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Abstract— In networks with large latency, feedback about
received packets may lag considerably the transmission of the
original packets, limiting the feedback’s usefulness. Moreover,
time duplex constraints may entail that receiving feedback may
be costly. In this work, we consider tailoring feedback and
coding jointly in such settings to reduce the expected delay for
successful in order reception of packets. We find that, in certain
applications, judicious choices provide results that are close to
those that would be obtained with a full-duplex system.

I. INTRODUCTION

The concept of network coding, also known as coded packet
networks, was introduced by Ahlswede et al [1]. Network
coding considers nodes that have a set of functions that
operate upon received or generated data packets. A classical
network’s task is to transport packets provided by the source
nodes unmodified, i.e. they constitute a subset of the coded
packet networks, in which each node has two main functions:
forwarding and replicating a packet. In contrast, network
coding considers information as an algebraic entity, on which
one can operate.

Reference [2] considered, for the first time, the use of
network coding in channels in which time division duplexing
is necessary, i.e. when a node can only transmit or receive,
but not both at the same time. This type of channel is usually
called half-duplex, but we will use the more general term
time division duplexing (TDD) to emphasize the fact that the
transmitter and receiver do not use the channel in any pre-
determined fashion, but instead may vary the amount of time
allocated to transmit and receive. Important examples of time
division duplexing channels are infrared devices (IrDA), which
have motivated many TDD ARQ schemes [3], and underwater
acoustic communications [4]. Other important applications
may be found in channels with very high latency, e.g. in
satellite [5], and deep space [6] communications.

In particular, Reference [2] studied the problem of trans-
mitting M data packets through a link using random linear
network coding with the objective of minimizing the expected
time to complete transmission of the M data packets. Ref-
erence [7] focused on the problem of energy consumption
of the scheme showing that there exists, under the minimum
energy criterion, an optimal number of coded data packets
to be transmitted back-to-back before stopping to wait for an
acknowledgment (ACK).

We present a full characterization of the problem for both
time and energy to complete transmission for this scheme by
means of the moment generating function of these random
variables. Using this moment generating function we provide
expressions for the mean and the variance. We provide a
numerical method to compute the first negative moment of
the completion time, which is useful to determine the mean
throughput of our scheme.

We present an analysis and numerical results that show
that transmitting the optimal number of coded data packets
sent before stopping to listen for an ACK as in [2] provides
performance very close to that of a network coding scheme
operating in a full duplex channel, in terms of mean time to
complete transmission of all packets. This is the case even
in high latency channels. Choosing a number different from
the optimum can cause a large degradation in performance,
especially if latency is high.

We also show that choosing the number of coded data
packets to optimize mean completion time, as in [2], consumes
much less energy on average than a full duplex network coding
scheme, and only slightly more energy than when we choose
the number of coded packets to minimize completion energy
as in [7]. Thus, our scheme provides a good trade-off between
energy consumption and completion time.

The paper is organized as follows. In Section 2, we outline
the problem. In Section 3, we derive the moment generating
function for the completion time and energy. In Section 4,
we present the analysis of mean time and mean energy to
complete transmission of M data packets and the optimization
required to determine the number of coded packets to transmit
before stopping in order to minimize mean completion time
or mean completion energy. Section 5 studies the expressions
of the variance for both the completion time and energy. In
Section 6, the throughput performance is analyzed. Section 7
presents the schemes to be used for performance evaluation,
while Section 8 provides numerical results. Conclusions are
summarized in Section 9.

II. RANDOM NETWORK CODING FOR TDD CHANNELS

This section provides a review of network coding for TDD
channels presented in [2]. We consider a sender in a link
that wants to transmit M data packets at a given link data
rate R. The channel is modeled as a packet erasure channel.
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Fig. 1. [2] Structure of coded data packet.
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Fig. 2. [2] Network coding TDD scheme.

Nodes can only transmit or receive, but not both at the same
time. The sender uses random linear network coding [8] to
generate coded data packets. Each coded data packet contains
a linear combination of the M data packets of n bits each,
as well as the random encoding coefficients used in the linear
combination. Each coefficient is represented by g bits. For
encoding over a field size q, we have that g = log2 q bits.
Also consider an information header of size h. Thus, the total
number of bits per packet is h + n + gM . Figure 1 shows the
structure of each coded packet consider in our scheme.

The sender can transmit coded packets back-to-back before
stopping to wait for the ACK packet. The ACK packet feeds
back the number of degrees of freedom (dof), that are still
required to decode successfully the M data packets. Since
random linear coding is used, there is some probability of
choosing encoding vectors that are all zero for one coded
packet or encoding vectors that are linearly dependent on
vectors of previously received packets. Thus, the expected
number of successfully received packets before having M
linearly independent combinations is [2]

M∑
k=1

1

(1− (1/q)k)
≤ M

q

q − 1
. (1)

In the following analysis, we assume that the field size q
is large enough so that the expected number of successfully
received packets at the receiver, in order to decode the original
data packets, is approximately M . This is not a necessary
assumption for our analysis. We could have included the prob-
abilities of receiving linearly independent combinations into
the transition probabilities. However, making this assumption
simplifies the expressions and provides a good approximation
for large enough q.

We are interested in determining the optimal number of
coded packets that should be sent back-to-back before waiting
for an ACK packet from the receiver in order to minimize the
time for successfully transmitting the M data packets over the
link.

Note that if M packets are in the queue, at least M degrees
of freedom have to be sent in the initial transmission, i.e.
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Fig. 3. [2] Network coding algorithm for time division duplexing channels.
i represents the remaining number of degrees of freedom to decode the
packets, and Ni the corresponding number of coded packets transmitted before
stopping to listen for a new ACK. The ACK packet has the information to
update i.
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Fig. 4. [2] Markov chain representation of the scheme. State i represents that
the receiver requires i more successfully received coded packets to decode
the information.

NM ≥ M coded packets. We are interested not only in
the number of dof that are required at the first transmission,
but also at subsequent stages. Transmission begins with M
information packets, which are encoded into NM random
linear coded packets and transmitted. If all M packets are
decoded successfully, the process is completed. Otherwise,
the ACK informs the transmitter how many are missing, say
i. The transmitter then sends Ni coded packets, and so on,
until all M packets have been decoded successfully. We are
interested in the optimal number Ni of coded packets to be
transmitted back-to-back in the next transmission to complete
the remaining i dofs. Figure 3 shows the communication
process as a system transmits NM coded packets initially and
awaits reception of an ACK packet that updates the value
of i, at which point it will transmit Ni coded packets. The
system will keep transmitting and stopping to update i, until
i = 0. When i = 0, the transmitter can start with M new data
packets or simply stop. In Figure 2, CP (k, d) represents the
k-th coded packet transmitted when we start transmission with



d dofs needed at the receiver to decode the information.
The process can be modelled as a Markov Chain (Figure 4).

The states are defined as the number of dofs required at the
receiver to decode successfully the M packets. Thus, these
states range from M to 0. This is a Markov Chain with M
transient states and one recurrent state (state 0). Let us define
Ni as the number of coded packets that are sent when i dofs
are required at the receiver in order to decode the information.
Note that the time spent in each state depends on the state
itself, because Ni 6= Nj ,∀i 6= j in general.

The transition probabilities from state i to state j (Pi→j)
have the following expression for 0 < j < i and Ni ≥ i:

Pi→j = (1− Peack)
(

Ni

i− j

)
(1− Pe)i−jPeNi−i+j (2)

where Pe and Peack represents the erasure probability of a
coded packet and of an ACK packet, respectively.

More generally, the transition probability can be defined for
any value of Ni ≥ 1 as follows:

Pi→j = (1− Peack)f(i, j)(1− Pe)i−jPeNi−i+j (3)

where

f(i, j) =

{(Ni
i−j

)
if Ni ≥ i,

0 otherwise
(4)

For j = i the expression for the transition probability
reduces to:

Pi→i = (1− Peack)PeNi + Peack (5)

For completeness, note that Pi→0 = 1 −
∑i

j=1 Pi→j ,∀i
and P0→0 = 1.

III. MOMENT GENERATING FUNCTION

Let us define the moment generating function of the com-
pletion time when the Markov Chain starts at state n as

MT,n(s) =
∑

t

exp(st)PT (T = t) (6)

where PT (T = t) is the probability of the completion time
being t. Note that MT,n(s) is the moment generating function
of the completion time when n data packets are taken by the
source to be transmitted reliably to the receiver.

Using the Markov Chain structure of the problem, it can be
shown that MT,n(s) can be re-stated as

MT,n(s) =
∑

mn≥1

∑
mn−1≥0

···
∑

m1≥0

exp

(
s

n∑
i=1

miT
i

)
CnAn

(7)
where T i is the deterministic time required to send Ni coded
packets and wait for an ACK when the Markov chain is in
state i, i.e. T i = NiTp+Tw, where Tp is the transmission time
of a coded packet, and Tw is the waiting time to receive an

ACK packet, as shown in Figure 2. The constant Cn captures
the effect of returning to the same state repeatedly, while
An captures the different paths that can be traversed without
repetition of a state.

The expression for Cn is

Cn =
n∏

j=1

Pj→j
mj−1.

The coefficient for An can be shown to obey a recursive
expression of the form

An = 1{mn>0}

n−1∑
j=0

Pn→j

 n−1∏
i=j+1

Pi→i1{mi=0}

Aj


with A1 = P1→01{m1>0}. The indicator function 1{s∈S} is
1 when s ∈ S and zero otherwise.

Substituting expression (8) into (7) we obtain the following
recursive equation for the moment generating function

MT,n(s) =
exp(sTn)

1− Pn→n exp(sTn)

n−1∑
i=0

Pn→iMT,i(s) (8)

with MT,0(s) = 1.
Finally, note that the same structure is valid for computing

the energy needed to complete transmission. To do so, one
would substitute T i by Ei, and MT,n(s) by ME,n(s), which
leads to

ME,n(s) =
exp(sEn)

1− Pn→n exp(sEn)

n−1∑
i=0

Pn→iME,i(s) (9)

with ME,0(s) = 1.

IV. MEAN COMPLETION TIME AND ENERGY

The expected time for completing the transmission of the M
data packets constitutes the expected time of absorption, i.e.
the time to reach state 0 for the first time, given that the initial
state is M . This can be expressed in terms of the expected time
for completing the transmission given that the Markov Chain
is in state is i, Ti , ∀i = 0, 1, ..M − 1.

By taking the first derivative of the moment generating
function, it can be easily proven that

Ti =
∂MT,n(s)

∂s

∣∣∣
s=0

=
Tn +

∑n−1
i=1 Pn→i

∂MT,i(s)

∂s

∣∣∣
s=0

1− Pn→n
(10)

where T i = NiTp + Tw as in Section III.
For our scheme, Tp = h+n+gM

R and Tw = Trt + Tack,
where Tack = nack/R, nack is the number of bits in the
ACK packet, R is the link data rate, and Trt is the round trip
time. Note that T0 = 0. Then, for i > 1:

Ti =
NiTp + Tw

(1− Peack)(1− PeNi)
(11)

+
(1− Pe)iPeNi−i∑i−1

j=1 f(i, j)
(

Pe
1−Pe

)j
Tj

1− PeNi
.



For example, for i = 1 we have that:

T1 =

(
N1Tp + Tw

)
(1− Peack)(1− PeN1)

. (12)

As it can be seen, the expected time for each state i depends
on all the expected times for the previous states. Because of
the Markov property, we can optimize the values of all Ni’s
in a recursive fashion, i.e. starting by N1, then N2 and so
on, until NM , in order to minimize the expected transmission
time. We do so in the following subsection.

Using a similar argument, we show that the mean comple-
tion energy Ei,∀i = 1, ...,M is

Ei = Ei

(1−Peack)(1−PeNi )

+
(1−Pe)iPeNi−i ∑i−1

j=1
f(i,j)

(
Pe

1−Pe

)j
Ej

1−PeNi
(13)

where Ei is the energy consumed by the system to transmit
Ni packets and receive an ACK.

For this analysis, we consider the case of Ei = NiEp +
Eack, where Ep is the transmission energy of a coded packet,
and Eack is the transmission energy of an ACK packet. That is,
we consider the case in which transmission energy is dominant
in the total energy consumption Ei. In other words, the energy
used at the receiver and transmitter while waiting for a coded
packet and a ACK, respectively, is negligible.

More specifically, we define Ep = PTp, P is the transmis-
sion power, and Eack = PTack.

A. Minimizing Mean Completion Time

Our objective is to minimize the value of the expected
transmission time TM . Without assuming any particular value
for Ni, we have that

min
NM ,..,N1

TM =

= min
NM

NM Tp+Tw

(1−Peack)(1−PeNM )
(14)

+
(1−Pe)M PeNM−M ∑M−1

j=1
f(M,j)

(
Pe

1−Pe

)j
minNj,..,N1

Tj

1−PeNM

Hence, regardless of the assumption on Ni, the problem of
minimizing TM in terms of the variables NM , .., N1 can be
solved iteratively. First, we compute minN1

T1, then use this
results in the computation of minN2,N1

T2, and so on.
One approach to computing the optimal values of Ni is to

ignore the constraint to integer values and take the derivative
of Ti with respect to Ni and look for the value that sets
it equal to zero. For our particular problem, this approach
leads to solutions without a closed form, i.e. expressed as an
implicit function. For M = 1, the optimal value of N1 can be
expressed using a known implicit function (Lambert function),
and it is given by

N∗
1 =

1 + W
(
− exp

(
−1 + ln(Pe)Tw

Tp

))
lnPe

− Tw

Tp
(15)

where W (·) is the Lambert W function [11]. The positive
values are found for the branch W−1, as denoted in reference
[11].

The case of M = 1 can be thought of as an optimized
version of the uncoded Stop-and-Wait ARQ, which is similar
to the idea presented in [5]. Instead of transmitting one packet
and waiting for the ACK, our analysis suggests that there is an
optimal number of back-to-back repetitions of the same data
packet that should be transmitted before stopping to listen for
an ACK packet.

Instead of using the previous approach, we perform a search
for the optimal values Ni,∀i ∈ {1, ...M}, using integer values.
Thus, the optimal Ni’s can be computed numerically for given
Pe, Peack, Tw and Tp. In particular, the search method for
the optimal value can be made much simpler by exploiting the
recursive characteristic of the problem, i.e. instead of making
a M -dimensional search, we can perform M one-dimensional
searches. Finally, these Ni’s do not need to be computed in
real time. They can be pre-computed for different channel
conditions (e.g. Pe, Trt) or system settings (e.g. n, M , g,
data rate), and stored in the receiver as look-up tables. This
procedure makes the computational load on the nodes to be
negligible at the time of determining the optimal number of
coded packets in terms of the completion time, especially for
dynamic environments.

B. Minimizing Mean Completion Energy

In this case, our objective is to minimize the value of the
mean completion energy EM , that is

min
NM ,..,N1

EM = min
NM

NM Ep+Eack

(1−Peack)(1−PeNM )

+
(1−Pe)M PeNM−M ∑M−1

j=1
f(M,j)

(
Pe

1−Pe

)j
minNj,..,N1

Ej

1−PeNM

which is very similar to the result of TM making the appro-
priate substitutions.

The search method proposed to determine the Ni values in
order to minimize TM is valid for EM . Reference [7] studies
this problem in more detail.

V. VARIANCE

Another figure of importance is the variance of the com-
pletion time and energy. We can use the moment generating
function for our problem knowing that

V arT,n =
∂2MT,n(s)

∂s2

∣∣∣
s=0

−
(

∂MT,n(s)
∂s

∣∣∣
s=0

)2

(16)

where V arT,n is the variance of T when M = n.
By taking derivatives, it is possible to prove that

∂2MT,n(s)

∂s2

∣∣∣
s=0

= 2Tn

1−Pn→n

∂MT,n(s)

∂s

∣∣∣
s=0

− (Tn)2

1−Pn→n

+ 1
1−Pn→n

∑n−1
i=1 Pn→i

∂2MT,i(s)

∂s2

∣∣∣
s=0

(17)

Again, we can substitute the values of T i,∀i, and the values
of the transition probabilities in order to compute the variance.



Note that the same results apply for the case of energy
making the appropriate substitutions of T i by Ei, and MT,i
by ME,i.

VI. THROUGHPUT

The mean throughput for our block scheme can be defined
as

Mean Throughput = E[
Mn

T
] = MnE[

1
T

] (18)

where we assume M and n to be constants.
This implies that the problem of computing the mean

throughput for our scheme is equivalent to that of computing
negative moments of the completion time. The problem of
computing negative integer moments has been studied previ-
ously in [9] and [10]. In particular, we focus in the result of
[10] which states that

E[X−1] =
∫ ∞

0
MX(−s)ds (19)

where X > 0 is the random variable, and MX(s) is the
moment generating function of X .

Note that for the case of M = 1 we can compute E[T−1]
by direct computation of this random variable or by using
expression (19). Using direct computation

E[T−1] = P1→0
P1→1

∑∞
k=1

P1→1
k

kT1 (20)

= P1→0
P1→1T1

∑∞
k=1

(1−P1→0)k

k (21)

= P1→0
P1→1T1 ln( 1

P1→0
) (22)

where we have used the Mercator series since |1−P1→0| < 1
for all cases of interest [2]. If we use expression (19) we obtain

E[T−1] =
∫ ∞

0
MT,1(−s)ds (23)

=
∫ ∞

0
P1→0

exp(sT 1)
1− P1→1 exp(sT 1)

ds (24)

=
P1→0

T 1P1→1

∫ 1

1−P1→1

du

u
=

P1→0

P1→1T 1
ln(

1
P1→0

)(25)

where we have used the fact that P1→0 = 1− P1→1. In both
cases we get the same result.

For M > 1, these expressions are complicated using direct
computation. However, it is possible to compute them if we
use expression (19) and the structure of the moment generating
function of our problem (Expression (8)). For the case of M =
j we get

E[T−1] =
∫ ∞

0

exp(−sT j)
1− Pj→j exp(−sT j)

j−1∑
i=0

Pj→iMT,i(−s)ds.

(26)
Notice that MT,i(−s),∀i have a multiplying term

exp(−sT i)

1−Pi→i exp(−sT i)
which decreases to zero exponentially as

s →∞ and goes to 1
1−Pi→i

as s → 0. Thus, all terms inside
the integral in (27) will go to zero exponentially.

Using this characteristic we can numerically compute
E[T−1] using numerical integration techniques with the fol-
lowing approximation

E[T−1] ≈
∫ τ

0

exp(−sT j)
1− Pj→j exp(−sT j)

j−1∑
i=0

Pj→iMT,i(−s)ds.

(27)
where τ = max{i=1,...,j} τi, τi = C/T i, and C is a constant
in order to ensure exp(−τiT

i) is small enough, e.g. C = 5
ensures exp(−τiT

i) = exp(−5) ≈ 0.0067.
Although this measure is important, we will define a

different throughput measure called η because 1) the mean
throughput is computationally demanding, and 2) most of the
analysis of typical ARQ schemes is performed using η.

Let us define our measure of throughput η as the ratio
between number of data bits transmitted (n) and the time
it takes to transmit them. For the case of a block-by-block
transmission, as described in Section II,

η =
Mn

TM
(28)

where TM is the expected time of completion defined previ-
ously.

Note that the mean throughput and η are not equal. For
the case of M = 1, note that E[Mn

T ] = η
ln(1/P1→0)

P1→1
. More

generally, using Jensen’s inequality, MnE[ 1
T ] ≥ Mn

TM
for

T > 0. Therefore, η constitutes a lower bound to the mean
throughput in our scheme.

Also, note that if M and n are fixed, η is maximized as TM
is minimized. Thus, by minimizing the mean time to complete
transmission of a block of M data packets with n bits each,
we are also maximizing η for those values. However, we show
that the maximal η should be obtained using M and n as
arguments in our optimization.

This is important for systems in which the data is streamed.
In this case, searching for the optimal values of M and n, in
terms of η, provides a way to optimally divide data into blocks
of M packets with n bits each before starting communication
using our scheme.

A. Optimal Packet Size and Number of Packets per Block

We have discussed throughput with a pre-determined choice
of the number of data bits n and the number of data packets
M in each block. However, expression 28 implies that the
throughput η depends on both n and M . Hence, it is possible
to choose these parameters so as to maximize the throughput
[2]. We can approach this problem is several ways. The first
approach is to look for the optimal n while keeping M fixed:

ηopt(M) = arg max
n

{
max

NM ,...,N1

η

}
(29)

The second approach is to look for the optimal M while
keeping n fixed:

ηopt(n) = arg max
M

{
max

NM ,...,N1

η

}
(30)



More generally, we could consider the case in which both
parameters are variable and we are interested in maximizing
η:

ηopt = arg max
n,M

{
max

NM ,...,N1

η

}
(31)

VII. PERFORMANCE EVALUATION

For this study, five schemes are considered. The first two
schemes correspond to two network coding TDD schemes that
optimize mean time to complete transmission (TDD-T) and
mean energy consumption (TDD-E). The third is a full duplex
scheme presented in [2] and [7]. The final two schemes are
typical TDD ARQ schemes: Go-back-N (GBN) and Selective
Repeat (SR). Let us explain in more detail each of the schemes.

1)Network coding for TDD optimized for mean comple-
tion time (TDD-T): This is our TDD scheme when we choose
the Nis to optimize the mean completion time given channel
characteristics and system parameters.

2)Network coding for TDD optimized for mean com-
pletion energy (TDD-E): This is our TDD scheme when we
choose the Nis to optimize the mean completion energy given
channel characteristics and system parameters.

3) Network coding in full duplex: This scheme assumes
that nodes are capable of receiving and transmitting infor-
mation simultaneously, and in that sense it is optimal in
light of minimal delay. The sender transmits coded packets
back-to-back until an ACK packet for correct decoding of all
information (M information packets) has been received. This
scheme can be modeled as a Markov chain where, as before,
the states represent the number of dofs received. The time
spent in each state is the same (Tp). Once the M packets have
been decoded, i.e. M dofs have been received, the receiver
transmits ACK packets back-to-back, each of duration Tack.
One ACK should suffice but this procedure minimizes the
effect of a lost ACK packet.

The mean time to complete the transmission and get and
ACK is [2]:

E[T ] = Trt +
MTp

1− Pe
+

Tack

1− Peack
(32)

where T is the time to complete transmission of M packets.
The mean energy to complete the transmission and get and

ACK is [7]:

E[Energy] =TrtEp
Tp

+TrtEack
2Tack

+ MEp
1−Pe + Eack

1−Peack
(33)

4)Go-Back-N ARQ for TDD: This is an ARQ scheme
developed for a TDD duplex channel studied extensively in
[3]. Each transmission contains W data packets sent back-
to-back, where W is the window size of our GBN scheme.
Reference [3] studied this case and proposed the utilization
factor for it. In our notation, the equivalent η is given by

ηGBN =
n(1− Pe)

(
1− (1− Pe)W

)
(WTp + Tw)Pe

. (34)

5)Selective repeat ARQ for TDD: This is an ARQ scheme
developed for a TDD duplex channel presented in [3]. Each
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transmission contains W data packets, where W is the window
size of our SR scheme. Using the utilization factor studied in
Reference [3], we provided the equivalent η in our notation
[2]

ηSR =
Wn(1− Pe)
WTp + Tw

. (35)

VIII. NUMERICAL RESULTS

This section provides numerical examples that compare
the performance of the different network coding schemes we
have discussed so far, namely the two TDD schemes that
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optimize mean energy consumption (TDD-E) and mean time
to complete transmission (TDD-T), and a full duplex scheme.
The comparison is carried out in terms of the mean energy
and mean time to complete transmission of M data packets
under different packet erasure probabilities, with the objective
of showing the trade-off between energy and completion time
of the different schemes. We also present results in terms of
the measure of throughput η to illustrate its dependence on the
values of M and n for varying channel characteristics (erasure
probabilities). We use the case of satellite communications as
an example of high latency channels.

Figure 5 studies the mean energy and time to complete
transmission of M = 10 data packets of size n = 10, 000 bits,
with different packet erasure probabilities in a GEO satellite
link with a propagation delay of 125 ms, i.e. Trt = 250 ms. In
the following results, we have considered that coded packets
and ACK are transmitted with the same power, and that this
value is normalized, i.e. P = 1. The link parameters are
specified in the Figure.

The first thing to notice in Figure 5 is that both TDD
schemes have much better performance with respect to the
full duplex scheme, i.e. energy consumption of the full duplex
scheme is considerably higher than the TDD schemes given
the high latency characteristic of this channel.

Figure 5 shows that the gap between our network coding
scheme optimized for energy and for completion time. Their
performance stays similar over a wide range of packet erasure
probabilities. When the packet erasure probability is low, the
performance is the same for the two approaches, both in the
sense of energy and delay. For high packet erasure probability
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Fig. 8. Variance of completion time and NM for TDD-T versus packet
erasure probability Pe, with parameters g = 20 bits, nack = 100 bits,
h = 80 bits, data rate 1.5 Mbps, Trt = 250 ms, Peack = 0.001, M = 10,
and n = 10, 000 bits.

the performance of both TDD versions is similar in terms of
energy, although we observe a clear advantage of TDD-T over
TDD-E in mean completion time.

Figure 5 also illustrates that our network coding scheme
optimized for completion time (TDD-T) and the network
coding full duplex optimal scheme have similar performance
over a wide range of packet erasure probabilities. In fact, for
the worst case (Pe = 0.8) presented in this Figure, our scheme
has an expected time of completion only 30 % above the full
duplex scheme. Thus, TDD-T can have similar performance
to that of full duplex optimal scheme, in the sense of expected
time to completion, while showing similar performance to
TDD-E, the version optimized for energy consumption. This
means that the TDD-T provides a good trade-off between
energy and time to complete transmissions.

Let us study the variance of the TDD-T scheme under
different erasure probabilities. Figure 7 shows that the variance
is very small but it is not a continuous function, showing
discontinuities for certain values of Pe. Figure 8 shows that
this discontinuities are related to a change in the number of
coded packets sent in the first transmission of each M blocks,
i.e. NM . The variance decreases when NM increases because
we are increasing the probability of decoding all M packets
after the first transmission. In practice, the Pe is an estimate of
the packet erasure probability and these discontinuities can be
misleading in terms of expected system performance. Thus,
having bounds on the variance for each Pe, as shown in
Figure 7, is more meaningful from a system’s perspective.

Let us compare the mean throughput MnE[1/T ] and η =
Mn/E[T ]. Figure 9 shows that both E[1/T ] and 1/E[T ] are



10
−4

10
−3

10
−2

10
−1

10
0

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

Packet Erasure Probability

T
h
r
o
u
g
h
p
u
t
 
M
e
a
s
u
r
e
s
 
(
s
−
1
)

1/E[T]

E[1/T]

Fig. 9. Mean throughput and η versus Pe for TDD-T with parameters
g = 20 bits, nack = 100 bits, h = 80 bits, data rate 1.5 Mbps,
Trt = 250 ms, Pebit = 0.0001, M = 10, and n = 10, 000 bits.

very close when we optimize the Nis in terms of the mean
completion time. Thus, choosing the parameters of our scheme
to optimize the mean throughput or η will provide very similar
results. However, this is not necessarily the case for other
choices of Ni, e.g. when we choose them to minimize the
mean completion energy as Figure 10 shows.

Let us turn our attention now to the problem of maximizing
the parameter η, i.e. our mean throughput lower bound.
Recall that for this setting we are streaming data which is
subdivided into blocks that are transmitted them using our
scheme. Considering again a satellite link, given a fixed bit
error probability (Pebit = 0.0001) let us study the problem of
computing the optimal number of bits n per packet given some
value of M . In these examples, for the case of a symmetric
channel with independent bits Pe = 1− (1−Pebit)h+n+gM

and Peack = 1− (1− Pebit)nack .
Figure 11 illustrates the values of η in Mbps given different

choices of M and n. First, note that for each value of M
there exists an optimal value of n. Thus, an arbitrary choice
of n can produce a considerable degradation in performance
in terms of throughput. Secondly, there is a (M,n) pair that
maximizes the value of η. Finally, the performance of the full
duplex network coding and our TDD-T scheme is comparable
for different values of n and M .

Figure 12 shows η in Mbps when we change the round-trip
time Trt. As expected, a lower Trt allows more throughput in
TDD. Again, we observe that our TDD optimal scheme has
comparable performance to the full duplex scheme.

Let us compare the performance of our optimal TDD
network coding scheme with respect to typical TDD ARQ
schemes: Go-back-N (GBN) and Selective Repeat (SR). Fig-
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ure 13 shows η for the satellite communications setting with
a fixed packet size of n = 10000 bits, nack = 100 bits,
Trt = 250 ms, Peack = 0 for all schemes, a window size of
W = 10 for the ARQ schemes, and g = 20 bits and M = 10
for our network coding scheme. We use different data rates
to illustrate different latency scenarios, where higher data rate
is related to higher latency. Note that the performance of our
scheme is the same as both GBN and SR at low data packet
erasure probability, which is expected because the window size
W is equal to the block size of our scheme M and we expect
very few errors. Our scheme has a slightly lower η for low
Pe because each coded data packet includes gM additional
bits that carry the random encoding vectors. This effect is less
evident as latency increases. In general, our scheme has better
performance than GBN.

Figure 13 shows that for low latency (0.1 Mbps) η of our
scheme is very close to that of the SR ARQ scheme for all
values of Pe, and better than the GBN scheme for high Pe.
These results are surprising, because our scheme constitutes
a block-by-block transmission scheme which will not start
transmission of a new set of M data packets until the previous
ones have been received and acknowledged. Note also that, as
latency increases, our scheme shows much better performance
than the SR scheme for high Pe. The case of 10 Mbps and
Pe = 0.8 shows that η of our scheme is more than three (3)
times greater than that of SR.

Figure 14 shows η for a fixed data rate of 10 Mbps and
different Trt. We use a fixed packet size of n = 10000 bits,
nack = 100 bits, PeACK = 0 for all schemes, a window
size of W = 10 for the ARQ schemes, and g = 20 bits
and M = 10 for our network coding scheme. Note that the



Fig. 11. [2] Throughput measure η versus the number of bits n for the TDD-
T and the full duplex schemes in a data packet for a symmetrical channel, for
different values of M with parameters g = 100 bits, nack = 100 bits,
h = 80 bits, data rate 100 Mbps, Trt = 250 ms, Pebit = 0.0001.

overhead of transmitting M coefficients of g bits per coded
packet is only 2%. Thus, this effect cannot be appreciated
in the figures. Again, the performance of our scheme is
the same as both GBN and SR at low data packet erasure
probability. Since the data rate is kept fixed, at higher Trt we
get higher latency. The throughput performance is similar to
that observed in Figure 13 if we carry our comparison in terms
of latency.

Another advantage of our scheme with respect to SR ARQ
is that our scheme relies on transmitting successfully one block
of M data packets before transmitting a new one. In fact, our
scheme minimizes the delay of every block. In contrast, the
SR ARQ does not provide any guarantee of delay for any data
packet, e.g. the first packet of a file to be transmitted could
be the last one to be successfully received. In this sense, our
comparison is not completely fair, as it favors the standard
schemes. Nonetheless, our scheme is providing similar or
better performance than SR but guaranteeing low transmission
delays in individual data packets.

IX. CONCLUSION

This paper provides a full characterization of a random
linear network coding scheme for reliable communications for
time division duplexing channels presented in [2], by providing
a recursive expression for the moment generating function.
This moment generating function is valid for both the com-
pletion time and energy using the appropriate substitutions.

We show that the moment generating function is useful to
compute the mean throughput (MnE[1/T ]) of our scheme.
This is achieved by computing the first negative moment of the

Fig. 12. [2] Throughput η versus n for the TDD-T and the full duplex
schemes in a symmetrical channel considering different values of round-trip
time Trt with parameters g = 100 bits, nack = 100 bits, h = 80 bits,
data rate 1.5 Mbps, M = 10, Pebit = 0.0001.

completion time, i.e. E[1/T ]. This metric is different from the
typical metric (Mn/E[T ]) used to characterize the throughput.
Numerical results show that both MnE[1/T ] and Mn/E[T ]
are very close when we choose the number of coded data
packets to minimize the mean completion time [2]. Thus,
optimizing the values of M and n to maximize Mn/E[T ]
should be very similar to the result we would get using the
mean throughput as metric, with the advantage of reducing the
required computation.

Although the optimal number of coded data packets, in
terms of either mean completion time or mean completion en-
ergy, has no closed form solution, we can exploit the recursive
characteristic of the problem to simplify our search method.
We show that instead of making a M -dimensional search,
we can perform M one-dimensional searches to achieve the
optimal solution. Finally, these values do not need to be
computed in real time. We can reduce the computational load
on the nodes by pre-computing these values for different
channel conditions and system settings, and storing them as
look-up tables in the nodes.

We present means of analysis and numerical results to show
that transmitting the optimal number of coded packets before
stopping to listen for an ACK is very close to the performance
of a full duplex system, while choosing a different number can
cause considerable degradation in performance, especially if
latency and packet error probability are high.

Also, transmitting the optimal number of coded data packets
sent before stopping to listen for an ACK in terms of both
mean completion time and energy consumes much less energy
in average than a network coding scheme operating in a full
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duplex channel. Furthermore, choosing the number of coded
data packets to optimize mean completion time, as in [2],
provides a good trade-off between energy consumption and
completion time.

In terms of throughput performance, we compare our
scheme optimized for completion time to the standard half-
duplex Go-back-N and Selective Repeat ARQ schemes. Nu-
merical evaluation for different latency shows that our scheme
has similar performance to the Selective Repeat in most cases,
and considerable performance gain when latencies and packet
error probability are high. Numerical results also show that
our scheme is superior to Go-back-N when error probability
is high for different latency.

Future research will consider an extension of the principles
proposed for one link to the general problem of wireless
networks, possible due to the use of random network coding.
In this extension, each node transmitting through a link, or,
more generally, a hyperarc (using the terminology in [12])
will have an optimal number of coded packets to transmit.
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