
Secrecy capacity of a class of orthogonal relay
eavesdropper channels

Vaneet Aggarwal, Lalitha Sankar, A. Robert Calderbank, and H. Vincent Poor
Department of Electrical Engineering, Princeton University, Princeton, NJ 08544.

Abstract—The secrecy capacity is developed for a class of relay
channels with orthogonal components and a passive eavesdropper
node. The relay and destination receive signals from the source
on two orthogonal channels such that the destination also receives
transmissions from the relay on its channel. The eavesdropper
can overhear either one or both of the orthogonal channels. Inner
and outer bounds on the secrecy capacity are developed for both
the discrete memoryless and the Gaussian channel models. For
the discrete memoryless case, the secrecy capacity is shown to
be achieved by a partial decode-and-forward (PDF) scheme when
the eavesdropper can overhear only one of the two orthogonal
channels. Two new outer bounds are presented for the Gaussian
model using recent capacity results for a Gaussian multi-antenna
channel with a multi-antenna eavesdropper. The outer bounds
are shown to be tight for two sub-classes of channels. The first
sub-class is one in which the source and relay are clustered and
the eavesdropper overhears on only one of the two channels for
which the PDF strategy is optimal. The second is a sub-class
in which the source does not transmit to the relay for which a
noise-forwarding strategy is optimal.

I. INTRODUCTION

In wireless networks for which nodes can benefit from
cooperation and packet-forwarding, there is also a need to
preserve the confidentiality of transmitted information from
untrusted nodes. Information privacy in wireless networks has
traditionally been the domain of the higher layers of the
protocol stack via the use of cryptographically secure schemes.
In his seminal paper on the three-node wiretap channel, Wyner
showed that perfect secrecy of transmitted data from the
source node can be achieved when the physical channel to
the eavesdropper is noisier than the channel to the intended
destination, i.e., when the channel is a degraded broadcast
channel [1]. This work was later extended by Csiszár and
Körner to all broadcast channels with confidential messages,
in which the source node sends common information to both
the destination and the wiretapper and confidential information
only to the destination [2].

Recently, the problem of secure communications has also
been studied for a variety of multi-terminal networks; see
for example, [3–10], and the references therein. In [11], the
authors show that a relay node can facilitate the transmission
of confidential messages from the source to the destination
in the presence of a wiretapper, often referred to as an
eavesdropper in the wireless setting. The authors develop the
rate-equivocation region for this four node relay-eavesdropper
channel and introduce a noise forwarding scheme in which the
relay, even if it is unable to aid the source in its transmissions,

transmits codewords independent of the source to confuse the
eavesdropper. In contrast, the relay channel with confidential
messages where the relay node acts as both a helper and
eavesdropper is studied in [12]. Note that in both papers, the
relay is assumed to be full-duplex, i.e., it can transmit and
receive simultaneously over the entire bandwidth.

In this paper, we study the secrecy capacity of a relay
channel with orthogonal components in the presence of a
passive eavesdropper node. The orthogonality comes from the
fact that the relay and destination receive signals from the
source on orthogonal channels; furthermore, the destination
also receives transmissions from the relay on its channel. The
orthogonal model implicitly imposes a half-duplex transmis-
sion and reception constraint on the relay. For this channel, in
the absence of an eavesdropper, El Gamal and Zahedi showed
that a partial decode-and-forward (PDF) strategy in which the
source transmits two messages on the two orthogonal channels
and the relay decodes its received signal, achieves the capacity.

We study the secrecy capacity of this channel for both
the discrete memoryless and Gaussian channel models. As
a first step towards this, we develop a PDF strategy for the
full-duplex relay eavesdropper channel and extend it to the
orthogonal model. Further, since the eavesdropper can receive
signals from either orthogonal channel or both, three cases
arise in the development of the secrecy capacity. We specialize
the outer bounds developed in [11] for the orthogonal case and
show that for the discrete memoryless channel, PDF achieves
the secrecy capacity for the two cases where the eavesdropper
receives signals in only one of the two orthogonal channels.

For the Gaussian model, we develop two new outer bounds
using recent results on the secrecy capacity of the Gaussian
multiple-input multiple-output channels in the presence of a
multi-antenna eavesdropper (MIMOME) in [4–6]. The first
outer bound is a genie-aided bound that allows the source
and relay to cooperate perfectly resulting in a Gaussian MI-
MOME channel for which jointly Gaussian inputs maximize
the capacity. We show that these bounds are tight for a sub-
class of channels in which the multiaccess channel from the
source and relay to the destination is the bottleneck link. For
a complementary sub-class of channels in which the source-
relay link is unusable due to noise resulting in a deaf relay, we
develop a genie-aided bound where the relay and destination
act like a two-antenna receiver. We also show that noise
forwarding achieves this bound for this sub-class of channels.

In [13], the authors study the secrecy rate of the channel
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Fig. 1. The relay-eavesdropper channel with orthogonal components.

studied here under the assumption that the relay is co-located
with the eavesdropper and the eavesdropper is completely
cognizant of the transmit and receive signals at the relay.
The authors found that using the relay does not increase the
secrecy capacity and hence there is no security advantage to
using the relay. In this paper, we consider the eavesdropper
as a separate entity and show that using the relay increases
the secrecy capacity in some cases. In the model of [13], the
eavesdropper can only overhear on the channel to the relay
while we consider three cases in which the eavesdropper can
overhear on either or both the channels.

II. CHANNEL MODELS AND PRELIMINARIES

A. Discrete Memoryless Model

A discrete-memoryless relay eavesdropper channel is de-
noted by (X1×X2, p(y, y1, y2|x1, x2),Y×Y1×Y2) such that
the inputs to the channel on a given channel use are X1 ∈ X1

and X2 ∈ X2 at the source and relay, respectively, the outputs
of the channel are Y1 ∈ Y1, Y ∈ Y , and Y2 ∈ Y2, at the relay,
destination, and eavesdropper, respectively, and the channel
transition probability is given by pY Y1Y2|XX2(y, y1, y2|x, x2)
[11]. The channel is assumed to be memoryless, i.e. the
channel outputs at time i depend only on channel inputs at time
i. The source transmits a message W1 ∈ W1 = {1, 2, · · · ,M}
to the destination using the (M,n) code consisting of

1) a stochastic encoder f at the source such that f : W1 →
Xn

1 ∈ Xn
1 ,

2) a set of relay encoding functions fr,i :
(Y1,1, Y1,2, · · · , Y1,i−1) → x2,i at every time instant i,
and

3) a decoding function at the destination Φ : Yn →W1.

The average error probability of the code is defined as:

Pn
e =

∑

w1∈W1

1
M

Pr{Φ(Y n) 6= w1|w1was sent}. (1)

The equivocation rate at the eavesdropper is defined as Re =
1
nH(W1|Y n

2 ). A perfect secrecy rate of R1 is achieved if for
any ε > 0, there exists a sequence of codes (M, n) and an

integer N such that for all n ≥ N , we have

R1 =
1
n

log2 M, (2)

Pn
e ≤ ε and (3)

1
n

H(W1|Y2) ≥ R1 − ε. (4)

The secrecy capacity is maximum such rate. The model
described above considers a relay that transmits and receives
simultaneously in the same orthogonal channel. Inner and
outer bounds for this model are developed in [11, Theorem
1].

In this paper, we consider a relay eavesdropper channel
with orthogonal components in which the relay receives and
transmits in two orthogonal channels. The source transmits
in both channels, one of which is received at the relay and
the other at the destination. The relay transmits along with
the source in the channel received at the destination. Thus,
the source signal X1 consists of two parts XR ∈ XR and
XD ∈ XD, transmitted to the relay and the destination,
respectively, such that X1 = XD ×XR. The eavesdropper can
receive transmissions in one or both orthogonal channels such
that Y2,i ∈ Y2,i denotes the received signal at the eavesdropper
in orthogonal channel i, i = 1, 2, and Y2 = Y2,1 × Y2,2.
More formally, the relay eavesdropper channel with orthogonal
components is defined as follows.

Definition 1: A discrete-memoryless relay eavesdropper
channel is said to have orthogonal components if the sender
alphabet X1 = XD×XR and the channel can be expressed as

p(y, y1, y2|x1, x2) = p(y1, y2,1|xR, x2) · p(y, y2,2|xD, x2).
(5)

Definition 1 assumes that the eavesdropper can receive sig-
nals in both channels. In general, the secrecy capacity bounds
for this channel depend on the receiver capabilities of the
eavesdropper. To this end, we explicitly include the following
two definitions for the cases in which the eavesdropper can
receive signals in only one of the channels.

Definition 2: The eavesdropper is limited to receiving sig-
nals on the channel from the source to the relay, if y2,2 = 0.

Definition 3: The eavesdropper is limited to receiving sig-
nals on the channel from the source and the relay to the
destination, if y2,1 = 0.

Thus, depending on the receiver capabilities at the eaves-
dropper, there are three cases that arise in developing the
secrecy capacity bounds. For brevity, we henceforth identify
the three cases as cases 1, 2, and 3, where cases 1 and 2
correspond to Definitions 2 and 3, respectively, and case 3 is
the general case where the eavesdropper receives signals from
both the channels.

B. Gaussian Model

For a Gaussian relay eavesdropper channel with orthogonal
components, the signals Y1 and Y received at the relay and the
destination respectively in each time symbol i ∈ {1, · · · , n},
are

Y1[i] = hs,rXR[i] + Z1[i] (6)



and

Y [i] = hs,dXD[i] + hr,dX2[i] + Z[i] (7)

where hk,m is the channel gain from transmitter k ∈ {s, r} to
receiver m ∈ {r, d}, and where Z1 and Z are zero mean unit
variance Gaussian random variables. The transmitted signals
XR, XD, and X2 are subject to average power constraints
given by

1
n

∑n
i=1 x2

R [i] ≤ PR,
1
n

∑n
i=1 x2

D [i] ≤ PD and
1
n

∑n
i=1 x2

2 [i] ≤ P2.
(8)

The signals at the eavesdropper are

Y2,1[i] = hs,e,1XR[i]1e,1 + Z2,1[i] (9)
Y2,2[i] = hs,e,2xD[i]1e,2 + hr,eX2[i]1e,2 + Z2,2[i] (10)

where hs,e,1 and hs,e,2 are the channel gains from the source
to the eavesdropper in the two orthogonal channels, hr,e is
the channel gain from the relay to the eavesdropper, Z2,1 and
Z2,2 are zero-mean unit variance Gaussian random variables
assumed to be independent of the source and relay signals,
and

1e,j =





1 if the eavesdropper can eavesdrop
in orthogonal channel j = 1, 2

0 0 otherwise.

Throughout the sequel, we assume that the channel gains are
fixed and known at all nodes.

We use the standard notation for entropy and mutual in-
formation [14] and take all logarithms to the base 2 so that
our rate units are bits. For ease of exposition, we write C (x)
to denote 1

2 log (1 + x). We also write random variables with
uppercase letters (e.g. Wk) and their realizations with the
corresponding lowercase letters (e.g. wk). We drop subscripts
on probability distributions if the arguments are lowercase
versions of the corresponding random variables. Finally, for
brevity, we henceforth refer to the channel studied here as the
orthogonal relay eavesdropper channel.

III. DISCRETE MEMORYLESS CHANNEL: OUTER AND
INNER BOUNDS

In this section, we give outer and inner bounds for the
secrecy capacity of the discrete-memoryless orthogonal relay
eavesdropper channel. The following theorems summarize the
outer and inner bounds as well as the secrecy capacity results
for the three cases in which the eavesdropper can receive in
either one or both orthogonal channels. Detailed proofs and
illustrations can be found in [15].

Theorem 1: An outer bound on the secrecy capacity of the
relay eavesdropper channel with orthogonal components is

given by

Case 1 : Cs ≤ max[min{I(VDVR; Y Y1|V2U),
I(VDV2; Y |U)} − I(VR; Y2|U)]+

Case 2 : Cs ≤ max[min{I(VDVR; Y Y1|V2U),
I(VDV2; Y |U)} − I(VDV2; Y2|U)]+

Case 3 : Cs ≤ max[min{I(VDVR; Y Y1|V2U),
I(VDV2; Y |U)} − I(VRVDV2; Y2|U)]+

where the maximum is over all joint distributions satisfying
U → (VR, VD, V2) → (XR, XD, X2) → (Y, Y1, Y2).1

For a relay channel with orthogonal components, the authors
of [16] show that a strategy where the source uses each channel
to send an independent message and the relay decodes the
message transmitted in its channel, achieves capacity. Due to
the fact that the relay has partial access to the source trans-
missions, this strategy is sometimes also referred to as partial
decode and forward [17]. The achievable scheme involves
block Markov superposition encoding while the converse is
developed using the max-flow, min-cut bounds. A natural
question for the relay-eavesdropper channel with orthogonal
components is whether the PDF strategy can achieve the
secrecy capacity. To this end, we summarize the achievable
PDF secrecy rates for the three cases.

Theorem 2: An inner bound on the secrecy capacity of the
orthogonal relay eavesdropper channel, achieved using partial
decode and forward over all input distributions of the form
p(xR, xD, x2), is given by

Case 1 : Cs ≥ min{I(XDXR; Y Y1|X2), I(XDX2; Y )}
−I(XR; Y2) (11)

Case 2 : Cs ≥ min{I(XDXR; Y Y1|X2), I(XDX2; Y )}
−I(XD, X2; Y2) (12)

Case 3 : Cs ≥ min{I(XDXR; Y Y1|X2), I(XDX2; Y )}
−I(XR; Y2|X2)− I(XD, X2;Y2) (13)

The bounds in (13) can be generalized by randomizing the
channel inputs. The following theorem summarizes our result
that PDF with randomization achieves the secrecy capacity
when the eavesdropper is limited to receiving signals on one
of the two channels.

Theorem 3: The secrecy capacity of the relay channel with
orthogonal complements is

Case 1 : Cs = max[min{I(VDVR; Y Y1|V2U),
I(VDV2; Y |U)} − I(VR; Y2|U)]+

Case 2 : Cs = max[min{I(VDVR; Y Y1|V2U),
I(VDV2; Y |U)} − I(VDV2; Y2|U)]+

Case 3 : Cs ≤ max[min{I(VDVR; Y Y1|V2U),
I(VDV2; Y |U)} − I(VRVDV2; Y2|U)]+

where the maximum is over all joint distributions satisfying
U → (VR, VD, V2) → (XR, XD, X2) → (Y, Y1, Y2). Further-

1The notation [x]+ denotes max(x, 0).



more, for Case 3,

Cs ≥ [min{I(VDVR;Y Y1|V2U), I(VDV2; Y |U)}
−I(VR; Y2|V2U)− I(VD, V2; Y2|U)]+

for all joint distributions satisfying U → (VR, VD, V2) →
(XR, XD, X2) → (Y, Y1, Y2).

Remark 1: In contrast to the non secrecy case, where the or-
thogonal channel model simplifies the cut-set bounds to match
the inner PDF bounds, for the orthogonal relay-eavesdropper
model in which the eavesdropper receives in both channels,
i.e., when the orthogonal receiver restrictions at the relay
and intended destination do not apply to the eavesdropper, in
general, the outer bound can be strictly larger than the inner
PDF bound.
We illustrate these results with an example in which we show
that the secrecy capacity is achieved by the relay transmitting
a part of the message as well as a random signal.
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Fig. 2. Orthogonal relay eavesdropper channel model of Example 1.

Example 1: Consider an orthogonal relay eavesdropper
channel where the input and output signals at the source,
relay, and destination are binary two-tuples while Y2,1 and
Y2,2 at the eavesdropper are binary alphabets. We write
XR = (aR, bR), XD = aD and X2 = (a1, b1) to denote the
vector binary signals at the source and the relay. The outputs
at the relay, destination and the eavesdropper are also vector
binary signals given by

Y = (a1, aD), Y1 = (aR, bR), (14)
Y2,1 = (bR) and Y2,2 = (b1 ⊕ aD), (15)

as shown in Figure III. As in the previous example, the
capacity of this channel is also at most 2 bits per channel use.
We now show that a secrecy capacity of 2 bits per channel
use can be achieved for this example channel. Consider the
following coding scheme: in the ith use of the channel, the
source encodes 2 bits, denoted as w1,i and w2,i as

XR = (w1,i, 0), XD = (w2,i).

The relay receives w1,i−1 in the previous use of the channel.
Furthermore, in each channel use, it also generates a uniformly

random bit ni, and transmits

X2 = (w1,i−1, ni). (16)

With these transmitted signals, the received signals at the
receiver and the eavesdropper are

Y = (w1,i−1, w2,i), Y2,1 = (0) and Y2,2 = (ni ⊕ w2,i).
(17)

Thus, over n + 1 uses of the channel the destination receives
all n bits transmitted by the source. On the other hand, in
every use of the channel, the eavesdropper cannot decode
either source bit.

IV. GAUSSIAN MODEL

A. Inner and Outer Bounds

Determining the optimal input distribution for all the auxil-
iary random variables in the outer bounds in Theorem 3 is not
straightforward. To this end, we summarize new outer bounds
using a recent result on the secrecy capacity of the class
of Gaussian multiple input, multiple output, multi-antenna
eavesdropper channels (see [4–6]).

Theorem 4: An outer bound on the secrecy capacity of the
Gaussian orthogonal relay eavesdropper channel is given by

Case 1 Cs ≤ I(XDX2; Y )− I(XR; Y2)
Case 2 Cs ≤ I(XDX2; Y )− I(XDX2; Y2)
Case 3 Cs ≤ I(XDX2; Y )− I(XRXDX2;Y2)

(18)

for [XR XD X2]T ∼ N (0,KX) where KX = E[XXT ] has
diagonal entries that satisfy (8).

The PDF inner bounds developed in Section III for the
discrete memoryless case can be applied to the Gaussian model
with Gaussian inputs at the source and relay. In fact, for all
three cases, the inner bounds require taking a minimum of
two rates, one achieved jointly by the source and relay at
the destination and the other achieved by the source at the
relay and destination. Comparing the inner bounds in (13)
with the outer bounds in (18), for those channels in which the
source and relay are clustered close enough that the bottle-
neck link is the combined source-relay link to the destination
and the eavesdropper overhears only one of the two channels,
the secrecy capacity can be achieved. This is summarized in
the following theorem.

Theorem 5: For a class of clustered orthogonal Gaussian
relay channels with

I(XDX2; Y ) < I(XDXR; Y Y1|X2) (19)

where X = [XR XD X2]T ∼ N (0,KX), the secrecy capacity
for cases 1 and 2 is achieved by PDF and is given by

Case 1 : Cs = I(XDX2; Y )} − I(XR; Y2)
Case 2 : Cs = I(XDX2; Y )} − I(XD, X2;Y2).

Next theorem summarizes the capacity of a sub-class of
Gaussian orthogonal relay eavesdropper channels for which
hs,r = 0, in which noise-forwarding is optimal.



Theorem 6: The secrecy capacity of a sub-class of Gaussian
orthogonal relay eavesdropper channels with hs,r = 0 in the
cases 2 and 3 is given by

Cs = min
{
C

(|hs,d|2E[X2
D] + |hr,d|2E[X2

2 ]
)

−C
(|hs,e,2|2E[X2

D] + |hr,e|2E[X2
2 ]

)
,

C(|hs,d|2E[X2
D])

−C
(|hs,e,1|2E[X2

D]/(1 + |hr,e|2E[X2
2 ])

)}
.(20)

B. Illustration of Results

We illustrate our results for the Gaussian model for a
class of linear networks in which the source is placed at the
origin and the destination is unit distance from the source at
(1, 0). The eavesdropper is at (1.5, 0). The channel gain hm,k,
between transmitter m and receiver k, for each m and k, is
modeled as a distance dependent path-loss gain given by

hm,k = 1

d
α/2
m,k

for all m ∈ {s, r} , k ∈ {r, d, e} (21)

where α is the path-loss exponent. The maximum achievable
PDF secrecy rate is plotted as a function of the relay position
along the line connecting the source and the eavesdropper as
shown in Figure IV-B. Furthermore, as a baseline assuming
the relay does not transmit, i.e., XR = 0, the secrecy capacity
of the resulting direct link and the wire-tap channel for cases 2
and 3, respectively, are included in all three plots in Fig. IV-B.
The rates are plotted in separate sub-figures for the three cases
in which the eavesdropper receives signals in only one or both
channels. In all cases, the path loss exponent α is set to 2 and
the average power constraint on XR, XD , and X2 is set to
unity. In addition to PDF, the secrecy rate achieved by noise
forwarding (NF) is also plotted.

In Fig IV-B, for all three cases, the PDF secrecy rates
are obtained by choosing the input signal X = [XR XD

X2]T as Gaussian distributed and optimizing the rates over
the covariance matrix KX = E[XXT ]. Thus, for all the
cases, PDF is optimal when the relay is close to the source.
On the other hand, when the relay is farther away than the
eavesdropper and destination are from the source, there are
no gains achieved by using the relay relative to the non-
relay wiretap secrecy capacity. Finally, for cases 2 and 3,
NF performs better than PDF when the relay is closer to the
destination.

V. CONCLUSIONS

We have developed bounds on the secrecy capacity of relay
eavesdropper channels with orthogonal components in the
presence of an additional passive eavesdropper for both the
discrete memoryless and Gaussian channel models. Our results
depend on the capability of the eavesdropper to overhear either
or both of the two orthogonal channels that the source uses for
its transmissions. For the discrete memoryless model, when the
eavesdropper is restricted to receiving in only one of the two
channels, we have shown that the secrecy capacity is achieved
by a partial decode-and-forward strategy.

For the Gaussian model, we have developed a new outer
bound using recent results on the secrecy capacity of Gaussian
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Fig. 3. Source is at (0, 0), destination at (1, 0) and eavesdropper is at
(1.5, 0). Distance fading model with α = 2 is taken and power constraints
for XR, XD and X2 are all unity.

MIMOME channels. When the eavesdropper is restricted to
overhearing only one of the two channels, our bound is tight
for a sub-class of channels where the source and relay are
clustered such that the combined link from the source and
relay to the destination is the bottle-neck link. Furthermore,
for a sub-class where the source-relay link is not used, we have
developed a new MIMOME-based outer bound that matches
the secrecy rate achieved by the noise forwarding strategy.

A natural extension to this model is to study the secrecy
capacity of orthogonal relay channels with multiple relays



and multiple eavesdroppers. Also, the problem of developing
an additional outer bound that considers a noiseless relay
destination link remains open for the channel studied here.
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