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Abstract—We consider perfect secret key generation for a on Shannon theoretic SK generation with public communica-
“pairwise independent network” model in which every pair tion originated in [6], [7], [1]; Ssee also [2] for related models.
of terminals share a random binary string, with the strings In contrast with [12], the present work bears the essence
shared by distinct terminal pairs being mutually independent. “ . N N .

The terminals are then allowed to communicate interactively of Zero-error. |nf0rmat!on theory, and_accord'ngly’ we rely.
over a public noiseless channel of unlimited capacity. All the On mathematical techniques of a combinatorial nature. Specif-
terminals as well as an eavesdropper observe this communication. ically, our emphasis here is operfect SK generation for
The objective is to generate a perfect secret key shared by a givenfixed signal observation lengths as well as for their asymptotic
set of terminals at the largest rate possible, and concealed from limits. For convenience, we shall continue to refer to our

the eavesdropper. .
First, we show how the notion of perfect omniscience plays a present model as the PIN model. This model possesses the

central role in characterizing perfect secret key capacity. Second, @Ppropriate structure for investigating the concept of perfect
a multigraph representation of the underlying secrecy model SK in which the generated key is exactly recoverable by every

leads us to an e_rfficient e_1|g0rithm for pF_,‘I’fECt secret ke_y generat_ion terminal in the secrecy seeking sktis exactly independent of
Eggggitsnwrﬁgﬁm;ﬁl tﬁ;e'{‘eerrmtirneaﬁspgg'é'&‘%b T:r'lz r‘;'ggr:ig;“ ggg'”isn the eavesdropper’s observations; and is uniformly distributed.
general, attains at least half the capacity. Third, Whenla sin’gle AISO., 't‘?‘ special S_trUCture makes for a new concept of perfept
“helper’ terminal assists the remaining “user” terminals in Omniscience, which plays a central role. Furthermore, in
generating a perfect secret key, we give necessary and sufficientthe spirit of [12], the PIN model reveals points of contact
conditions for the optimality of the algorithm; also, a “weak”  between perfect SK generation and the combinatorial problem
helper is shown to be sufficient for optimality. of maximal Steiner tree packing of a multigraph. We remark
that tree packing has been used in the context of network
coding (see, for instance, [13]).

Given a collection of terminalg\t = {1,...,m}, suppose  Our three main contributions described below are motivated
that every pairi,j of terminals,1 < ¢ < j < m, share by a known general connection between (not necessarily
a random binary string of length;; (bits), with the strings perfect) SK generation at the maximum rate and the minimum
shared by distinct pairs of terminals being mutually indesommunication for (not necessarily perfect) omniscience [3],
pendent. Then all the terminals are allowed to communicg, and by the mentioned connection between the former and
interactively in multiple rounds over a public noiseless channile combinatorial problem of maximal Steiner tree packing of
of unlimited capacity, with all such communication being multigraph [12].
observed by all the terminals. The main goal is to generate First, the concept of perfect omniscience enables us to
for a given subsetd of the terminals inM, a perfect secret obtain a single-letter formula for the perfect SK capacity of the
key (SK) namely shared uniformly distributed random bits PIN model; moreover, this capacity is shown to be achieved
of the largest size — such that these shared bits are exatjylinear noninteractive communication, and coincides with
independent of an eavesdropper's observations of the intele (standard) SK capacity derived in our previous work
erminal communication. All the terminals iV cooperate in [12]. This result establishes a connection between perfect SK
generating such a perfect SK far. capacity and the minimum rate of communication for perfect

This model for perfect SK generation, hereafter referrammniscience, thereby particularizing to the PIN model a known
to as a “pairwise independent network” (PIN) model, is general link between these notiosensthe requirement of the
specialized version of an earlier PIN model [15], [14], [12]. mmniscience or secrecy being perfect [3].
the latter, every pair of terminals observe a pair of correlatedSecond, the PIN model can be represented by a multigraph.
signals (not necessarily identical as here) that are independ&aking advantage of this representation, we put forth an
of pairs of signals observed by all other terminal pairs. lefficient algorithm for perfect SK generation using a maximal
[12], we had studied Shannon theoretic SK generation (nmacking of Steiner trees of the multigraph. This algorithm
in the perfect sense) in the asymptotic limit of large signatvolves public communication that is linear as well as nonin-
observation lengths, and its connection to the combinatortatactive, and produces a perfect SK of length equal to the
problem of Steiner tree packing of a multigraph. Leading wonkaximum size of such Steiner tree packing. When all the
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terminals inM seek to share a perfect SK, the algorithm i%; = LZXZ-", whereL; is ab; x (Z#i neij) matrix@ with

shown to achieve perfect SK capacity. However, when only, 1}-valued entries; = 1,...,m. The integer; > 0, i =

a subset of terminals il C M wish to share a key, the 1,...,m, represents the length (in bits) of the communication

algorithm can fall short of achieving capacity; nonetheless, i; from terminali; the overall communicatiod has length

is shown to achieve at least half of it. Additionally, we obtair}_." | b; (bits).

nonasymptotic and asymptotic bounds on the size and rate ofrhe primary goal is to generate shared perfect secret com-

the best perfect SKs generated by the algoritfilrese bounds mon randomness for a given sétC M of terminals at the

are of independent interest from a purely graph theoretiargest rate possible, with the remaining terminals (if any)

viewpoint as they constitute new estimates for the maximewoperating in secrecy generation. The resulting perfect secret

size and rate of Steiner tree packing of a given multigraph key must be accessible to every terminaldnbut it need not
Third, a special configuration of the PIN model arisebe accessible to the terminals notdAnand nor does it need to

when a lone “helper” terminain aids the “user” terminals be concealed from them. It must, of course, be kept perfectly

in A = M\{m} generate a perfect SK. This model has tweecret from the eavesdropper that has access to the public

special features: Firstly, (a single) terminal possesses all interterminal communicatioilr, but is otherwise passive, i.e.,

the bit strings that are not id; secondly, a Steiner tree fot  unable to tamper with this communication.

is a spanning tree for eithet or M. These features enable The following basic concepts and definitions are adapted

us to obtain necessary and sufficient conditions for Steinfeom [3], [4]. For rvs U,V, we say thatU is perfectly

tree packing to achieve perfect SK capacity, as also a furthecoverablefrom V if Pr{U = f(V)} = 1 for some function

sufficient condition that posits a “weak” role for the helpey (V). With the rvsK andF representing a secret key and the

terminal m. eavesdropper’s knowledge, respectively, information theoretic
Preliminaries and the problem formulation are in Sectigmerfect secrecentails that the security indéx

II. Our results are described in Section Ill. Their proofs are

contained in a recently submitted full-length manuscript [8], s(KGF) = log|K|— H(K) + I(K AF)
but are omitted here. = log|K| - H(K[F) = 0, @)
where K is the range of K and | . | denotes cardinality.

Il PRELIMINARIES This requirement simultaneously renddksto be uniformly

Suppose that the terminals iM = {1,...,m}, m > distributed and independent &t.
2, observe, respectively, independent and identically dis-  Definition 2: Given any setd C M of size [A] > 2, a
tributed (i.i.d.) repetitions of the rvX, ..., X,,,, denoted by rv K is aperfect secret keySK) for the set of terminalsi

Xn,..., X" where X1 = (Xi 1,...,X¢n), i € M. We achievable with communicatiol, if K is perfectly recov-

shall be concerned throughout with a PIN modl,. . ., X, era'bllé from (X;",F) for eachi ?A and, in addition, it
[14], defined by each riX;, i € M, being of the form Satisfies the perfect secrecy condition (1).
X; = (X4, j € M\{i}) with m — 1 components, and the Definition 3: A numberR is anachievable perfect SK rate

“reciprocal pairs” of rvs{(X;;,X;;), 1 < i < j < m} forasetof terminalsi C M if there exist perfect SK¢ (™
being mutually independent. We assume further thigt = for A achievable with appropriate communication, such that
Xji, 1 <4 # 7 < m, where Xj; is uniformly distributed
over the set of all binary strings of length; (bits). Thus,
every pair of terminals is associated with a random binar

. o . Al herekc(m)
string that is independent of all other random binary strm@K rate is
associated with all other pairs of terminals. The assumption

is tantamount to every pair of terminalsj sharing at the . .
yp > 9 largest rate of a rv that is perfectly recoverable at each terminal

outset privileged and pairwise “perfect secrecy” e9f bits. . A f h te inf i lable to it di
Following their observation of the random sequences as abo%, rom the aggregate nformation avariable 1o 1, and 1S
uniformly distributed and concealed from an eavesdropper

the terminals inM are allowed to communicate among them-". . . L
selves over a public noiseless channel of unlimited capaci%l)th access to the public mtertermlnal gommunlcatlon, .'t need
all such public communication, which maybe interactive an t be ctonpealed from the tetr.mlna1l_shm :t.M\‘?’ th'Cht SK
conducted in multiple rounds, is observed by all the terminafQOPErate In Secrecy generation. The notion of periec
pacity is more stringent than that of SK capacity under

A communication from a terminal, in general, can be an . ts of the kev bei toticall bl
function of its observed sequence as well as all previous pub, g requqemen S of Ihe key being asymplotically recoverable
lor eachi € A and the security index tending tg both as

communication. The public communication of all the terminal . . o
will be denoted collectively byF — F(™. n — oo; in particular, now the security index must equal zero

Definition 1: The communicatiorF is termedlinear non-
interactive communicatioLC) if F = (Fy,..., F,,) with?

1
“log|K™| - R as n— oo,
n

is the range of< (™). The largest achievable perfect
the perfect SK capacity(A).
Thus, by definition, the perfect SK capacity far is the

2|t is assumed thal>, ,; ej > 1, i=1,...,m.
3All logarithms are to the base 2.
4The extra requirement of perfectness in recoverability is not a limiting

1All additions and multiplications are modulo 2. factor for the PIN model in contrast with other models of SK generation.



for all sufficiently largen. The latter SK capacity for the PIN a claim of linearity, was shown to suffice for (asymptotic)
model has been characterized in [9], [10], [12]. omniscience in [3].

A central role is played by the notion pe&rfect omniscience . . . :
which is a strict version of the concept afmniscience B. Maximal Steiner Tree Packing and Perfect SK Generation

introduced in [3]. This notion does not involve any secrecy Theorem 1 serves to establish the sufficiency of an LC

requirements in achieving perfect SK capacity through the intermediate
Definition 4: The communicationF is communication attainment of perfect omniscience far. However, decoding
for perfect omnisciencéor A if (X7,...,X") is perfectly is by exhaustive search of prohibitive complexity.

recoverable from(X!, F) for everyi € A. Further,F is  The PIN model can be represented by a multigraph. This
linear noninteractive communication for perfect omnisciendépresentation leads us to an efficient algorithm for perfect
(LCO(”)(A)) if Fis an LC and satisfies the previous perfeceK generation, not necessarily through perfect omniscience,
recoverability condition. The minimum length (in bits) of arPy & maximal packing of Steiner trees of the multigraph.
Lcom (A), i'e"minLCO“"(A) S | b;, will be denoted by In particular, this algorithm entails public communication in
LCOSJ)(A). Theminimum rateof LCO(”)(A) is OMN(A) 2 Lhe form of an L|C. O'n the other khand, such an allgorlthfm
limsup, LLCOM (A4). ased on maxima stelner tree packing need not attaln perfect
" m SK capacity. The size of the largest perfect SK that is thus
I1l. RESULTS generated can be estimated in terms of the minimum length
an LCG™(A).
Definition 5: A multigraph G = (V, E) with vertex set
and edge sefr is a connected undirected graph with no
floops and with multiple edges possible between any pair
vertices. GivenG = (V, E) and a positive integen, let
G™ = (V,E™) denote the multigraph with vertex sét
A. Perfect SK Capacity for the PIN Model and edge seEZ(™ wherein every vertex pair is connected by
n times as many edges as i; in particular, G = G.

Our first main contribution is a (single-letter) characteriz : :
: _ - Furth JE(™)| will denote the total ber of ed
zation of the perfect SK capacity for the PIN model, whm%L(j,rl) ermore; | will denote the total number of edges in

brings forth a connection with the minimum rate of commu-
nication for perfect omniscience.

Before stating our results, we mention that Theorem 1 (wi%f
proof outline) and a preliminary version of Theorem 2 (an
Corollary) appeared in [11]. Yet we present Theorem 1 hegal
to place in context our subsequent new results. Also, Theor%tp
2 is now stated in its new and complete form.

To the PIN modelX;,...,X,, (cf. section Il), we can
associate a multigrapty = (M, E) with M = {1,...,m}
Theorem 1 [11]: The perfect SK capacity for a set ofand the number of edges connecting a vertex fajf) in £

terminals A C M is equal toe;;; in particular, the edge connectir(g, j) will be
associated with the random binary striig;.
C(A) = > ej — OMN(A) (2) By this association, it will be convenient to represent (3)
i,j and (4) as
where m
m OMN¢g(A) = min R;, (5)
OMN(A) = min > R, (3) (BaprBim) € Ra(4) ;
(R1,...,Rm) € R(A) “— .
i=1 with
with Ra(A) =
R(A) = (Ri,...,Rn) € R™: R;>0,i=1,...,m,
(Rla"'va) € R™: Rl ZO; iil,...,ﬂl, ZieB RL Z Zl§i<j§m, i€B, jeB €ijs ’ (6)

ZiEB R; > Zl§i<j§m, i€B, jeB %ij> (4) vB ;—b 4, 0 3& BcM

VB2A 0#BcM whereupon (2) can be restated as

:_:urthermo_re, thls_ perfect SK _cap_acny can be achieved with C(A) = |E| - OMNg(A). @)
inear noninteractive communication.
Remarks{(i) Clearly, the perfect SK capacity, by definition,Furthermore, it is easy and useful to note that for evety 1,
cannot exceed the (standard) SK capacity studied in [9], [12]. .
Indeed, Theorem 1 implies that the latter is attained by a OMNg(4) = nOMNG(A). ®)
perfect SK. Definition 6: For A C V, a Steiner tree(for A) of G =
(i) In the same vein, the minimum rate of communicatiofV, E) is a subgraph of7 that is a tree, i.e., containing no
for (asymptotic) omniscience [3] can be attained for the Plbycle, and whose vertex set contaidssuch a Steiner tree is
model with perfect recoverability at of (X7, ... ,f(;g) forall said tocover A. A Steiner tree packingf G is any collection
n sufficiently large, and with linear noninteractive communicasf edge-disjoint Steiner trees @f. Let u(A, G) denote the
tion. We mention that noninteractive communication, withouhaximumsize of such a packing (cf. [5]). Thenaximum



rate of Steiner tree packing of is lim, . Zu(4, G™).

When A = V, a Steiner tree becomesspanning tregwith Next, we turn to connections between perfect SK capacity
corresponding notions ofpanning tree packingmaximum C(A) and the maximum rate of Steiner tree packingtbt=
size and rate. (M,E).

Given a PIN model, the notion of Steiner tree packing of . .
the associated multigraph leads to an efficient algorithm fO[Theorem 4: For the mqugrath.: (M, E) associated
constructing an LC@‘)(A) and thereby generating a perfecWIth the PIN model and forl S M, it holds that
SK. The next Theorem 2 indicates that the largest size of 1 o1 n
a perfect SK that the algorithm generates is the maximum §C(A) = nlingo ﬁ'u(A’G( )) < CA). (13)
size of the Steiner tree packing. Furthermore, TheoremFrthermore, whemd = M,
and its corollary, and Theorem 5 provide nonasymptotic and 1
asymptotic bounds on the size and rate, respectively, of the lim —u(M,G™) = C(M). (14)
best perfect SKs generated by the algoriti®fi.independent noeen
interest fro.m a purely graph theoretic vigwpoint,_ these resunsﬁemarks:(i) For the PIN model withm terminals, every
also constitute new bounds for the maximum size and rateé%einer tree has at mosh — 1 edges. Also, from (13),

Steiner tree packing of a given multigraph. 1(A,GM™) < nC(A) for all large n. Hence, the overall

Theorem 2:For the multigraphG = (M, E) associated complexity of the perfect SK generation algorithm based on
with a PIN model and forA C M, it holds for everyn > 1  Steiner tree packing is linear (im).
that (i) The upper bound ofim,, .,  u(A, G™) in Theorem

(i) the terminals inM can devise an LCO®)(A) of total 5 is not tight, in general, as seen by an example in [8].

length n|EW| — u(A,G™) and subsequently generate 8- p,q Single Helper Case

perfect SK K™ with log |[K(™)| = u(A, G™); _ _ ) _
As observed in the previous Remark (ii), the maximum rate
(i) (A, G(n)) < n|E<1)\ _ LCO%L)(A); ) of Steiner tree packing can fgil to achigve perfect SK capgcity.
A natural question that remains open is whether the maximum
(iii) furthermore, LCQ?) (A) is bounded below by the valuerate of Steiner tree packing equals perfect SK capacity for
of an integer linear program according to the special case of the PIN model in which a lone “helper”
n terminal m assists the “user” terminals id = {1,...,m —
LCO%)(A) > INTgo (4) 1} generate a perfect SK. In this section, wé{ provide partial
where answers.
m First, we derive necessary and sufficient conditions for
INTzm(A) = min Z I; (10) the maximum rate of Steiner tree packing to equal perfect
(Iesdm) € Lo () 72 SK capacity in (13) and, analogously, the (nonasymptotic)
with maximum size of Steiner tree packing to meet its upper bound
in (12). These conditions entail the notion offi@actional
Igm(A) = multigraph. Throughout this section, we shall assume that

(I,....)In) € ZM: I; >0, i=1,...,m, A={l,....m—-1} C M ={1,...,m}.

Yoien Li ; nAZéSKéSm’ icB, jeB €, - (11) Definition 7: Given a multigraphG = (M, E) as in
VB2 A 0#BCM Definition 5, afractional multigraphG = (A, E) in A (with

vertex setA) has edge selbl = {€;; € R, 0 < ¢é;; < e, 1 <
Corollary 3: For everyn > 1, the maximum size of Steiner’ <J = m—1}. For any suclt7, thecomplementary fractional
tree packing of a multigrapl?(™) satisfies multigraphG\G = (M, E\E) has vertex setM and edge set

E\E £ {e;j—¢€;, 1<i<j<m—1; es, 1 <i<m—1}

wWA,G™) < n |[EW| - INT;0 (A), (12) The definitions ofR(A) in (6) andOM N (A) in (5) have
obvious extensions t6: and G\G as well. Further, (8) also

with equality whend = M. holds for G and G\ G
e

Remarks: (i) Note that the bounds in Theorem 2 ar
nonasymptotic, i.e., valid for eveny. Also, note in the bound  Theorem 5: For the multigraphG = (M, E) associated
in Theorem 2 (ii) foru(A, G™) that LC3™ (A) is defined with the PIN model,

in terms of itsoperational significance. 0] .
(i) Further, Theorem 2 prov)ldes a nonasymptotic lim 7#(A7G(n)) — O(4) (15)
computablelower bound for LCA?(A) in terms of an n—0o0 N

integer linear program. The optimum value of its lineaiff

programming relaxation constitutes a further lower bound .
which equalsOM N (A) = nOMNe(A), by (8). OMNg(A) =min OMNg(A) + OMNg g(M), (16)



where the minimum is over all fractional multigraplis = by unity, all in G. It then follows that the maximum number

(A7E) in A; of perfect SK bits attainable i is always bounded below
(ii) by that inG*?. Furthermore, a Steiner tree packing@f" is
WA, G™) = |E| — INT¢(A) always a similar packing ofs. The condition (ii) guarantees
it that such a reduced multigraph always retains the maximum

number of achievable SK bits, and that such a reduction can
INTG(A) =min INT g (A) +INTg g, (M),  (17) be performed repeatedly until the role of the helper terminal
Gr m becomes redundant at which point spanning tree packing is
where the minimum is over all multigrapids; = (A, &) for Optimal. The proof of (i) follows by applying (i) t&:(") =
which E consists of only integer-valued;s. (M, E™)) and taking appropriate limits.

The proof of Theorem 5 relies on the fact that for the PIN ACKNOWLEDGEMENTS
model with a single helper terminah, a Steiner tree ford The authors thank Chunxuan Ye, Alexander Barg and
is a spanning tree for eithed or M. We decompose the Alex Reznik for very helpful discussions. The work of S.
multigraph G = (M, E) into fractional multigraphsG = Nitinawarat and P. Narayan was supported by the National
(A, E) andG\G = (M, E\E) in such a manner that maximalScience Foundation under Grants CCF0515124, CCF0635271,

spanning tree packings of them, taken together, constituteC&F0830697 and InterDigital.

maximal Steiner tree packing fot of G. Recall from (14) in
Theorem 4 that maximal spanning tree achieves, in effect, the
prefect SK capacity of the corresponding secrecy model. [l

Our final result provides another sufficient condition for the
maximum rate of Steiner tree packing to equal perfect Sk
capacity. Recall from Theorem 1 that, in general, perfect SK
capacity forA can be attained with public communication that[3
corresponds to the minimum communication for perfect omni-
science. If the latter can be accomplished with the sole help&i
terminalm communicating “sparingly,” then it transpires that
maximal Steiner tree packing attains the best perfect SK ratg;
An analogous nonasymptotic version of this claim also holds.
Heuristically, a sufficient “weak” role of the helper terminal
turns the Steiner tree packing df, in effect, into a spanning
tree packing ofA.

Letd; & Z#i e;; denote the degree of vertéx : € M. (7]
Clearly, any(R3,..., RY,) (resp. (I3,...,I})) that attains
the minimum corresponding t&OM Ng(A) (cf. (5)) (resp. [8]
INTg(A) (cf. (10))) must satisfyR < d; (resp.lf < d;), [9]
t=1,...,m.
Theorem 6: For the multigraphG = (M, E) associated
with the PIN model, (10]
(i) if there exist{ Ry, ..., R},) that attainsOM N¢ (A) (cf.
(5)) with R}, < d,,,/2, then
1 [11]
lim Eu(A,G(”)) = C(A) = |E| - OMNg(A).
(ii) if there exists(I7, ..., I,) that attains INT(A) (cf. (12
(10)) with I}, < |d,,/2], then
w(A,G) = |E|—INTg(A). [13]
[14]

The idea of the proof of Theorem 6 is as followsdfhas
more than one vertex il connecting tom, sayu,v € A,
we “split off” the edgegu, m) and (v, m) by communicating [15]
publicly the modulo two sum of two bits, one corresponding to
each edge. This creates a shared secure bit betweaerThe
associated “reduced” multigragghi*’ = (M, E*?) is obtained
by reducinge,,, ande,,, each by unity and increasing,,
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