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Abstract—In this work, we develop novel statistical detectors to compared with the adaptive LMS-TEQ equalizer of [2]. For
combat intersymbol interference for frequency selective lsannels  UWA channels with sparse channel impulse response, we
based on Markov Chain Monte Carlo (MCMC) techniques. gomgnstrate that the variable step size LMS (VSLMS) algo-
While the optimal maximum a posteriori (MAP) detector has . . . . . X
a complexity that grows exponentially with the constellatbn rithm provides superior channel tracking and hence yle‘mj-_5|
size and the memory of the channel, the MCMC detector can Proved performance than that of the standard LMS algorithm.
achieve near optimal performance with a complexity that grovs Experimental results are provided for multiple data sets
linearly. This makes the MCMC detector particularly attrac tive measured over 60 meter to 1000 meter distances from the

for underwater acoustic channels with long delay spread. We recent SPACE’08 experiment conducted off the coast of
examine the effectiveness of the MCMC detector using actual ,
Martha’s Vinyard, MA.

data collected from underwater experiments. When combined
with adaptive least mean square (LMS) channel estimation,hte I c M S S
MCMC detector achieves superior performance over the diret - CHANNEL MODEL AND SYSTEM SETUP

adaptation LMS turbo equalizers (LMS-TEQ) for a majority We first describe the structure of the transmitter, the UWA
of data sets transmitted over distances from 60 meters to 100 channel model, and the structure of the receiver.
meters. . . .

At the transmitter side, we pass every groupgf infor-
mation bits to the channel encoder to generate a sequence of
N, coded bits. The coded bits are interleaved and mapped

Underwater acoustic (UWA) channels pose unique chahto a sequence of complex symbols. We then insert pilot
lenges due to the low speed of sound, limited commurdymbols and the resulting symbol sequerdag} is divided
cation bandwidth, and the intrinsic motion due to waveisto multiple packets, each containing, pilot symbols and
and currents [1]. Such channels feature large delay spreag, data symbols. Assuming that channel coding is performed
frequency-dependent Doppler shift, and high time varigbil across every packets, we must haw;, = I Ny(log, M.)R,

To overcome these challenges, turbo equalization techriqwhereR is the code rate antf.. is the size of the constellation.
have been applied to UWA channels [2], which demonstrate sequencéz,, } is passed through a pulse shaping filter and
improved performance over the phase-coherent receiverstrignsmitted by a transducer through the UWA channel.

[3]. The LMS-TEQ turbo equalizer developed in [2] are based Assume that a total ofC receiving hydrophones are used.
on the least mean square (LMS) algorithm and it is shown the received signal at time at thek-th receive hydrophone
converge rapidly to the optimal equalizer without the nemd fcan be expressed as

channel estimation. L

In this work, we study the application of statistical detest (k) _ (k) (k)

. . Yn ' = Z hn 1 Tn—1 + U7, (1)
based on Markov Chain Monte Carlo (MCMC) techniques — "
to UWA channels. Such detectors offer a low-complexity
approximation to the maximume-likelihood sequence estimaterel =0, --- , L is the index of/-th path,hgfl) denotes the
tion (MLSE) and are used to directly perform data detectiathannel gain of thé-th path at timen, between the transducer
without channel equalization. The MCMC detectors have beand thek-th receive hydrophone.
studied previously in [4]—[6] for both multiple-input migte- The receiver structure is illustrated in Fig.1, which enyglo
output (MIMO) frequency-flat channels and for frequenciterative joint channel estimation, data detection, ananckel
selective channels with inter-symbol interference [7].den decoding over every groups df packets. We divide each
the assumption of perfect channel state information (C8l) packet into multiple blocks and perform channel estimation
the receiver, the MCMC detectors developed in these woakd MCMC detection block-wise. Within each packet, we
demonstrate excellent performance at low-complexityhia t first estimate the channel from the pilot block. These chianne
paper, we apply MCMC detectors to UWA channels and shaegtimates are then passed to the MCMC detector for data
that when combined with adaptive channel estimation, tlietection over the first data block. We then refine the channel
MCMC detectors demonstrate excellent performance whestimates based on the output of the MCMC detector, and

I. INTRODUCTION



use these to perform data detection for the second block. Theit the time n,uffg can be updated fromgf_)l,l as
soft outputs of the MCMC detector from all the blocks within

the group ofl packets are passed to the channel decoder for u;; = u;k)l +p Re{eﬁf)ii_l@f?}, (4)
decoding. For the next iteration, soft information from the ¢(k) _ ¢(k) Let i ()
channel decoder is fed back to the MCMC detector for data m.l Lt T En—1tn=it
detection. where we sep = 0.005,a = 0. 95 Then the vector of step

Details of the channel estimation and MCMC detection willjzes is scaled such thétzl "o My 2 = u = 0.02 to guarantee
be presented in the following sections. stability. This will guarantee the same misadjustment fathb

LMS and VSLMS algorithms [9].
Syne: identify the start of packet i To give some insights to the mechanism of the VSLMS

,,,,,,,, 3 algorithm, we note that the sign dﬁl) indicates the average

memlepans]  Dack | Facket i+l ‘ 77777777 direction of the stochastic gradient in the past. Accortying
if the present gradientg;*l_ljcn_l_lqsgfl), has the same sign
| pptlots | Blockl | g Rl as ¢*), then we assume that the VSLMS algorithm has

not converged yet. Thus, we should increase the step-size
" parameteru . Otherwise, it should be decreased.

MM IV. MCMC DETECTION

‘ : : The basic principles of the MCMC detector for ISI chan-
| o ————— v | nels with perfect CSI are presented in [7]. The main idea
S N R P is to use the Gibbs sampler to generate a small set of

: Channel Estimator most likely transmitted sequences, based on which the log-
MEMC Detector likelihood-ratio (LLR) of each transmitted bit is computed
- o Assume that each data block within a packet includgslata

symbols, corresponding t® = (log, M.) - ng transmitted
bits b = (by,--- ,bp_1). The Gibbs sampler is a statistical

procedure used to draw one bit at a time. Considen}it

I1l. CHANNEL ESTIMATION where0 < m < B — 1. Let \,, denote the LLR ofb,,,

We consider two adaptive channel estimation algorithmgsrovided by the channel decoder. Let= (y(),--- | y()),
the LMS and the VSLMS. The latter algorithm is shown tavherey(*) denotes the received signal sequence fromithe

outperform the LMS when the channel impulse responsetis hydrophone. We run the Gibbs sampler oveiterations
sparse. to generate a set of most likely transmitted sequences,

- .. ) ' '
A. Least mean square (LMS) channel estimation denoted by{b , b}, Details of the Gibbs sampler are
described in Algonthm 1.

For the LMS channel estimation, the channel gains are
updated according to
hfﬁll = hill) ﬁewﬁ—z- 2 generate an initiab(®)
=0 forn—ltoI
For the pilot block, eactt,, equals the pilot symbol. For each generateb from distribution
data block within a packet;,, denotes the soft value at the P(by = |b(" 1),b§" 1)7 . b(" 1) o)

P — — B—1 7Y7
output of the MCMC detector, e.gi, = > qP(z, = q), generatd)gn) from distribution

q
where ¢ = 0,1,---,M, — 1 is an arbitrary constellation p(b1 =alp D o D g A
pomt The reS|duaI erroe( ) in (2) is computed asgf) =

Fig. 1. Flowchart of the receiver

Algorithm 1: Gibbs sampler

Z h xn ;- We run the LMS algorithm for multiple generatda , from distribution

passes Wlthln each block of symbols to ensure convergencé(bp_1 = a|b n-1) b(" 1) - bg‘ 21),y, AB-1)
and the step-sizg is set to be).02. end for

B. Variable step size LMS (VSLMS)channel estimation

For the VSLMS, instead of using the same step giz® Note that when upda‘un@m durmg the n-th iteration,

update allL channel taps, we allow the step sizes to vary fo¥€ condition upon updated sampl "b§;1) ol)(tajrll)ed
different taps. Lep.!*) denote the step size for tigh channel during the same iteration, and sampl 1 b )
tap. We update the ‘channel estimates as follows [8] obtained from the previous iteration. Let
k k k) (k) o _ n (e n—
T O O e =)



We draw samplebﬁ,’f) based on the conditional probabilityTo obtain better performance, we rdp Gibbs samplers in
distribution parallel with[ iterations each. Hence, a maximum@fl most
likely transmitted sequences are generated by the MCMC,
which are used to compute the output LLRs following the
procedure given in [7].

P(bym = a|bm,y, \m), wherea =0, 1.

For eacha, we define
@ n n n—1 n—1 V. NUMERICAL RESULTS
b :{b((J)""’bSn)la 7b5n+1)’“ b( )}

dletet d h bol di | A. Experiment setup
fg X elx Sn(o;et © Symbo .ve.ctor)c Olzri?;pcxle Igit’l?rﬁes?ﬁat The experiment was conducted off the coast of Martha’s
h JhL J _I J L}; ﬁ LAt roctly K 4 th Vinyard, MA during Oct. 14th - Nov. 2nd, 2008. During the
€ )C anne ga|n$ 1 } are perfectly known, an € r]()'Seexperlment there is no movement of the transmitter and re-
{vi} is white with a complex Gaussian distribution of zer@ejver. There is a single transducer, and a vertical hydyoph

mean and variance af;. Assume that bib,, is mapped t0 array deployed at 60, 200, and 1000 meters away from the

symbolz;. Then we obtain source. The hydrophone array contains 12 elements spaced
apart by 12cm. Epochs of data, each containing multiple data
P(bp = a|bm,y) H p(y(k)|xa)p(xa) files for various modulation schemes, are transmitted evesy
1 hours. Every data file within an epoch contains 42 data packet
K i+L with the same modulation scheme (e.g. 4QAM, 16QAM, or
< ] Hp x4 )P(bm = a) 64QAM). Each packet consists 6f, = 400 training symbols
k=1 j=i and N4 = 1200 data symbols. The data symbols within each
K i+L packet are divided int@" = 3 blocks, and each block contains
= C-exp { ZZ ( (k) Zh” )} ng = 1200/3 = 400 symbols. The channel coding is across

k=1 j=i everyl = 6 packets. The carrier frequency is 13 kHz, and the
P(by, = a), (6) symbol rate is 9.77k sym/sec. The data bits are encoded by
. a ratel/2 recursive systematic convolutional (RSC) encoder
where P(b,, = a) can be computed from,, and C'is & \jth the generator polynomiab3, 35). A square-root raised
scaling constant to ensure th&tb,, = 0[by.,y) + P(bn cosine filter with a roll-off factor 0.2 is used at both the
1|bmv y) = 1. For channels with |m[))erfect CSI, we replac?ransmltter and the receiver. For each data set, a prearhble o
él in (6) by the estimated channif’,. We will also replace 1000 symbols is inserted before data transmission to faigli
in (6) by 7, to take into account both channel estimatiogata synchronization. Estimation of the channel lengtis
error and the Varlance of channel noise. To be SpeCIfIC EESL%rformed after the Synchroruza‘“on process is Comp|aje F

that ® i 8 the data sets considered here, we fintb be in the range of
hiy =h;y +e. (7)  60-80.
The received signal can be written as B. Experimental results
L We first compare performance of the MCMC detector with
ytF) = th(-kl)a:i,l +o® the LMS-TEQ [2] over a set of 22 data files for the 1000
1=0 ®) meter distance. Each file is from a different epoch and thus
L . () * L &) is transmitted two hours apart. For the 1000 meter distance,
= Zhu Ti—+v; + Zei,z Ti—i. the estimated channel is not very sparse, as shown in Fig.
1=0 1=0 2, and hence the advantage of the VSLMS over the LMS

is not evident. For this setting we use the LMS for channel
Let ﬁ(k) = v( + Z e” z;—; and 3 = Var(n (k)) We then estimation.
First, we note that with 4QAM modulation, due to lower
date rates, both detectors obtain excellent performacbée\a
2 ing error-free decoding results for almost all 22 data sets.
(9) Hence, we present our results only for the higher order
modulations 16QAM and 64QAM. In Fig. 4 (for 16 QAM)
wherez; i =1,--- ,Np are pilot symbols. Finally, we rewrite a}nd Fig 5 (for_64QAM), the x-axis represents a total of 22.
(6) as f|Ies. Thg y-axis represents thg average number of errors in
information bits per packet. Fig. 4 shows that for 16QAM
P(by, = albm,y) (10) (each packet ha$200 x 4/2 = 2400 information bits), the
K i+L 1 L MCMC is much better than the LMS-TEQ after one iteration
Z (— A—Qlyﬁk) - k) zf_| )} of detection/equalization and decoding. After seven ftens,
j=i Tk 1=0 the LMS-TEQ still has more than 35 bit errors per packet
P(by, = a). (11) for files 7-12. In comparison, the MCMC has fewer errors

estimates? from the pilot block such that

L
Z]A”LE Ti—1

=0




60 meter, 16QAM

and only files 10 and 18 have more than 35 bit errors per
packet. The overall number of bit errors using MCMC is only
one third of LMS-TEQ. For the same symbol rate of 9.77k
sym/sec, the bit rate for 64QAM is higher (each packet has
1200 * 6/2 = 3600 information bits), which yields more bit
errors than that of the 16QAM. We observe from Fig. 5 that
the MCMC performs better than the LMS-TEQ for all the files
after the first iteration. After seven iterations, even tjothe
number of errors is still high for most files, it is clear thaét
performance of MCMC is either much better than LMS-TEQ,
e.g., files 1-8, 12-18, 21,22, or comparable to LMS-TEQ, e.g.
files 9,10,11,19,20.

We also compare performance of the MCMC detector
with the LMS-TEQ for the 60 meter distance. The channel
estimation for MCMC is done using either LMS or VSLMS. 05 1 15 2 25 3 35 4 a5 5
Here we use a total of 4 receive hydrophones. As in the case of Symbeltme x10°
1000 meters, the MCMC performs better than the LMS'TEQ Fig. 3. Estimated channel impulse response for the 60 méttande
for most cases after one iteration. After seven iteratidnis,
clear that the MCMC detector with either LMS or VSLMS
outperforms the LMS-TEQ for the majority of data sets, e.( soo

60

a
=]

Delay (channel taps)

1000 meters, 16QAM iteration 1

files 5-9, 15-22. Also, since the UWA channel is more spar:& Y
for the 60 meter distance, as shown in Fig. 3, the VSLM %600’ i
outperforms the LMS for the majority of data sets, e.g., . g 400
5-9, and 17-22. =
S 200
=]
**
VI. CONCLUSION OO 5 10 15 20 25
file index
In this paper, we studied MCMC detection for UWA chan 1000 meters, 16QAM iteration 7
nels. Through actual experimental data we have demondgtra 2 L VS-TEQ
the effectiveness of the MCMC detectors for both 60 metig , [_Imcme
and 1000 meter transmissions. Using LMS or VSLMS chann £
estimation, the MCMC detector achieves superior perfogaan § 200
to the LMS-TEQ for the majority of the data sets that we ha@
examined. The VSLMS algorithm is shown to provide bette = o
channel estimation than the LMS algorithm for sparse UW. 0 5 0 15 20 25
channels. file index
Fig. 4. Performance comparisons between LMS-TEQ and MCM& @2
1000 meter, 16QAM data sets for the 1000 meter distance. Assume 16QAM caatstelland LMS
04 channel estimationk” = 10 receive hydrophones are used.
0.35
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