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Abstract— The goal of stemmatology is to reconstruct a family
tree of different variants of a text resulting from imperfect
copying, which is a crucial part of textual criticism. In reality,
historians often have incomplete data because some variants are
not yet discovered and there are missing portions in available
variants due to physical damage. Stemmatology is similar to
molecular phylogenetics where biologists aim to reconstruct the
evolutionary history of species based on genetic or protein
sequences. Adoption of phylogenetics methods has lead to en-
couraging results in automatic stemmatology. We discuss and
demonstrate the potential application of minimum description
length (MDL) concepts to stemmatology. Our method is applied
to a realistic dataset and outperforms major existing methods.

I. I NTRODUCTION

Before printing technology was widespread, text documents
had to be copied by hand, mostly with errors. Thus, despite
many documents originating from a common original text,
they differ from one another. For those variants that survived
and were discovered, historians are interested in knowing the
relations among them, in particular, the family tree of the
copying history. The research of finding such a family tree
based on surviving variants is called stemmatology, and a
proposed tree is called a stemma. A stemma is ideally a rooted
tree where a child node is copied from its ancestor node in
the tree. An accurate stemma with geographical, and temporal
if available, information of variants, may provide important
historical evidence related to the spread and interaction of
variants with local cultures.

There are a number of mechanisms which lead to differ-
ences in variants. During the Middle Ages, Latin was no longer
an actively spoken or written language. However, many texts
were still copied in Latin; the copyists might understand a
part of the text. This results in a large amount of unintentional
copying error as well as intentional changes. Also for an origi-
nal text being copied for centuries, the errors accumulate from
one copy to another. These have resulted in large differences
among surviving variants. Also, to construct a stemma, a num-
ber of variants must be considered simultaneously. The number
of possible stemmata grows enormously with the number of
variants: for example, there are1.4 × 109 stemmata for 30
variants [1]. Hence, beyond traditional manual approaches,
computer aided stemmatology methods are needed.

One can quickly notice that the problem of stemmatology
is closely related to phylogenetics. The copying process with
error is similar to genetic mutations during the evolution
process. Also in both cases, there are missing variants. In

biology, there may be no genetic data from extinct species. For
both cases, variants whose word orders or genetic sequences
are similar to each other are considered to be close in the
resulting tree. Many automatic stemmatology methods are
inspired by phylogenetic methods, and have been improved
since the work of Robinson and O’Hara [2]. These methods
have produced encouraging results as they have been applied
and evaluated on small datasets where historians have strong
confidence in historical relation among variants. For these
datasets, there is a consensus stemma based on many forms
of evidence.

Despite those successful automatic stemmatology results,
several challenges remain. In particular, early test datasets
are relatively small and ideal in that there are few missing
variants, and most available variants have few missing por-
tions. However as mentioned before, it is known that historical
variants have missing portions due to physical damage. This
poses additional challenges compared to phylogenetics, where
in most cases, full gene or protein sequences are available.On
the other hand, it is reasonable for phylogenetics to construct a
bifurcation tree with all variants as leaves since there rarely is
an occasion where more than two species mutated and evolved
from an ancestor at exactly the same time, and the surviving
species should indeed be the result of the latest mutations.This
is not the case in stemmatology, where several copyists can
copy from an identical source and surviving variants need not
be the latest copies. Other issues such as contamination where
a variant is copied based on two or more sources are also
unique in stemmatology. In the review by Roos and Heikkilä
[3], 13 major algorithms are evaluated on three artificially
generated datasets with known true stemmata. The datasets are
generated by subjects copying texts but not real historicaldata.
Notably one of them, theHeinrichi dataset, is a much more
realistic dataset where nearly half of the variants are missing,
and available variants have large missing portions. For more
detail see Section IV. Even though the best performing method
on theHeinrichi dataset obtains good accuracy slightly lower
than results from simpler datasets, surprising failures ofseveral
promising methods, such asCompLearn, indicate that more
should be done to address the issue of incomplete data [4].

In this paper, MDL concepts [5], [6], [7], [8] with appli-
cations to stemmatology are discussed. MDL is data driven
and need not assume a true distribution or model of the data.
Instead of assuming the resulting stemma is a bifurcation tree
and all variants are the leaves, we infer the stemma as one



which minimizes the number of bits it takes to describe all
variants based on a given encoding method. This idea is a
direct application of code length based MDL clustering [9].
In the code, a variant can either be encoded by itself, or
encoded using another variant as an exemplar, i.e. in the tree as
ancestor. The resulting stemma is directly determined by data.
Due to missing portions, the code length between two variants
has to be estimated and adjusted according to what the missing
locations are. Similarly in Cilibrasi and Vitányi [10], code
length is an ingredient to obtain a better distance measure,
the Normalized Compression Distance (NCD), between data
points, while the resulting clustering does not have a direct
code length interpretation. NCD is used inCompLearn
which surprisingly failed theHeinrichi dataset. We discuss
the possible reasons why the NCD based method fails [4] and
why our methods and the RHM algorithm developed by Roos,
et al. [11], [3], work on theHeinrichi dataset.

This paper is organized as follows. Basic notation and
terminology are introduced in section II. In section III, compu-
tational challenges in stemmatology are discussed, as wellas
our reasons for selecting a particular angle to approach them.
The datasets are introduced in section IV. The concepts of
MDL based clustering and NCD based clustering are discussed
in section V with their applications in stemmatology. We also
discuss the performances of NCD basedCompLearn and
the RHM algorithm. In section VI, we present a preliminary
approach and simulation results. In section VII we propose
several possible future directions to further improve the result.

II. N OTATION AND TERMINOLOGY

We denote a variant asxj = (xj
1
, · · · , xj

n), wherej is the
variant index, andn is the supposed number of words in a
variant. For each locationi, xj

i , i = 1, · · · , n is either a word
or ‘?’ denoting that the word is missing. The set of allN
available variants isS. The set of all distinct words appearing
in variants isX, andm is the total number of words inX.
We assume that the all variants are aligned and do not focus
our attention on alignment methods. A stemma of a set of
variants is a connected graphG = (V,E) such thatS is a
subset ofV . Clearly,V may contain auxiliary nodes, as it is
known that there are missing variants that might be inferred.
Note that a stemma need not be a tree due to contamination
where a variant is copied from multiple sources.

To compare between stemmata, theaverage sign similarity
is introduced by Roos and Heikkilä [3]. For a given undirected
graphG, the simple path length between two nodesA andB
is defined as the smallest number of edges needed to connect
A andB on G. On the true graph, it is denoted asd(A,B),
whereas on the inferred graph it is denoted asd′(A,B). For
any three nodesA,B, and C, the sign agreement index is
defined as

u(B,C|A) = 1 −
1

2
|sgn(d(A,B) − d(A,C))

− sgn(d′(A,B) − d′(A,C))|, (1)

where| · | is the absolute value. The main idea is to check if
B andC have the same ordering related to a referenceA on

a proposed stemma and the true stemma. It is equal to1 if
the ordering is matched,1/2 if one and only one of them is
zero, and0 if the ordering is mismatched. Theaverage sign
distance between two stemmataG andH is defined as

D(G,H) =
∑

xi 6=xj 6=xk

u(xj , xk|xi)/6. (2)

The sum is over all triples of variants. Dividing by6, we
discount triples that are equivalent after permutation. Let T
denote the true stemmata, the score of an inferred structureG
is defined asD(G,T )/D(T, T ).

III. C OMPUTATIONAL CHALLENGES IN HIERARCHICAL

CLUSTERING WITH INCOMPLETE DATA

Inferring structure among data points in the presence of
missing data is tied closely to a set of graphical optimization
problems collectively called the Steiner Tree problem. In the
Steiner tree problem, a graphG = (V,E) and a subsetS of
V are given. The goal is to find a treeG′ that connects all
nodes inS and minimizes the total edge weights inG′. In
stemmatology and phylogenetics,S is then the set of variants
or genetic sequences of interests, andV is then the set of all
possible variants or genetic sequences that are relevant tothe
problem at hand. The edge weight is a distance or similarity
measure we pick. In general, the Steiner tree problem isNP
hard, and it is evenNP to have a close approximation.
Under the case with missing portions in available variants,
in the worst cases, even the optimal imputation and structural
inference among only the available variants is a Steiner Tree
problem.

Rather than adopting to our problem a general algorithm for
the Steiner tree problem, we develop a novel approach based
on the specific properties of the datasets in stemmatology. Our
goal is to learn what concepts should yield algorithms that
perform well. The current best performing algorithm RHM
developed by Roos,et at., is in fact closely related to a Steiner
tree algorithm. We give an MDL interpretation of why RHM
succeeds.

IV. DATASETS

The Heinrichi dataset and theParzival dataset are used
to evaluate algorithm performances in the Computer-Assisted
Stemmatology Challenge [3]. TheHeinrichi dataset consists
of an original text, a 17th century late medieval Finnish
folktale Piispa Henrikin Surmavirsi, written in old Finnish.
17 copyists participated to produce 67 text variants with
contamination. The copyists are mostly Finnish but can only
understand some ancient words, which resembles the situation
in real stemmatology problems. In simulation, large portions of
available variants are deleted on purpose, and only 37 variants
are available. Thus it is similar to real world stemmatology
with the physical damage and variants uncovered. Each variant
has around 1200 words with an average of 300 missing words.
Heinrichi is currently the most realistic data set with a large
amount of incomplete data.



On the other hand, theParzival [3] dataset is smaller
consisting of 21 variants of the German poemParzival by
Matthew Spencer and Heather F. Windram. Only 5 out of the
21 variant are missing to the algorithm and no missing portions
except those generated by copying error. This dataset is mostly
for validation that any algorithm should produce reasonable
performance on it, and it is easy to analyze resulting on this
dataset.

V. MDL, COMPRESSION AND CLUSTERING

Clustering is closely related to the problem of structural
inference. In clustering, data points are similar to one another
should be assigned to the same group, whereas in structural
inference, data points that are similar to one another should
be assigned closely on the tree. The relation is particularly
clear when one considers similarity based clustering, where
the input to the clustering algorithm is anN by N matrix
with each i, j-th element being the discrepancy from thei-
th element to thej-th element. Note that this is different
from model based clustering which is another popular class of
cluster methods using estimated models, usually densitiessuch
as Gaussian Mixture Models (GMM), to partition the data. It is
intuitive to utilize clustering ideas in structural inference, and
a similarity measure between data points has to be chosen
properly. Recently, several similarity measures and similarity
based clustering methods using information theoretic ideas
have been proposed [10], [9]. The fundamental elements across
these works is to measure similarity directly in terms of bits
[9] (MDL based clustering), or through a function whose
inputs have units in bits [10] (normalized compression distance
based clustering). Algorithms closely related to these twotypes
of ideas were developed and applied to stemmatology (see
the review by Roos,et al.)[11]. Here we briefly review the
two information theoretic ideas for distanced based clustering
and their related stemmatology methods. We follow with a
discussion on why RHM works andCompLearn fails due to
incomplete data.

A. MDL based clustering

The idea of the minimum description length principle
(MDL) is to select a model that requires the least number
of bits to generate the data of interest. The total count of
bits includes both the bits used to describe the model and the
bits to describe the data given the model. Hence it naturally
balances model complexity and data fitness. Likewise, we can
think of clustering as an idea of grouping data points so that
given the grouping, it takes the least number of bits to describe
the data [9]. Ideally, one would like to compute the total bits
needed to describe the data given any data partition and then
choose the most efficient one as the clustering result. However
this is computationally expensive as the number of different
partitions is exponential in the number of data points. Instead,
for each data point we can focus on two ways of encoding.
One way is to encode a data pointxi by itself using a chosen
compression method, the resulting code length being denoted
as L(xi). The other way is to encode a data pointxi given

another data pointxj , the resulting code length being denoted
as L(xi|xj). To efficiently describe all the data points given
these two ways of encoding, one has to find the right ordering
of which data points should be encoded and followed by which
other data points. The objection function is then

L(x1, · · · , xn|t)+L(t) =
∑

xi:i6=ti

L(xi|xsi
)+

∑

xi:i=ti

L(xi)+L(t),

(3)
wheret = (t1, · · · , tn) is a vector of indexes whereti denotes
the index of the ancestor ofxi. We can think of a graph
G = (V,E), whereV consists of allN data points and a root
node, andE is the set of directed edges. Each directed edge is
assigned a weight equal to its code length. An edge pointing
from thej-th data point to thei-th data point has code length
L(xi|xj). An edge from the root node to data pointi has code
lengthL(xi). Thus, one seeks the subgraph which starts from
the root and passes through all vertices with the minimum
total edge length. Clearly there should be no cycle that the
subgraph is in fact a tree. It is well known as the minimum
arborescence tree for directed graphs, and as the minimum
spanning tree (MST) for undirected graphs. For clustering,the
number of children of the root node is considered to be the
number of clusters, and data points with the same ancestor are
considered to be in the same cluster [9].

In the RHM algorithm, which is independently developed by
Roos,et al. [11], [3], the code length ofL(xi|xj) is computed
as

L(xi|xj) = L(xi, xj) − L(xi). (4)

This is based on Kolmogorov complexity and coding theory
[12], [13], [8] that L(xi, xj) ≤ L(xi) + L(xj), i.e. joint
compression of two sequences takes less bits than the total bits
for compression individually. Hence given thatxi is available,
one needs onlyL(xi, xj) − L(xi) bits instead ofL(xj) bits.
The compression algorithm used in RHM isgzip, which uses
LZ77 and Huffman coding. Due to the existence of missing
variants, RHM produces a stemma which is a bifurcation tree
with all variants being the leaves, similar to assumptions made
in phylogenetics. The internal nodes are auxiliary variants
created such that they minimize the total bits in the tree.
The process is done iteratively so that for a fixed stemma,
it chooses optimal auxiliary variants, and then computes the
bifurcation tree based on fixed auxiliary variants. Prior toour
work, the RHM algorithm was the best performing algorithm
for the Heinrichi dataset, the most complicated stemmatology
dataset [3].

B. Normalized Compression Distance based clustering

The Normalized Compression Distance (NCD) was first
proposed by Cilibrasi and Vatányi [10] for clustering. The
main idea is to have a theoretically sound distance measure
for clustering methods. It starts with Kolmogorov complexity
and shows that a distance measure can be derived through
proper normalization. However, the Kolmogorov complexity
is in general not computable in the sense that no general
algorithm can determine if a given code of data has the



shortest code length possible. However, it is indeed possible
to use an actual compression algorithm such asgzip and to
use the resulting code length to derive an analogous distance
measure though almost the same arguments and normalization
used for Kolmogorov complexity based distance. This distance
measure depends on the use of a compression algorithm
and normalization, hence the name Normalized Compression
Distance. Computationally, the NCD is defined as

eL(A,B) =
L(A,B) − min{L(A), L(B)}

max{L(A), L(B)}
. (5)

Give a set of data, one can then compute pairwise NCD,
store in a matrixM , and feed into a distance based clustering
algorithm. For stemmatology, one inputsM to an algorithm
which generates a bifurcation tree as the inferred stemma. In
general, edge lengths are put in the resulting bifurcation tree,
such that pairwise distance of available variants are preserved
in the tree.

C. RHM versus NCD based stemmatology

The NCD based method COMPLEARN seems to fail on
the Heinrichi dataset. In theHeinrichi dataset, about half of
the variants are missing, which is taken into account by both
RHM and COMPLEARN through putting all available variants
as leaves and inferring the locations of missing variants in
a bifurcation tree. An other feature of theHeinrichi dataset
is the large size of missing portions in available variants:
on average of1

4
of the words are missing up to3

4
. Due

to missing portions, it may take a lot of bits to encode a
variant xi given another closely related variantxj simply
because a large portion ofxi is the missing portion ofxj .
This issue seems to be taken care of by the normalization
part of NCD and not in the RHM algorithm. However, as
discussed in [4], the normalization is biased in that variants
that have a large common missing portion are considered
closer. To see this, observe that in the numerator, it is a max
operation of two code lengths while in the denominator, there
is a min operation of the same two code length. Thus if two
variantsA and B have similar length and missing portions,
L(A,B),min{L(A), L(B)}, and max{L(A), L(B)} would
be similar, which results in an NCD close to unity. However,
when the length ofA is much larger thanB, L(A,B) would
be similar to max{L(A), L(B)} = L(A) but both much
larger thanmin{L(A), L(B)} = L(B). However, this does
not explain the success of the RHM algorithm, which does
not consider normalization at all.

Even though both RHM andCompLearn generate bi-
furcation trees, the mechanisms are quite different. The
RHM algorithm explicitly generates auxiliary variants whereas
CompLearn preserves distances on the graph without es-
timating additional nodes. This is in fact a possible reason
why RHM works. Consider two variantsA = (10010???0)
and B = (10010111?). They may have a large compression
distance. But if we add a variantC = (100101110) as their
parent, clearly it is easy forC to encode bothA andB as in
compression, missing portions require nearly no bits to encode,

and for the common available portions,B and C are indeed
identical. Thus in RHM, iteratively changing the stemma and
updating auxiliary variants may help join variants that are
in fact similar to one another but have different portions
missing. This is not possible for NCD based methods, where
information about the variants are represented by a distance
matrix.

Also, this points out an important idea that MDL is applica-
ble to guide where and how many auxiliary nodes are needed.
Thus, it frees the structure from being a bifurcation tree which
might not be the best fit for stemmatology problems. Although
the resulting problem is still a Steiner Tree problem, it could
provide guidance of local update. Consider three variants
A,B,C with A as the parent, to determine if there is a need
to add another variantD one can compute whether

L(D|A) + L(B|D) + L(C|D) < L(B|A) + L(C|A). (6)

If so, it implies that adding a new variant is in fact reducing
the code length so that in an MDL sense, it is reasonable to
do so.

VI. SIMULATION RESULTS

From the previous section, we can observe that to succeed
in hierarchical clustering with incomplete data, a key factor is
that the algorithm needs to be able to get around possible bias
due to missing portions in available data. On the other hand,
Steiner tree type algorithms that iteratively generate auxiliary
variants and update inferred structure seem promising. Here
we focus on a simple approach to deal with the missing portion
issue, and leave the integration of inferring missing variants
using Steiner Tree algorithms with MDL interpretation as
future work. Without adding auxiliary nodes, it is harder to
directly use the code length between two variants. However,it
can be estimated by a very simple method, the normalized
Hamming distance. For a simple encoder, it searches the
locations where two variants are different, and encodes the
difference with a uniform prior on the locations and words of
the difference. Thus the code length is closely proportional to
the number of differences given two variants. With missing
portions, one can still have a rough estimate about what the
code length should be if two variants were complete. We
introduce the normalized Hamming distance. For two variants
i andj, the normalized Hamming distance iskij

nij
, wherekij is

the number of differences in the portions that are availablein
both variants, andnij is the total length of the overlapping
portions. Assuming that the statistics of copying error are
roughly the same before and after damage, the number of
differences between variantsi and j if they were complete
is approximatelyn kij

nij
. This assumption makes intuitive sense

that the process of physical damage should be independent of
the copying errors. Note that the minimum spanning tree of a
graphG is invariant to a constant scaling of the edge weights.
Thus, since the code length is proportional to the number of
differences, which is proportional to the normalized Hamming
distance, we can use the normalized Hamming distance of all
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Fig. 1. The true stemma of theParzival dataset. The nodes labeled with
pure numbers are missing variants that are not available to thealgorithm
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Fig. 2. The stemma result from the minimum spanning tree based on the
normalized Hamming distance for theParzival dataset. Note that in the true
stemma, there are five variants are not in the inferred stemma. This results in
several errors in the sign similarity measure. For example variant 8 is directly
connect to variant 5 and variant 6 in the inferred stemma, whilethere are
actually two missing variants between variant 8 and 5. On the other hand,
in the true stemma if we view two variants connected though unavailable
variants as directly connected, the inferred structure is actually close to the
true structure.

pairwise variants as the input to the minimum spanning tree
algorithm to infer a stemma with MDL interpretations.

Using the normalized Hamming distance, we achieve79.0%
accuracy on theHeinrichi dataset, which is better then all 13
algorithms reviewed in [3]. The result is78.5% on Parzival
datasets, which is about the average performance among the
13 algorithms while only slightly lower the performance of the
RHM algorithm79.9%. The resulting tree is shown in Figure
2. The detailed results for theHeinrichi dataset will appear in
subsequent publications.

VII. C ONCLUSIONS

We discuss the use of MDL concepts in hierarchical
clustering with incomplete data, and we use stemmatology

problems as example applications. We give insights that the
successful RHM algorithms have nice MDL interpretations
for dealing with both missing portions of available variants
and missing variants. We introduce the use of normalized
Hamming distance and minimum spanning tree idea to handle
missing portions in variants with direct MDL interpretations,
and obtain very encouraging good results on realistic stem-
matology datasets. The idea of MDL and Steiner Tree have a
great potential in developing new algorithms for hierarchical
clustering with incomplete data. The results from normalized
Hamming distance can be used as a initialization step for more
complicated algorithms.
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