
Maximizing the sum rate in symmetric networks of
interfering links

Sibi Raj Bhaskaran, Stephen V. Hanly, Nasreen Badruddin, Jamie S. Evans
Centre for Ultra-Broadband Information Networks (CUBIN)

Department of Electrical and Electronic Eng.
University of Melbourne

Parkville, Vic. 3010 Australia
Email: sibib, s.hanly, nasreenb, jse@ee.unimelb.edu.au

Abstract—We consider the power optimization problem of
maximizing the sum rate of a symmetric network of interfering
links in Gaussian noise. All transmitters have an average transmit
power constraint, the same for all transmitters. We solve this
nonconvex problem by indentifying some underlying convex
structure. In particular, we characterize the maximum sum rate
of the network, and show that there are essentially two possible
states at the optimal solution depending on the cross-gain between
the links, and/or the average power constraint: the first is a
wideband (WB) state , in which all links interfere with each
other, and the second is a frequency division multiplexing (FDM)
state, in which all links operate in orthogonal frequency bands.
The FDM state is optimal if the cross-gain between the links is
above 1/

√
2. If the cross-gain is below 1/

√
2, then FDM is still

optimal provided the average power of the links is sufficiently
high. Assuming that ε < 1/

√
2, we can say that the WB state

occurs when the average power level is low (relative to the noise
and the cross-gain factor between the links), but as we increase
the average power level from low to high, there is a smooth
transition from the WB state to the FDM state: For intermediate
average power levels, the optimal configuration is a mixture, with
some fraction of the bandwidth in the WB state, and the other
fraction in the FDM state. This work has applications to DSL,
as well as to wireless networks.

I. INTRODUCTION

Wireless networks are plagued by two key problems not
encountered in wireline networks: multipath fading, and inter-
ference between links. In the present paper, we focus primarily
on the management of the second problem using optimized
power allocation. The problem of interference also arises in
DSL wireline access networks, and our results are applicable
to this setting as well. We pose a power allocation problem
in which the objective is to maximize the total rate achieved
in the network. Each link has to choose a transmit power
spectrum, but the choice impacts not only the rate achieveable
on the desired link, but also the rates achieveable on the
remaining links of the network.

Unlike traditional power control formulations, in which rate
targets are constraints of the problem [1], the rate maximiza-
tion formulation that we consider in this paper provides a
more challenging nonlinear, nonconvex optimization problem.
Recently, progress has been made, but under the assumption
that the power allocation is time and frequency flat, with
maximum power constraints on the links [2]–[4]. In particular,
under these assumptions, a complete solution is provided for

a network of N symmetric, interfering links in [4]. In the
present paper, we provide a complete solution to the N link
symmetric network problem when we remove the constraint
that the power allocation be time and frequency flat, and we
replace the peak per-link power constraints with average per-
link power constraints.

Although the rate maximization problem is not itself convex,
we exhibit an underlying convex structure to the problem,
and this structure helps us identify the optimal solution. We
show that the optimal power spectrum always consists of a
relatively small number of modes, where a mode is a chunk
of spectrum in which the power spectral density of all links is
constant. Thus, the optimal total power spectrum is piecewise
constant [5]. In this paper, we characterize the optimal solution
precisely for the case of symmetric interfering links: We
provide the bandwidths of the modes, and the power allocation
for each link in each mode.

The general characteristic of the optimal solution is that it
involves at most two states: a frequency division multiplexing
(FDM) state, or a wideband (WB) state in which per-link
power allocations are flat across the frequency band. In some
scenarios, depending on the cross-gain factor and the signal
to noise ratio, the optimal configuration is a mixture of these
two states.

II. PROBLEM FORMULATION

We start with a base-band model of N communication links,
each of bandwidth W/2 Hz, and each link is individually an
additive white Gaussian noise channel (AWGN) with common
noise power spectral density of σ2 at the receivers. By re-
scaling powers, we can assume without loss of generality that
σ2 = 1. The N links interfere with each other, as depicted in
Figure 1, and we assume an additive model for the interference
between links.

We assume each transmitter uses Gaussian signalling, and
denote the stationary Gaussian process transmitted on link i
by Xi(t). The received signal on link i is Yi(t), where

Yi(t) = Xi(t) +
∑
j 6=i

√
εXj(t) + Zi(t), (1)

Zi(t) is white Gaussian noise of unit power spectral density,
and
√
ε is the cross-gain between the links of the network.



Fig. 1. A network of interfering links

If process Xn(t) has power spectral density Pn(f) then an
achievable rate on link i is given by [6]

Ri =
∫ W/2

−W/2
log

(
1 +

Pi(f)
1 + ε

∑
j 6=i Pj(f)

)
df.

We impose the power constraint that for all i,∫ W/2

−W/2
Pi(f) ≤ Pave.

The problem we address is that of computing the sum
capacity of this network, under the above assumptions, which
reduces to finding the optimal input spectra for the links.

Problem 1: Find the input spectra that achieve the maxi-
mum of the following:

max
N∑
i=1

∫ W/2

−W/2
log

(
1 +

Pi(f)
1 + ε

∑
j 6=i Pj(f)

)
df (2)

s.t.
∫ W/2

−W/2
Pi(f)df ≤ Pave (3)

It can be shown that the optimum is achievable with spectra
that are piece-wise constant: There are at most N + 2 disjoint
intervals in [−W/2,W/2] with each link having constant
power spectral density within each interval [5]. This can be
proven via Caratheodory’s convexity theorem [7], and is a
consequence of the dimensionality of the problem. Here, the
dimension of the problem is N + 1, since there are N links,
each of which has to choose a power level, and the sum-rate
provides an additional dimension. Thus, the following problem
is equivalent to Problem 1.

Problem 2: Let M ≥ N + 2. Find the normalized band-
widths (α0, α1, . . . , αM−1) and power levels (P (m)

i ) i =

1, 2, . . . , N,m = 0, 1, . . . ,M − 1 to solve:

max
N∑
i=1

M−1∑
m=0

αmW log

(
1 +

P
(m)
i

1 + ε
∑
j 6=i P

(m)
j

)
(4)

s.t.
M−1∑
m=0

αmP
(m)
i ≤ Pave, P

(m)
i ≥ 0, (5)

M−1∑
m=0

αm ≤ 1, 0 ≤ αm ≤ 1, (6)

From now on, we will assume W = 1 to reduce the notational
burden, and note that there is no loss of generality in doing
so.

Note that Caratheodory’s theorem only states that there are
at most N + 2 distinct sub-bands on which the power levels
are distinct. We will show that for some values of ε and Pave,
all the Pi’s above are the same, which implies that there is
really only one mode of behaviour in these cases: The power
spectra are flat across the whole band. In fact, we will show
that the number of distinct modes required is at most N + 1
in all cases, for the symmetric network model.

To describe the result of this paper, we first define the
following functions:

C(P ) = log(1 + P ) (7)

f1(P ) = NC

(
P

1 + ε(N − 1)P

)
(8)

f2(P ) = C(NP ) (9)

In (7) we use the natural logarithm, so C(P ) is the capacity
of a discrete time Gaussian noise channel, with SNR = P ,
measured in nats per channel use, f2(P ) is the capacity at SNR
= NP , and f1(P ) is the capacity of a discrete time Gaussian
link that receives interference from N − 1 other links, as in
our symmetric Gaussian network model.

The main result of this paper is the following theorem,
which we will prove in Section IV. In the theorem, the values
Pl and Pu are uniquely defined in the case ε < 1/2, but the
definition of these two values is relegated to Section III, where
we will show that 0 < Pl < Pu. The term C(ε,N, Pave) in
the theorem is defined by

C(ε,N, Pave) = f2(Pave) ε > 1/2 or Pave > Pu
f1(Pave) ε < 1/2 and Pave < Pl
βf1(Pl) + (1− β)f2(Pu) o.w.

(10)
where, in the last case, i.e. ε < 1/2 and Pl < Pave < Pu, we
define β to be the unique number in (0, 1) such that Pave =
βPl + (1− β)Pu.

Theorem 1: C(ε,N, Pave) is the optimal value in Prob-
lem 2. If ε > 1/2 or Pave > Pu, the optimal value is achiev-
able with N modes, αm = 1/N for m = 0, 1, . . . , N − 1,
and P (m)

i = NPave1{i=m−1}, i = 1, 2, . . . N . If ε < 1/2 and
Pave < Pl then the optimal value is achieveable with 1 mode,
α0 = 1, and P

(0)
i = Pave, i = 1, 2, . . . , N . Otherwise, ε <



1/2 and Pave = βPl + (1−β)Pu for some unique β ∈ (0, 1).
In this case, C(ε,N, Pave) is achieveable with N + 1 modes:
α0 = β, αm = (1 − β)/N , m = 1, 2, . . . , N , P (0)

i = Pl,
i = 1, 2, . . . , N , P (m)

i = NPu1{m=i}, i = 1, 2, . . . , N ,
m = 1, 2, . . . , N .

This theorem states that if ε > 1/2 or Pave > Pu
then the optimal configuration is that of frequency division
multiplexing (FDM). If ε < 1/2 and Pave < Pl, then the
optimal configuration is a single mode, with all links sharing
the entire band [−W/2,W/2]. The optimal spectra are flat,
and we describe this solution as being “wide-band” (WB)
in nature. If ε < 1/2 and Pl < Pave < Pu, then the
optimal configuration is a mixture of FDM and WB, requiring
N+1 distinct modes (or sub-bands). Thus, there are essentially
two distinct states for the system, FDM or WB. Which one
is optimal depends on ε and Pave, and, in an intermediate
scenario, the optimal configuration is a mixture of the two.

Before we prove Theorem 1, we provide some preliminary
results, including the definition of Pl and Pu, as required
to complete the definition (10) as well as the statement of
Theorem 1.

III. PRELIMINARY RESULTS

Our first preliminary results concern the functions f1(P )
and f2(P ) defined in (8) and (9), respectively, and the corre-
sponding curves defined by the graphs, which we denote by
C1 and C2.

Lemma 1: If ε > 1/2 then f2(P ) > f1(P ) for all P > 0,
i.e. the curve C2 lies entirely above curve C1. However, if
ε < 1/2, then there exists a unique P̃ > 0 such that

f1(P̃ ) = f2(P̃ ) (11)
f2(P ) < f1(P ) ∀P < P̃ (12)
f1(P ) < f2(P ) ∀P > P̃ (13)

i.e. C1 is above C2 for P < P̃ , below C2 for P > P̃ , and P̃
is the point where they cross.
Proof: See Appendix A.

The case ε < 1/2 is depicted in Figure 2.
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Fig. 2. The curves C1 and C2 in the case ε < 1/2.

Lemma 2: If ε < 1/2 then there is a unique tangent curve
that touches both C1 and C2 at two points, namely (Pl, f1(Pl))

and (Pu, f2(Pu)), with Pl < P̃ < Pu (see Figure 2). Since
both f1 and f2 are strictly concave, it follows that for all
P > 0,

max{f1(P ), f2(P )} ≤ f1(Pl) + f ′1(Pl)(P − Pl) (14)

with strict inequality for P 6= Pl, Pu, and, since the tangent
touches C2 at (Pu, f2(Pu)), we have that

f2(Pu) = f1(Pl) + f ′1(Pl)(Pu − Pl). (15)

Thus, both curves lie below this unique tangent line. For P ∗ <
Pl, there is a unique supporting tangent to the curve C1 at the
point (P ∗, f1(P ∗)), and both C1 and C2 lie below this line
i.e. for all P > 0,

max{f1(P ), f2(P )} ≤ f1(P ∗) + f ′1(P ∗)(P − P ∗) (16)

Similarly, for P ∗ > Pu, there is a unique supporting tangent
to the curve C2 at the point (P ∗, f2(P ∗)), both C1 and C2 lie
below this line, i.e. for all P > 0,

max{f1(P ), f2(P )} ≤ f2(P ∗) + f ′2(P ∗)(P − P ∗) (17)

Proof: See Appendix B.
The following results concern the function to be maximized

in Problem 2, which we observe is neither concave, nor
convex, and it possesses local maxima, making standard nu-
merical approaches problematic. Nevertheless, we will provide
an algorithmic approach that is always guaranteed to improve
the objective function. We will do this by weakening the
constraints, and in so doing, we will not be guaranteed to
obtain a feasible allocation from this approach. However, we
will be able to obtain useful upper bounds, which will end up
being achieveable after all.

The key idea is to focus on any one of the modes, choose
two links, and trade power from one link to the other without
changing the sum of the powers, in such a way that the objec-
tive function always increases. By repeating this technique in
an iterative manner, we will obtain a final upper bound, and
then show that this upper bound is in fact C(ε,N, Pave) and
hence achieveable.

Consider the following function, that provides the sum rate
in the two link case: for a > 0, ε > 0,

g(ε, a, P1, P2) = C

(
P1

a+ εP2

)
+ C

(
P2

a+ εP1

)
. (18)

where a represents the background noise level.
The following lemma considers the function restricted to

the segment

P = {(P1, P2) : P1 + P2 = P̂ , P1 ≥ 0, P2 ≥ 0}, (19)

for some fixed total sum power on the two links, P̂ .
Lemma 3: For fixed ε, a, the function g(ε, a, ·, ·) is
• Schur-concave [8] on P if ε ≤ ε∗(a, P̂ ).
• Schur-convex [8] on P if ε ≥ ε∗(a, P̂ ).

where ε∗(a, P̂ ) =
√
a

√
a+P̂−

√
a

P̂
.

Proof: See Appendix C. See also [4]



Corollary 1: For fixed ε, a, the maximization of the func-
tion g(ε, a, ·, ·) over P occurs at
• (P̂ /2, P̂ /2) if ε ≤ ε∗(a, P̂ ).
• (0, P̂ ) or (P̂ , 0) if ε ≥ ε∗(a, P̂ )
Lemma 3 states that if we are trying to maximize the sum

rate of two links, with the sum of the powers of the two links
held fixed, then the solution is either to allocate all of the
power to one of the links (if the function is Schur-convex)
or distribute it equally between the two links (if it is Schur-
concave). This underlying structure can be exploited in an
iterative manner, for an arbitrary number of links, N , to solve
the following optimization problem:

Problem 3:

max
P

N∑
i=1

C

(
Pi

1 + ε
∑
j 6=i Pj

)
(20)

s.t. Pi ≥ 0 ∀i,
N∑
i=1

Pi = P̂

where P = (P1, P2, . . . PN ) is a vector of power levels.
Lemma 4: The solution, U(ε,NP̂ ), to Problem 3 is given

by:

U(ε,N, P̂ ) = max{NC
(

P̂ /N

1 + ε(N − 1)P̂ /N

)
, C(P̂ )}

= max{f1(P̂ /N), f2(P̂ /N)} (21)

Proof: See Appendix D.

IV. PROOF OF THEOREM 1

We are now in a position to prove Theorem 1. First, the
achievability of C(ε,N, Pave) can be immediately checked;
the issue we address here is the converse, namely that there
is no other strategy that can beat C(ε,N, Pave). This is
established in the following lemma.

Lemma 5: Let α,P be a feasible allocation of normalized
bandwidths, and power levels, respectively, for Problem 2, and
let C(ε,N,α,P ) denote the corresponding sum-rate. Then

C(ε,N,α,P ) ≤ C(ε,N, Pave) (22)

Proof: Let α,P be a feasible allocation of normal-
ized bandwidths, and power levels, respectively, and let
C(ε,N,α,P ) denote the corresponding sum-rate:

C(ε,N,α,P )=
M−1∑
m=0

N∑
i=1

αmC

(
P

(m)
i

1 + ε(N − 1)
∑
j 6=i P

(m)
j

)
.

Note that α is of dimension M , and P =
(
P

(m)
i

)
is of

dimension NM . Let P̂ (m) =
∑N
i=1 P

(m)
i . Then the upper

bound

C(ε,N,α,P ) ≤
M−1∑
m=0

αmU(ε,N, P̂ (m)) (23)

clearly holds, where U(ε,N, P̂ (m)) is defined in (20). By
Lemma 4, we can write the RHS of (23) as

M−1∑
m=0

αm max{f1
(
P̂ (m)

N

)
, f2

(
P̂ (m)

N

)
} (24)

Now re-order the modes so that for modes m = 0, 1, . . . , k,
the maximum in (24) is f1(P̂ (m)/N) (if there are no such
modes, let k = −1) and for modes k + 1, k + 2, . . . ,M − 1,
the maximum in (24) is f2(P̂ (m)/N) (if there are no such
modes, k will equal M − 1). But the functions f1 and f2 are
both concave functions, so if we define:

α =
k∑

m=0

αm (25)

P (a) =
k∑

m=0

(αm/α)(P̂ (m)/N) (26)

P (b) =
M−1∑
m=k+1

(αm/(1− α))(P̂ (m)/N) (27)

then the following upper bound must also be true:

C(ε,N,α,P ) ≤ αf1(P (a)) + (1− α)f2(P (b)) (28)

Since the initial mode and power allocations (P ,α) are
feasible for Problem 2, it must also be true that

αP (a) + (1− α)P (b) ≤ Pave
We conclude that the solution to the following optimization
problem must also upper bound C(ε,N,α,P ):

Problem 4:

max
α,P (a),P (b)

αf1(P (a)) + (1− α)f2(P (b)) (29)

s.t. 0 ≤ α ≤ 1, P (a) ≥ 0, P (b) ≥ 0
αP (a) + (1− α)P (b) ≤ Pave (30)

The proof is complete once we establish that the maximum
value achieved in Problem 4 is C(ε,N, Pave). This is estab-
lished in Lemma 6 below.

Lemma 6: The maximum value achieved in Problem 4 is
C(ε,N, Pave).

Proof: Consider the case that Pave < Pl, and let
α, P (a), P (b) be feasible for Problem 4. Then

αf1(P (a)) + (1− α)f2(P (b))
≤ αf1(P (a)) + αf ′1(Pave)(P (a) − Pave)
+ (1− α)f1(P (a)) + (1− α)f ′1(Pave)(P (b) − Pave)
≤ f1(Pave)
= C(ε,N, Pave)

where the first inequality follows from (16), and the second
inequality from (30). But clearly f1(Pave) is achieveable if
we set α = 1 and P (a) = Pave. The case Pave > Pu follows
in the analogous way, using (17) in place of (16).



The remaining case is Pave = βPl + (1 − β)Pu, for 0 <
β < 1, with α, P (a), P (b) feasible for Problem 4. Then

αf1(P (a)) + (1− α)f2(P (b))
≤ αf1(Pl) + αf ′1(Pl)(P (a) − Pl)
+ (1− α)f1(Pl) + (1− α)f ′1(Pl)(P (b) − Pl)
≤ f1(Pl) + f ′1(Pl)(Pave − Pl)
≤ βf1(Pl) + (1− β)f1(Pl) + (1− β)f ′1(Pl)(Pu − Pl)
= βf1(Pl) + (1− β)f2(Pu)
= C(ε,N, Pave)

where the first inequality follows from (14), the second in-
equality from (30), and the first equality from (15).

V. CONCLUSION

In this paper, we have solved the sum-rate maximization
problem for a symmetric network of an arbitrary number of
links. Each link has an average power constraint, which is
the same for all links. We have shown that the critical value
of the cross-gain parameter, ε, is ε = 1/2, above which the
optimal spectra consist of N modes, with only one link active
in each mode, providing a frequency division multiplexing
(FDM) characteristic to the solution.

When ε < 1/2, the FDM configuration is still optimal,
provided the average power is high enough. However, if
the average power is sufficiently low, the optimal power
spectra will consist of one mode, giving a wideband (WB)
characteristic to the solution. For intermediate values of the
average power, the optimal spectra is a mixture of these two
states; in these cases there are N + 1 modes, with N modes
of FDM, and one mode in which the links interfere with each
other.

Although the symmetric network is a very special case of
the general problem of interfering links, our solution provides
a very clean characterization of the optimal behaviour in this
particular case, and it may provide insight into more general
network problems. The paper [5] shows that the piecewise
constant form of the optimal input spectra holds for general
networks. However, the problem of finding the optimal modes
and power levels to use in each mode is left completely open.
In general, it appears to be a very difficult problem.

The fact that we need to find the common tangent line
to the two curves C1 and C2 is a manifestation of the
convexity that is a characteristic of all capacity regions. It is
well known that capacity regions are always convex: Usually,
time-sharing arguments are invoked, but in the present paper,
the convexification is obtained in the frequency domain: Our
solutions are time-invariant.

An early paper that considered the impact of interference on
the capacity of a cellular network is [9]. This paper showed
that in some scenarios, pure TDM partitioning of cells into
disjoint time-slots, or pure WB strategies, can be beaten by
a mixed strategy that they called “fractional inter-cell time
sharing”. This is consistent with our findings in the present
paper, in which the mixed state is shown to be optimal in
some cases.

Prior work on rate maximization has been done for CDMA,
or UWB networks, in which the rate function is modeled as
a linear function of the SIR [10], [11], [12]. More recent
work has modeled the rate function as we do in the present
paper (logarithmic in the SIR) but under the assumption that
the power allocation is time and frequency flat: [2], [13],
[4]. The latter approaches can be combined with higher-
layer scheduling algorithms [10], [14] providing time-varying
approaches to resource allocation.

Finally, we note that the assumption that each link treats
the other links as sources of Gaussian noise can be relaxed.
A link is instead allowed to know about the codebooks used
on the other links. One then enters the difficult territory of the
interference channel, although important recent progress has
been made [15].
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APPENDIX

A. Proof of Lemma 1

Proof: To account for the dependence of f1 on ε, let us
redefine f1 as a function of two variables:

f1(ε, P ) = N log
(

1 +
P

1 + ε(N − 1)P

)
As before, we have

f2(P ) = log(1 +NP ).

Clearly, f1(·, P ) is a decreasing function (for any fixed P ),
f1(0, P ) > f2(P ) and f1(∞, P ) = 0 < f2(P ), so there exists
a unique ε?(P ) for which

f1(ε?(P ), P ) = f2(P ),

which can be explicitly computed:

ε?(P ) =
1 + P − (1 +NP )1/N

(N − 1)P ((1 +NP )1/N − 1)
,

which is a decreasing function of P . By the monotonicity of
f1(·, P ) (for fixed P ), we have that

f1(ε, P ) > f1(ε?(P ), P ) = f2(P ), for ε < ε?(P ) (31)
f1(ε, P ) < f1(ε?(P ), P ) = f2(P ), for ε > ε?(P ) (32)

Since ε?(·) is decreasing, we can define ε?(0) and ε?(∞) by:

ε?(0) = lim
P↓0

ε?(P ) = 1/2

ε?(∞) = lim
P↑∞

ε?(P ) = 0.

It follows that if ε > 1/2 then f1(ε, P ) < f2(P ) for all P > 0,
but if ε < 1/2, then there exists a unique P̃ (ε) > 0 such that
ε?(P̃ (ε)) = ε. For P < P̃ (ε), ε?(P ) > ε, and so f1(ε, P ) >
f2(P ) by (31). For P > P̃ (ε), ε?(P ) < ε, and so f1(ε, P ) <
f2(P ) by (32).



B. Proof of Lemma 2

Proof: If the tangent to C1 at the point (P1, f1(P )) is to
intersect C2 at (P, f2(P )) then P must solve the equation:

h(P ) = J(P1) (33)

where

h(P ) := f2(P )− f ′1(P1)P
J(P ) := f1(P )− f ′1(P )P.

Since h′′(P ) = −N2

(1+NP )2 < 0, it follows that h(P ) is a
concave function, that increases to its maximum value M(P1),
where M(P ) is given by:

M(P ) = logN − log f ′1(P )− 1 + f ′1(P )/N

which is achieved at P = 1
f ′
1(P1)

− 1
N , and h(P ) decreases

on ( 1
f ′
1(P1)

− 1
N ,∞). Thus, the following statements of equiva-

lence hold: there are exactly two solutions to (33) iff M(P1) >
J(P1), there are no solutions to (33) iff M(P1) < J(P1), and
there is exactly one solution to (33) iff M(P1) = J(P1). But

M ′(P )− J ′(P ) =
N − 1
N

Pf ′′1 (P )k(ε,N, P )

where

k(ε,N, P ) = 1− 2ε− ε(1 + ε(N − 1))P

so if ε < 1/2 then M(P ) − J(P ) is decreasing on
(0, 1−2ε

ε(1+ε(N−1)) ), and increasing on ( 1−2ε
ε(1+ε(N−1)) ,∞). In the

following, we assume that ε < 1/2, as in the statement of
the result. But since ε < 1/2, M(0+) − J(0+) < 0 and
M(∞) − J(∞) > 0, so there is a unique Pl such that
M(Pl) = J(Pl), which implies that the tangent line to C1

at (Plf1(Pl)) touches C2 at a unique point (Pu, f2(Pu)). For
P < Pl, M(P ) < J(P ), and hence the tangent line to
C2 at (P, f1(P )) does not intersect C2 at all. For P > Pl,
M(P ) > J(P ), and hence the tangent line to C2 at (P, f1(P ))
intersects C2 at two points.

Equation (15) follows from fact that the tangent to C1 at
(Plf1(Pl)) touches C2 at (Pu, f2(Pu)), as does the equation:

f1(Pl) = f2(Pu) + f ′2(Pu)(Pl − Pu). (34)

If Pu < P̃ then f2(Pu) < f1(Pu), by (12), but then

f1(Pu) > f1(Pl) + f ′1(Pl)(Pu − Pl),
by (15), which contradicts the concavity of f1. Similarly, if
P̃ < Pl then f1(Pl) < f2(Pl), by (13), but then

f2(Pl) > f2(Pu) + f ′2(Pu)(Pl − Pu),

by (34), which contradicts the concavity of f2. Hence Pl <
P̃ < Pu. The remaining statements of the lemma are either
straightforward consequences of the strict concavity of the
functions f1 and f2, or of results proven above.

C. Proof of Lemma 3

We consider only the case where a = 1, otherwise we
can re-scale the powers. With ε and a fixed, and under the
constraint (19), we can write (18) as a function of a single
variable

g(P1) = g(ε, a, P1, P̂ − P1) (35)

Writing c = P̂
2 , and employing the change of variables: P1 =

b+ c, P2 = c− b, (35) becomes:

g(b) = C

(
b+ c

1 + ε(c− b)
)

+ C

(
c− b

1 + ε(b+ c)

)
. (36)

and the constraint (19) becomes: −c ≤ b ≤ c. Let d1 = 1+εc,
d2 = εb, d3 = d1 + c and d4 = b− d2. Then we can write the
derivative of g(·) as

g′(b) = 2b
(εd3 − (1− ε)d1)(εd3 + (1− ε)d1)

(d2
1 − d2

2)(d2
3 − d2

4)
(37)

Since d1 and d3 are independent of b, if (εd3−(1−ε)d1) 6= 0,
the only root of g′(b) happens at b = 0. The only positive ε for
which (εd3 − (1− ε)d1) becomes zero is the ε∗(·, ·) given in
the lemma. This proves that the function g(·) in (35) increases
in the interval (0, P̂ /2) and then decreases to log(1 + P̂ ) at
P1 = P̂ , if ε ≤ ε∗, and vice versa otherwise. The fact that g(·)
is strictly increasing and then strictly decreasing, along with
its symmetric property around P̂ /2 implies that g(ε, a, ·, ·) in
(18) is Schur concave [8] on P when ε ≤ ε∗, and Schur convex
otherwise.

D. Proof of Lemma 4

In the following, we will denote the objective function value
of Problem 3 by

Cs(P ) =
N∑
i=1

C

(
Pi

1 + ε
∑
j 6=i Pj

)
for a feasible power vector P . Consider an arbitrary feasi-
ble power vector P (1) = (P (1)

1 , P
(1)
2 , . . . , P

(1)
N ), satisfying∑N

j=1 P
(1)
j = P̂ . Without loss of generality, we assume the

components of all our power vectors are sorted in decreasing
order, so that

P
(1)
1 ≥ P (1)

2 ≥ . . . ≥ P (1)
N .

Define

P̄ (1) =
N∑
j=3

P
(1)
j

a1 = 1 + εP̄ (1)

P̂ (1) = P
(1)
1 + P

(1)
2

and consider the function g(1)(·) = g(ε, a1, ·) (see (18) for the
definition of g) restricted to the domain

P(1) = {(P1, P2) : P1 + P2 = P̂ (1)}.
Lemma 3 implies that if ε ≤ ε∗(a1, P̂

(1)) then g(1) is Schur-
concave on P(1), but if if ε > ε∗(a1, P̂

(1)) then g(1) is Schur-
convex on P(1). In either case, we can construct a sequence of



power vectors that cannot decrease the achieveable sum-rate,
as we now show.

Case 1: ε ≤ ε∗(a1, P̂
(1)).

First, consider another arbitrary, feasible power vector Q,
ordered in decreasing order as above. For any component i, we
can define a new vector Q′ by decreasing Qi and increasing
Qi+1 by the same amount. Provided the amount swapped
between the two vectors is no more than Qi−Qi+1, the vector
Q′ will also be ordered in decreasing order, andQ � Q′. Such
a transfer is known as a Pigou-Dalton transfer, and it is given
the name “elementary Robin Hood operation” in [16]. It is
well known [16] that if Q � R then one can generate R
from Q via a countable sequence of elementary Robin Hood
operations.

Now let us denote the vector (P̂ /N, P̂ /N, . . . , P̂ /N) by
P ∗. Since P (1) � P ∗ it follows that there is a sequence
P (n) of feasible power vectors, starting at P (1), converging
to P ∗, where P (n+1) is obtained from P (n) by an elementary
Robin Hood operation. Let in, in + 1 denote the components
where the transfer takes place at step n of this sequence, and
without loss of generality, let i1 = 1. For each n ∈ Z+, define

P̄ (n) =
N∑
j=1

P
(n)
j I{j 6=in,in+1} (38)

an = 1 + εP̄ (n)

P̂ (n) = P
(n)
in

+ P
(n)
in+1

It is trivial to show, by induction, that for any i ∈
{1, 2, . . . , N − 1}, and any n ∈ Z+, we have that

P
(n)
i + P

(n)
i+1 ≤ P (1)

1 + P
(1)
2

so in particular,

P
(n)
in

+ P
(n)
in+1 ≤ P (1)

1 + P
(1)
2

It follows from (38) that

P̄ (n) ≥ P̄ (1)

an ≥ a1

P̂ (n) ≤ P̂ (1)

Define the function g(n)(·) = g(ε, an, ·) restricted to the
domain

P(n) = {(P1, P2) : P1 + P2 = P̂ (n)}.
Now, since ε ≤ ε∗(a1, P̂

(1)), it follows that ε ≤ ε∗(an, P̂ (n)),
for all n ∈ Z+, and hence g(n) is Schur-concave on P(n) for
all such n. Since the power vectors P (n) decrease in order
of majorization, it follows that Cs(P (1)) < Cs(P ∗), unless
P (1) = P ∗.

Case 2: ε > ε∗(a1, P̂
(1)).

For n = 2, 3, . . . , N , define the power vector P (n) by:

P
(n)
j =


∑n
i=1 P

(1)
i j = 1

P
(1)
j+n−1 j = 2, 3, . . . , N − n+ 1

0 j = N − n+ 2, N − n+ 3, . . . , N

which gives us a sequence of power vectors, all satisfying
the feasibility constraint that

∑N
j=1 P

(n)
j = P̂ , and all with

the property of decreasing order for the components of each
power vector. Further, as a sequence of power vectors, the
vectors are increasing in order of majorization, with the final
element in the sequence being P (N) = (P̂ , 0, 0, . . . , 0). For
each n, define

P̄ (n) =
N−n+1∑
j=2

P
(n)
j =

N∑
j=n+2

P
(1)
j

an = 1 + εP̄ (n)

P̂ (n) =
n+1∑
i=1

P
(1)
i

Note that P̄ (n) (and hence an) decrease with n, but P̂ (n)

increases with n. Define also the function g(n)(·) = g(ε, an, ·)
restricted to the domain

P(n) = {(P1, P2) : P1 + P2 = P̂ (n)}.
Now, since an decreases, and P̂ (n) increases, it follows that
ε∗(an, P̂ (n)) decreases with n. Since ε > ε∗(a1, P̂

(1)), it
follows that ε > ε∗(an, P̂ (n)), for all n = 2, 3, . . . , N , and
hence g(n) is Schur-convex on P(n) for all such n. Since
the power vectors P (n) increase in order of majorization, it
follows that Cs(P (1)) < Cs(P (N)), unless P (1) = P (N).

Now suppose that the vector P (1) is optimal for Prob-
lem 3. Then either P (1) = (P̂ /N, P̂ /N, . . . , P̂ /N)) (if ε ≤
ε∗(a1, P̂

(1))) or P (1) = (P̂ , 0, 0, . . . , 0) (if ε > ε∗(a1, P̂
(1))),

for otherwise, we can improve the objective function, as
described above in the two separate cases. We conclude that

U(ε,N, P̂ ) = max{f1(P̂ /N), f2(P̂ /N)}
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