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Abstract—In this work, we develop novel statistical detectors to
combat intersymbol interference for frequency selective channels
based on Markov Chain Monte Carlo (MCMC) techniques.
While the optimal maximum a posteriori (MAP) detector has
a complexity that grows exponentially with the constellation
size and the memory of the channel, the MCMC detector can
achieve near optimal performance with a complexity that grows
linearly. This makes the MCMC detector particularly attrac tive
for underwater acoustic channels with long delay spread. We
examine the effectiveness of the MCMC detector using actual
data collected from underwater experiments. When combined
with adaptive least mean square (LMS) channel estimation, the
MCMC detector achieves superior performance over the direct
adaptation LMS turbo equalizers (LMS-TEQ) for a majority
of data sets transmitted over distances from 60 meters to 1000
meters.

I. I NTRODUCTION

Underwater acoustic (UWA) channels pose unique chal-
lenges due to the low speed of sound, limited communi-
cation bandwidth, and the intrinsic motion due to waves
and currents [1]. Such channels feature large delay spread,
frequency-dependent Doppler shift, and high time variability.
To overcome these challenges, turbo equalization techniques
have been applied to UWA channels [2], which demonstrate
improved performance over the phase-coherent receivers in
[3]. The LMS-TEQ turbo equalizer developed in [2] are based
on the least mean square (LMS) algorithm and it is shown to
converge rapidly to the optimal equalizer without the need for
channel estimation.

In this work, we study the application of statistical detectors
based on Markov Chain Monte Carlo (MCMC) techniques
to UWA channels. Such detectors offer a low-complexity
approximation to the maximum-likelihood sequence estima-
tion (MLSE) and are used to directly perform data detection
without channel equalization. The MCMC detectors have been
studied previously in [4]–[6] for both multiple-input multiple-
output (MIMO) frequency-flat channels and for frequency
selective channels with inter-symbol interference [7]. Under
the assumption of perfect channel state information (CSI) at
the receiver, the MCMC detectors developed in these work
demonstrate excellent performance at low-complexity. In this
paper, we apply MCMC detectors to UWA channels and show
that when combined with adaptive channel estimation, the
MCMC detectors demonstrate excellent performance when

compared with the adaptive LMS-TEQ equalizer of [2]. For
UWA channels with sparse channel impulse response, we
demonstrate that the variable step size LMS (VSLMS) algo-
rithm provides superior channel tracking and hence yields im-
proved performance than that of the standard LMS algorithm.

Experimental results are provided for multiple data sets
measured over 60 meter to 1000 meter distances from the
recent SPACE’08 experiment conducted off the coast of
Martha’s Vinyard, MA.

II. CHANNEL MODEL AND SYSTEM SETUP

We first describe the structure of the transmitter, the UWA
channel model, and the structure of the receiver.

At the transmitter side, we pass every group ofNb infor-
mation bits to the channel encoder to generate a sequence of
Nc coded bits. The coded bits are interleaved and mapped
into a sequence of complex symbols. We then insert pilot
symbols and the resulting symbol sequence{xn} is divided
into multiple packets, each containingNp pilot symbols and
Nd data symbols. Assuming that channel coding is performed
across everyI packets, we must haveNb = INd(log2 Mc)R,
whereR is the code rate andMc is the size of the constellation.
The sequence{xn} is passed through a pulse shaping filter and
transmitted by a transducer through the UWA channel.

Assume that a total ofK receiving hydrophones are used.
The received signal at timen at thek-th receive hydrophone
can be expressed as

y(k)n =

L
∑

l=0

h
(k)
n,lxn−l + v(k)n , (1)

wherel = 0, · · · , L is the index ofl-th path,h(k)
n,l denotes the

channel gain of thel-th path at timen, between the transducer
and thek-th receive hydrophone.

The receiver structure is illustrated in Fig.1, which employs
iterative joint channel estimation, data detection, and channel
decoding over every groups ofI packets. We divide each
packet into multiple blocks and perform channel estimation
and MCMC detection block-wise. Within each packet, we
first estimate the channel from the pilot block. These channel
estimates are then passed to the MCMC detector for data
detection over the first data block. We then refine the channel
estimates based on the output of the MCMC detector, and



use these to perform data detection for the second block. The
soft outputs of the MCMC detector from all the blocks within
the group ofI packets are passed to the channel decoder for
decoding. For the next iteration, soft information from the
channel decoder is fed back to the MCMC detector for data
detection.

Details of the channel estimation and MCMC detection will
be presented in the following sections.

Fig. 1. Flowchart of the receiver

III. C HANNEL ESTIMATION

We consider two adaptive channel estimation algorithms:
the LMS and the VSLMS. The latter algorithm is shown to
outperform the LMS when the channel impulse response is
sparse.

A. Least mean square (LMS) channel estimation

For the LMS channel estimation, the channel gains are
updated according to

ĥ
(k)
n+1,l = ĥ

(k)
n,l +

µ
∑L

i=0 |xn−i|2
e(k)n x̂∗

n−l. (2)

For the pilot block, eacĥxn equals the pilot symbol. For each
data block within a packet,̂xn denotes the soft value at the
output of the MCMC detector, e.g.,̂xn =

∑

q

qP (xn = q),

where q = 0, 1, · · · ,Mc − 1 is an arbitrary constellation
point. The residual errore(k)n in (2) is computed ase(k)n =

y
(k)
n −

L
∑

l=0

ĥ
(k)
n,l x̂n−l. We run the LMS algorithm for multiple

passes within each block of symbols to ensure convergence
and the step-sizeµ is set to be0.02.

B. Variable step size LMS (VSLMS)channel estimation

For the VSLMS, instead of using the same step sizeµ to
update allL channel taps, we allow the step sizes to vary for
different taps. Letµ(k)

n,l denote the step size for thel-th channel
tap. We update the channel estimates as follows [8]

ĥ
(k)
n+1,l = ĥ

(k)
n,l + µ

(k)
n,le

(k)
n x̂∗

n−l. (3)

At the time n,µ(k)
n,l can be updated fromµ(k)

n−1,l as

µ
(k)
n,l = µ

(k)
n−1,l + ρ Re{e(k)n x̂∗

n−lφ
(k)
n,l}, (4)

φ
(k)
n,l = αφ

(k)
n−1,l + e∗n−1x̂n−l−1, (5)

where we setρ = 0.005, α = 0.95. Then the vector of step
sizes is scaled such that1

L

∑L

l=0 µ
(k)
n,l = µ = 0.02 to guarantee

stability. This will guarantee the same misadjustment for both
LMS and VSLMS algorithms [9].

To give some insights to the mechanism of the VSLMS
algorithm, we note that the sign ofφ(k)

n,l indicates the average
direction of the stochastic gradient in the past. Accordingly,
if the present gradient,e∗n−1x̂n−l−1φ

(k)
n,l , has the same sign

as φ
(k)
n,l , then we assume that the VSLMS algorithm has

not converged yet. Thus, we should increase the step-size
parameterµ(k)

n,l . Otherwise, it should be decreased.

IV. MCMC D ETECTION

The basic principles of the MCMC detector for ISI chan-
nels with perfect CSI are presented in [7]. The main idea
is to use the Gibbs sampler to generate a small set of
most likely transmitted sequences, based on which the log-
likelihood-ratio (LLR) of each transmitted bit is computed.
Assume that each data block within a packet includesnd data
symbols, corresponding toB = (log2 Mc) · nd transmitted
bits b = (b0, · · · , bB−1). The Gibbs sampler is a statistical
procedure used to draw one bit at a time. Consider bitbm,
where 0 ≤ m ≤ B − 1. Let λm denote the LLR ofbm,
provided by the channel decoder. Lety = (y(1), · · · ,y(K)),
wherey(k) denotes the received signal sequence from thek-
th hydrophone. We run the Gibbs sampler overI iterations
to generate a set ofI most likely transmitted sequences,
denoted by{b(1), · · · ,b(I)}. Details of the Gibbs sampler are
described in Algorithm 1.

Algorithm 1 : Gibbs sampler

generate an initialb(0)

for n = 1 to I
generateb(n)0 from distribution
P (b0 = a|b

(n−1)
1 , b

(n−1)
2 , · · · , b

(n−1)
B−1 ,y, λ0)

generateb(n)1 from distribution
P (b1 = a|b

(n−1)
0 , b

(n−1)
2 , · · · , b

(n−1)
B−1 ,y, λ1)

...
generateb(n)B−1 from distribution

P (bB−1 = a|b
(n−1)
0 , b

(n−1)
1 , · · · , b

(n−1)
B−2 ,y, λB−1)

end for

Note that when updatingb(n)m during the n-th iteration,
we condition upon updated samples(b(n)0 , · · · b

(n)
m−1) obtained

during the same iteration, and samples(b(n−1)
m+1 , · · · b

(n−1)
B−1 )

obtained from the previous iteration. Let

b̄m = (b
(n)
0 , · · · , b

(n)
m−1, b

(n−1)
m+1 , · · · , b

(n−1)
B−1 ).



We draw sampleb(n)m based on the conditional probability
distribution

P (bm = a|b̄m,y, λm), wherea = 0, 1.

For eacha, we define

ba = {b
(n)
0 , · · · , b

(n)
m−1, a, b

(n−1)
m+1 , · · · , b

(n−1)
B−1 },

and letxa denote the symbol vector corresponding toba. Also,
let xj−L : j = (xj−L, xj−L+1, · · · , xj). First, we assume that
the channel gains{h(k)

j,l } are perfectly known, and the noise

{v
(k)
n } is white with a complex Gaussian distribution of zero

mean and variance ofσ2
k. Assume that bitbm is mapped to

symbolxi. Then we obtain

P (bm = a|b̄m,y) ∝
K
∏

k=1

p(y(k)|xa)P (xa)

∝

K
∏

k=1

i+L
∏

j=i

p(y
(k)
j |xa

j−L:j)P (bm = a)

= C · exp

{ K
∑

k=1

i+L
∑

j=i

(

−
1

σ2
k

|y
(k)
j −

L
∑

l=0

h
(k)
j,l x

a
j−l|

2
)

}

P (bm = a), (6)

whereP (bm = a) can be computed fromλm and C is a
scaling constant to ensure thatP (bm = 0|b̄m,y) + P (bm =
1|b̄m,y) = 1. For channels with imperfect CSI, we replace
h
(k)
j,l in (6) by the estimated channelĥ

(k)
j,l . We will also replace

σ2
k in (6) by σ̂2

k to take into account both channel estimation
error and the variance of channel noise. To be specific, assume
that

h
(k)
i,l = ĥ

(k)
i,l + e

(k)
i,l . (7)

The received signal can be written as

y
(k)
i =

L
∑

l=0

h
(k)
i,l xi−l + v

(k)
i

=

L
∑

l=0

ĥ
(k)
i,l xi−l + v

(k)
i +

L
∑

l=0

e
(k)
i,l xi−l.

(8)

Let ñ(k)
i = v

(k)
i +

L
∑

l=0

e
(k)
i,l xi−l and σ̃2

k = Var(ñ(k)
i ). We then

estimateσ̃2
k from the pilot block such that

σ̃2
k ≈

1

Np

Np
∑

i=1

∣

∣

∣

∣

∣

y
(k)
i −

L
∑

l=0

ĥ
(k)
i,l xi−l

∣

∣

∣

∣

∣

2

(9)

wherexi, i = 1, · · · , Np are pilot symbols. Finally, we rewrite
(6) as

P (bm = a|b̄m,y) (10)

∝ exp

{ K
∑

k=1

i+L
∑

j=i

(

−
1

σ̂2
k

|y
(k)
j −

L
∑

l=0

ĥ
(k)
j,l x

a
j−l|

2
)

}

P (bm = a). (11)

To obtain better performance, we runQ Gibbs samplers in
parallel withI iterations each. Hence, a maximum ofQ·I most
likely transmitted sequences are generated by the MCMC,
which are used to compute the output LLRs following the
procedure given in [7].

V. NUMERICAL RESULTS

A. Experiment setup

The experiment was conducted off the coast of Martha’s
Vinyard, MA during Oct. 14th - Nov. 2nd, 2008. During the
experiment, there is no movement of the transmitter and re-
ceiver. There is a single transducer, and a vertical hydrophone
array deployed at 60, 200, and 1000 meters away from the
source. The hydrophone array contains 12 elements spaced
apart by 12cm. Epochs of data, each containing multiple data
files for various modulation schemes, are transmitted everytwo
hours. Every data file within an epoch contains 42 data packets
with the same modulation scheme (e.g. 4QAM, 16QAM, or
64QAM). Each packet consists ofNp = 400 training symbols
andNd = 1200 data symbols. The data symbols within each
packet are divided intoT = 3 blocks, and each block contains
nd = 1200/3 = 400 symbols. The channel coding is across
everyI = 6 packets. The carrier frequency is 13 kHz, and the
symbol rate is 9.77k sym/sec. The data bits are encoded by
a rate1/2 recursive systematic convolutional (RSC) encoder
with the generator polynomial(23, 35). A square-root raised
cosine filter with a roll-off factor 0.2 is used at both the
transmitter and the receiver. For each data set, a preamble of
1000 symbols is inserted before data transmission to facilitate
data synchronization. Estimation of the channel lengthL is
performed after the synchronization process is complete. For
the data sets considered here, we findL to be in the range of
60-80.

B. Experimental results

We first compare performance of the MCMC detector with
the LMS-TEQ [2] over a set of 22 data files for the 1000
meter distance. Each file is from a different epoch and thus
is transmitted two hours apart. For the 1000 meter distance,
the estimated channel is not very sparse, as shown in Fig.
2, and hence the advantage of the VSLMS over the LMS
is not evident. For this setting we use the LMS for channel
estimation.

First, we note that with 4QAM modulation, due to lower
date rates, both detectors obtain excellent performance, achiev-
ing error-free decoding results for almost all 22 data sets.
Hence, we present our results only for the higher order
modulations 16QAM and 64QAM. In Fig. 4 (for 16 QAM)
and Fig 5 (for 64QAM), the x-axis represents a total of 22
files. The y-axis represents the average number of errors in
information bits per packet. Fig. 4 shows that for 16QAM
(each packet has1200 ∗ 4/2 = 2400 information bits), the
MCMC is much better than the LMS-TEQ after one iteration
of detection/equalization and decoding. After seven iterations,
the LMS-TEQ still has more than 35 bit errors per packet
for files 7-12. In comparison, the MCMC has fewer errors



and only files 10 and 18 have more than 35 bit errors per
packet. The overall number of bit errors using MCMC is only
one third of LMS-TEQ. For the same symbol rate of 9.77k
sym/sec, the bit rate for 64QAM is higher (each packet has
1200 ∗ 6/2 = 3600 information bits), which yields more bit
errors than that of the 16QAM. We observe from Fig. 5 that
the MCMC performs better than the LMS-TEQ for all the files
after the first iteration. After seven iterations, even though the
number of errors is still high for most files, it is clear that the
performance of MCMC is either much better than LMS-TEQ,
e.g., files 1-8, 12-18, 21,22, or comparable to LMS-TEQ, e.g.,
files 9,10,11,19,20.

We also compare performance of the MCMC detector
with the LMS-TEQ for the 60 meter distance. The channel
estimation for MCMC is done using either LMS or VSLMS.
Here we use a total of 4 receive hydrophones. As in the case of
1000 meters, the MCMC performs better than the LMS-TEQ
for most cases after one iteration. After seven iterations,it is
clear that the MCMC detector with either LMS or VSLMS
outperforms the LMS-TEQ for the majority of data sets, e.g,
files 5-9, 15-22. Also, since the UWA channel is more sparse
for the 60 meter distance, as shown in Fig. 3, the VSLMS
outperforms the LMS for the majority of data sets, e.g., 1,
5-9, and 17-22.

VI. CONCLUSION

In this paper, we studied MCMC detection for UWA chan-
nels. Through actual experimental data we have demonstrated
the effectiveness of the MCMC detectors for both 60 meter
and 1000 meter transmissions. Using LMS or VSLMS channel
estimation, the MCMC detector achieves superior performance
to the LMS-TEQ for the majority of the data sets that we have
examined. The VSLMS algorithm is shown to provide better
channel estimation than the LMS algorithm for sparse UWA
channels.
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channel estimation.K = 10 receive hydrophones are used.
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