tm;Yi|KmUiVi) + I(Tm;Zi|KmUiVi)

]
(85)

where the second last step follows from Lemma 2.

We substitute (74), (77), and (85) into (73) and obtain

m[H(ST )− δ1 − δ2] (86)

≤
n∑

i=1

[
I(K̃S̃T̃UiVi;Yi)− I(T̃ ;Yi|K̃UiVi)

+ I(T̃ ;Zi|K̃UiVi)
]

(87)

=
n∑

i=1

[
I(K̃UiVi;Yi) + I(S̃;Yi|K̃T̃UiVi)

+ I(T̃ ;Zi|K̃UiVi)
]

(88)

= n
[
I(K̃UIVI ;YI |I) + I(S̃;YI |T̃UIVII)

+I(T̃ ;ZI |K̃UIVII)
]

(89)

≤ n
[
I(K̃UV ;Y ) + I(S̃;Y |T̃UV ) + I(T̃ ;Z|K̃UV )

]
(90)

By similar arguments, we also have

m[H(ST )− δ1 − δ2]

≤ n
[
I(K̃UV ;Z) + I(T̃ ;Z|S̃UV ) + I(S̃;Y |K̃UV )

]
(91)
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