
 
Figure 1. The Deterministic Channel Model for point to point 

communications [3] 

 
Figure 2. Interference from multiple users in the Deterministic Channel 

Model [3] 

Optimization of Power and Channel Allocation Using 
the Deterministic Channel Model  

 

Yue Zhao, and Gregory J. Pottie 
Department of Electrical Engineering 
University of California, Los Angeles 

Los Angeles, CA, 90095, USA 
Email: yuezhao@ucla.edu, pottie@ee.ucla.edu

 
 

Abstract—In a multiuser interference channel, solving the 
optimal power and channel allocation for a weighted sum-rate 
maximization is a well-known non-convex problem, and has NP 
complexity. In this paper, we apply the recently developed 
deterministic channel model, and obtain a new formulation for 
this classic problem. Although the non-convex nature remains 
unavoidable, we exploit novel insights and techniques to 
significantly reduce the algorithm’s complexity, while still 
guaranteeing its asymptotic optimality. For cellular structured 
networks with a fixed number of cells, our algorithm has a worst-
case polynomial complexity. We provide simulation solutions of 
this non-convex optimization in a seven-cell network. The 
proposed algorithm also computes performance upper bounds in 
all simulation cases as a numerical verification of the solutions’ 
optimality. The upper bounds demonstrate very small gaps from 
the maximum achieved objective values of the simulation 
solutions.  

I.  INTRODUCTION 
We consider the maximization of an arbitrarily weighted 

sum-rate of multiple users in multi-carrier interference 
channels. The main difficulty in this class of problems is that 
an individual user’s rate is a non-convex function of all users’ 
power. Thus, finding the optimal multi-user power and channel 
allocation is an NP-hard problem. In the literature, with the 
employment of a Gaussian interference channel model and the 
assumption that interference generated from Gaussian 
codebooks is treated as noise, various forms of this problem 
have been extensively studied. With a discrete number of 
possible power levels for each user, algorithms that use dual 
decomposition methods have been proposed [5] [6] [15]: For 
the algorithm that guarantees global optimality [6], its 

complexity grows exponentially as nB , where n is the number 
of users, and B is the number of possible transmit power levels 
(usually on the scale of ten in power controlled systems.) With 
convexified utility functions or other convex approximations, 
many lower complexity and distributed algorithms are also 
proposed [7] [8] [11] [13].  

Recently, a new channel model – the Deterministic Channel 
Model – has been developed in solving the information 
theoretic capacity regions of the relay channel and the 
interference channel to within a constant gap [1] [3] [4]. In this 
paper, instead of using the Gaussian interference channel 
model, we employ the deterministic channel model, formulate 
the weighted sum-rate maximization into a new form of 
optimization, and design novel low complexity algorithms to 
solve the non-convex problem of multi-user power and channel 
allocation. Our algorithm provides asymptotically global 
optimal solutions, and simultaneously provides sharp upper 
bounds on the global optimum as a check on the optimality of 
the solutions obtained. Without assuming a discrete number of 
power levels, our algorithm has a complexity that grows as 2n  
for general networks, which is much lower compared to nB  [6]. 
For cellular structured networks with a fixed a number of cells, 
our algorithm has a strictly polynomial complexity. 

Detailed explanation of the deterministic channel model 
can be found in [1] [3]. The key features of this model that 
motivate our approach in this paper are summarized in Table I.  



TABLE I.  FEATURE COMPARISONS                                                                    
THE DETERMINISTIC CHANNEL VS. THE GAUSSIAN CHANNEL  

 Deterministic Channel Gaussian Channel 

1 Signal strength is represented by 
the number of bit levels 

Signal strength is represented by 
its power 

2 
Noise is represented by a floor of 
truncation applied to the received 
bit levels 

Noise is represented by its 
power, as added in the 
denominator of  SINR 

3 
Channel gain is represented by the 
number of bit level shifts from the 
transmitter to the receiver 

Channel gain is represented by 
the linear scaling factor (from 
the transmitter to the receiver) of 
the signal power 

4 

The interference from another user 
is represented by the bit levels of 
the interfering signal that overlap 
with those of the desired signal at 
the receiver 

 The interference from another 
user is represented by the 
received power of the interfering 
signal, as added in the 
denominator of  SINR  

5 

The aggregate effect of 
interference from multiple users is 
represented by the union of the 
received bit levels on which at 
least one interferer interferes with 
the desired user 

The aggreagate effect of 
interference from multiple users 
is represented by the sum of the 
received power of them, as 
added in the denominator of 
SINR 

6 

A user’s rate is the number of the 
received bit levels (of the desired 
signal) that remain free of 
interference or noise, i.e. above the 
interference plus noise floor 

A user’s rate is calculated by 
log(1 + SINR) 

 

Comparisons with the corresponding features in the Gaussian 
channel model are also listed. 

Features 1, 2 and 3 in Table I are illustrated in Fig. 1 [3]. 
The channel gain is a shift of 1 bit level down. The transmit 
signal strength is 5 bits above the noise floor, and the received 
signal strength is 4 bits above the noise floor.  

Features 4 and 5 in Table I are illustrated in Fig. 2 [3]. The 
transmit signal strengths of the two interferers are both 5 bit 
levels above the noise floor. At the receiver of interest, the 1st 
interferer interferes 5 bit levels above the noise floor, while the 
2nd interferer interferes 2 bit levels. The aggregate effect of the 
two interferences is the union of these two sets of bit levels, 
which is equivalent to the effect of the interference from the 1st 
user only.  

Thus, feature 5 implies a distinguishing property of the 
deterministic model compared with the Gaussian model: the 
aggregate effect of the noise plus interference (potentially from 
multiple users) is represented by the maximum, instead of the 
sum, of the noise floor and all interfering signals. In wireless 
communications networks, this property is a good 
approximation of reality for the following reason. If Gaussian 
random codes are used, the number of interfered bit levels is 
the log of the summation of the interference powers. Since it is 
unlikely to have multiple users at nearly the same interference 
power level, the log of the summation is well approximated by 
the log of the maximum function. 

Finally, we note that the deterministic channel model is a 
good approximation to the Gaussian channel model in the high 
SINR regime [1]. We will see in later sections that the high 
SINR conditions are automatically pursued by the proposed 
optimization algorithm. 

With the above features of the deterministic channel model, 
we establish the system model, and formulate the optimal 
power and channel allocation problem into a new form in 
Section II. In Section III, we analyze the problem, and show 
that the complexity of solving the non-convex optimization can 
be greatly reduced with the concept of activity matrix/vector 
search. In Section IV, we design the complete low-complexity 
algorithm based on dual decomposition and subgradient 
method. In Section V, simulation results are provided, and have 
shown that the proposed algorithm achieves the global 
optimum with almost zero gaps. Conclusions are made in 
Section VI. 

 

II. PROBLEM FORMULATION  

A. Mathematical Model of Multiuser Deterministic 
Interference Channels 
We consider power and channel allocation in multi-carrier 

interference channels with n users and m parallel channels. 
With the above deterministic channel model, we define the 
following notations: 

1. j
in  is the height of the noise floor (in other words, the 

number of bit levels buried below the noise floor) at user i's 
receiver in channel j. 

2. j
iB  is the number of transmit bit levels of user i in 

channel j. 

3. j
iD  is the direct channel gain of user i in channel j. ,

j
k iI  

is the interference channel gain from user k to user i in channel 
j. Both gains are in terms of the number of bit levels shifted 
down. 

Notice that all j
in  and j

iB  have relative values, meaning 
that the problem setting remains equivalent after adding a 
common constant to all these values. In other words, all j

in  and 
j

iB  can be referenced to an arbitrary imaginary common noise 
floor. On the other hand, all j

iD  and ,
j

k iI  have absolute values, 
since they characterize the difference in signal strength before 
and after propagation loss. 

With these definitions, j j
i iB D−  is the number of bit levels 

of the desired signal that user i receives in channel j, whereas 
,

j j
k k iB I−  is the number of bit levels of the interfering signal 

that user i receives from user k in channel j. From the 
implication of feature 5 in Table I, ( ),max max( ),j j j

k k i ik i
B I n

≠
−  is 

the number of bit levels buried below the interference plus 
noise at user i’s receiver in channel j. 

B. Formulation of the Weighted Sum-rate Maximization 

Define ( ),( ) max max( ),j j j j j j
i i i k k i ik i

R B D B I n
≠

− − − .        (1) 



From feature 6 in Table I, j
iR  is user i’s rate in channel j, 

provided that 0j
iR ≥ . When 0j

iR <  (i.e. the desired signal is 
strictly buried under the aggregate interference plus noise,) user 
i has zero rate. Thus, we define  

( )max ,0j j
i iR R , 

which is the actual rate of user i in channel j. Hence, the 
weighted sum-rate objective function for an n-user  m-channel 

problem is 
1 1

.
n m

j
i i

i j
w R

= =
∑ ∑                                                            (2) 

Next, we translate the transmit power constraints into 
constraints on transmit bit levels j

iB . We have the Shannon 
channel capacity formula 2log (1 / )j j

i iB P N= + , where N  is 
the imaginary noise power common to all users (as explained 
in part A,) and j

iP  is the transmit power of user i (or 
equivalently, the received power of user i with an identity 
channel gain.) Thus, the transmit power constraints 

max

1
, 1,2,...,

m
j

i i
j

P P i n
=

≤ =∑  can be translated to  

max

1
(2 1) , 1, 2, ...,

j
i

m
B i

j

P
i n

N=

− ≤ =∑ , 

which remain as convex constraints. WLOG, we use the 
normalized power constraints by letting 1N = . 

Finally, we have the following optimization problem: 

0 1 1

max

1

max

. . (2 1) , 1, 2, ...,

j
i

j
i

n m
j

i i
B i j

m
B

i
j

w R

s t P i n

≥ = =

=

− ≤ =

∑ ∑

∑
,           (3) 

where ( )( ),max ( ) max max( ), ,0j j j j j j
i i i k k i ik i

R B D B I n
≠

− − − .  

We define { }*j
iB  and { }*j

iR to be the optimal solution and the 
corresponding rates achieved, 1, 2,..., ,i n=  1, 2,...,j m= . 

 

III. REDUCED COMPLEXITY NON-CONVEX OPTIMIZATION 

A. Convex Relaxation and the Sufficient Condition for its 
Global Optimality 

We first observe that j
iR  (1) is a concave function of all 

j
kB , 1, 2, ...,k n= , because the maximum of linear functions 

is a convex function. However, ( )max ,0j j
i iR R=  is not 

concave anymore due to the inclusion of the zero lower bound. 
Thus, a natural convex relaxation of the original objective (2) is 

1 1

n m
j

i i
i j

w R
= =
∑ ∑ , i.e. replacing all j

iR  with j
iR . To close the gap 

between the relaxed problem and the original one, we first 

define an n by m activity matrix A: 
1 0
0

j
i

ij
if R

A
otherwise

⎧ >⎪= ⎨
⎪⎩

. 

Clearly, j j
i ij iR A R= ⋅ . We say that user i is active in channel j 

(or j
iR  is active) if 1ijA = , and inactive otherwise. A can also 

be viewed as a channel assignment matrix: the non-zero 
elements in the ith row of A correspond to all the channels that 
are assigned to user i. (One channel can be assigned to multiple 
users.) We define *A  to be the optimal channel assignment 
matrix that corresponds to { }*j

iB  and { }*j
iR . 

Now, consider the case that we already know the optimal 
channel assignment *A  in advance. In the following theorem, 
we show that the optimal power allocation { }*j

iB  can be 
exactly obtained by solving the convex relaxation with an 
incorporation of *A  into the objective. 

Theorem 1: Given the optimal channel assignment *A  of (3) in 

advance, the convex relaxation with *

1 1

n m
j

i ij i
i j

w A R
= =
∑ ∑ as the 

objective gives the same optimal value and solution as the 
original problem’s (3). 

Proof: First, *A  can be incorporated into the relaxed concave 

objective 
1 1

n m
j

i i
i j

w R
= =
∑ ∑  by removing the inactive j

iR  terms, and 

the modified relaxed objective *

1 1

n m
j

i ij i
i j

w A R
= =
∑ ∑  remains concave. 

We then obtain the following convex optimization: 

*

0 1 1

max

1

max

. . (2 1) , 1, 2, ...,

j
i

j
i

n m
j

i ij i
B i j

m
B

i
j

w A R

s t P i n

≥ = =

=

− ≤ =

∑ ∑

∑
            (4) 

Since * *

1 1 1 1 1 1

n m n m n m
j j j

i ij i i ij i i i
i j i j i j

w A R w A R w R
= = = = = =

≤ ≤∑ ∑ ∑ ∑ ∑ ∑  , the 

optimal value of the original problem (3) is an upper bound of 
that of the modified convex relaxation (4). On the other hand, 
we show that the optimal value of (3) is also achievable in (4) 
for the following reasons. Consider the optimal solution of (3) 
{ }*j

iB  which is also a feasible solution of (4). Since *A  is the 

optimal channel assignment determined by { }*j
iB , we have  

( )* * * * * *

* * * * *

1, max ,0 0

0, 0, .

j j j j
ij i i i ij i

j j j
ij i i ij i

A R R R A R

A R R A R

⎧∀ = = > ⇒ =⎪
⎨
∀ = = ⇒ =⎪⎩

 

Thus, for all i = 1, 2,…, n,  j = 1, 2,…, m, * * *j j
i ij iR A R= , and the 

optimal value of (3) is achieved in (4) with { }*j
iB . Therefore, 

the two problems (3) and (4) have the same optimal value and 
solution.                                                                                      ■ 



Theorem 1 shows that knowing the optimal channel 
assignment *A  is a sufficient condition under which solving a 
convex optimization obtains the same optimal solution and 
value of the original non-convex one. Thus, finding the optimal 
channel and power allocation can be separated into a two-step 
procedure: i) finding the optimal channel assignment, ii) 
finding the optimal power allocation that conforms to this 
channel assignment. From Theorem 1, step ii) is a convex 
optimization and can be solved with polynomial complexity. 
So all the NP complexity is embodied in step i). We usually do 
not know *A  in advance, and there are in total 2m n⋅  possible 

*A  matrices. Since we can search over all *A  (each followed 
by a convex optimization of polynomial complexity,) 2m n⋅  is 
an upper bound on the NP part of the complexity. In the next 
sub-section, we will show that the NP part of the complexity in 
solving this non-convex optimization can be further reduced to 
2n . 

B. Dual Decomposition Method 
First, we rewrite the original objective function (2) as  

1 1

m n
j

i i
j i

w R
= =

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ ∑ .                                 (5) 

We now consider the Lagrange dual problem of (3) [2]: 

max

0 1 1
min ( ) ( )

m n

j i i
j i

g P mλ
≥

= =

+ +∑ ∑λ
λ ,                 (6) 

where ( )
0 1

( ) sup 2 ,
j

i

j
i

n
Bj

j i i i
B i

g w R λ
≥ =

= − ⋅∑λ                                 (7) 

1, 2, ...,j m= , and 1 2[ ... ]nλ λ λ ′=λ . 

The dual master problem (6) is a convex optimization, 
because ( )jg λ  is the supremum of linear functions of λ , and 
hence convex in λ  [2]. As will be shown later, a subgradient 
of ( )jg λ  can be obtained simultaneously while we evaluate 

( )jg λ , and we apply a subgradient method to solve the dual 
master problem in Section IV. 

In each outer iteration of updating λ  in solving the master 
problem, we need to solve m sub-problems (7) which are non-
convex optimizations because of the non-concavity of j

iR . 

Since 
1

n
j

i i
i

w R
=
∑  in the objective of (7) is just a single-channel 

case (with a small modification) of the original problem’s 
objective (5), Theorem 1 can be applied to the sub-problems, 
too. We define *

jA  to be the n by 1 optimal (0,1) activity 
vector (a single-channel case of *A ) that corresponds to the 
optimal solution of (7) * * * *

1 2
ˆ ˆ ˆ ˆ[ ,..., ]j j j

j nB B B ′=B , and the 
following corollary holds: 

Corollary 1: Given *
jA of (7) in advance, the convex relaxation 

( )*

0 1

max ( ) 2
j

i

j
i

n
Bj

i j i i
B i

w A i R λ
≥ =

⋅ − ⋅∑                  (8) 

gives the same optimal value and solution as the original sub-
problem’s (7). 

Because there are in total 2n  possible  *
jA  vectors, the NP 

part of the complexity in solving the jth sub-problem is upper 
bounded by 2n . The reduction in complexity from 2m n⋅  to 2n  
comes from the fact that the dual problem is decomposed in 
channels: In each outer iteration, the m sub-problems are 
solved independently. Thus, the complexity of solving the dual 
problem is linear in m, and the NP part of the complexity is 
upper bounded by 2n . In each channel, since the best among 
all possible activity vectors is selected, the optimal interference 
avoidance is pursued, and the low SINR conditions are 
automatically avoided. 

As will be shown in Section IV, from solving the dual 
problem (6), we can obtain both primal and dual feasible 
solutions, which provide lower and upper bounds respectively 
on the primal optimal value. Because the primal problem (3) is 
non-convex, the duality gap between (3) and (6) is not 
necessarily zero. However, it has been shown in the literature 
that as the number of sub-channels goes to infinity, the duality 
gap of this problem goes to zero [15] [16], i.e. the dual 
decomposition method is asymptotically optimal. In Section V, 
we will show in simulations that the dual decomposition 
method provides solutions separated from the optimum by 
almost zero gaps.  

C. Further Reduction of Algorithm Complexity in Cellular 
Structured Networks 
In a cellular structured network (e.g. WLAN, cell phone 

system) with c Access Points (AP) or Base Stations (BS), every 
user chooses one AP with which to communicate. In this paper, 
we assume APs are single antenna devices. Denote the number 
of users communicating with the kth AP, i.e. the number of 

users in cell k by 
1

,
c

k k
k

n n n
=

=∑ .  

We first consider uplink intra-cell channel allocation, i.e. 
the multiple access problem for the users that belong to the 
same cell. We have the following Theorem: 

Theorem 2: For a cellular structured network, the optimal 
solution of problem (3) must satisfy the following condition: in 
any channel, in any cell, among all the users in this cell, only 
one (or no) user is active (i.e. transmitting). 

Proof: WLOG, consider cell 1 that has users 1, 2, …, 1n , and 
channel 1. Denote 1, 1, 2, ...,iP i n=  to be the received power 
of user i in channel 1 at AP 1. Let 

1

*

1, 2, ...,
arg max( )i

n
i P= . From 

feature 6 of the deterministic channel model in Table I, *i i∀ ≠ , 
user i’s received power is buried below its interference plus 
noise floor, and user i has zero rate. In other words, in any 
channel, in any cell, there is at most one user that achieves a 
non-zero rate. Therefore, in the optimal power and channel 
allocation scheme, in any channel, there is at most one co-cell 
user active.                                                                                  ■ 



Theorem 2 also trivially holds for the downlink scenario in 
any cell. The above intra-cell orthogonalization theorem is 
based on the basic assumption that interference is treated as 
noise. We note that Theorem 2 is derived for the deterministic 
channel model. In the low SINR case of Gaussian channels, 
intra-cell orthogonalization is not always optimal. 

Now we apply Theorem 2 in the dual decomposition 
method. In a cellular structured system, for each sub-problem 
(7), only those activity vectors that satisfy the intra-cell 
orthogonalization condition are possible candidates of the 
optimal activity vector. Since the kth cell can only have one or 

zero user (among kn  users) active, there are in total 
1

( 1)
c

k
k

n
=

+∏   

candidate activity vectors jA . Clearly, with a fixed number of 
cells c, for any total number of users n,  

1

1

( 1)
( 1) 1 2

cc

ckc
nk

k
k

n
nn

c c
=

=

⎛ ⎞+⎜ ⎟ ⎛ ⎞⎜ ⎟+ ≤ = +⎜ ⎟⎜ ⎟ ⎝ ⎠
⎜ ⎟
⎝ ⎠

∑
∏ . 

This reduces the complexity of solving (3) by the dual 
decomposition method to be strictly polynomial.  

 

IV. ALGORITHM DESIGN: DUAL DECOMPOSITION WITH 
ACTIVITY VECTOR SEARCH, SUBGRADIENT PROJECTION AND 

BACKTRACKING 
In this section, we provide a novel algorithm that solves the 

optimal power and channel allocation of (3). (Simulation 
results are provided in Section V.) With a dual decomposition 
(6), for each single channel sub-problem (7), we solve convex 
relaxations with an activity vector search which guarantees 
global optimality. For cellular structured networks, this 
algorithm has polynomial complexity. 

A. Subgradients in the Master and Sub Problems 
For the master problem (6), a basic property is that the 

following vector is a subgradient of the master objective 
function at λ  [14]: 

* * *
1 2

ˆ ˆ ˆ max

1

[2 2 ... 2 ]
j j j

n

m
B B B

j

m
=

′= − + + ⋅∑h P 1              (9) 

where * * * *
1 2

ˆ ˆ ˆ ˆ[ ,..., ]j j j
j nB B B ′=B  is the optimal solution of the jth 

sub-problem (7) with the current λ , and 
max max max max

1 2[ ... ]nP P P ′=P . The proof can be found in e.g. [15].  

To solve the sub-problem, we apply the convex relaxation 
with activity vector search as discussed in Section III. For each 
activity vector jA , the relaxed objective function is  

( )
1

( ) 2
j

i

n
Bj

i j i i
i

w A i R λ
=

⋅ − ⋅∑ ,                        (10) 

 where ( ),( ) max max( ),j j j j j j
i i i k k i ik i

R B D B I n
≠

= − − − .  

Clearly, all the inactive j
iB  are kept at zero always. To 

compute a subgradient of j
iR  with respect to all the active j

iB , 
we apply the following lemma on the subgradient of the 
pointwise maximum function: 

Lemma 1: For { }1( ) max ( ),..., ( ) , ( )n if x f x f x f x=  convex for 
all 1, 2,...,i n= , define { }( ) | ( ) ( )iI x i f x f x= = . Choose any 

( )k I x∈ , then any subgradient of ( )kf x  is a subgradient of 
( )f x  at point x. 

This is a basic result for subgradient, and its proof can be 
found in e.g. [12]. We apply Lemma 1 on the expression of j

iR : 
For each active j

iR , an n by 1 subgradient ig  of j
iR  can be 

computed by the following procedure:  

Procedure 1: 

1.   Initialize ig , such that 
1,

( ) , 1, 2,...,
0,i

if k i
k k n

if k i
=⎧

= =⎨ ≠⎩
g . 

2.   If ,max( )j j j
i k k ik i

n B I
≠

≥ − , return. 

Otherwise, choose any *k i≠  that satisfies  

* *, ,max( )j j j j
k k i k k ik i

B I B I
≠

− = − , 

and let *i i k= −g g e , where *ke  is the elementary vector: 

*

*
1,

( ) , 1, 2,...,
0,k

if k k
k k n

otherwise
⎧ =

= =⎨
⎩

e . 

With all ig , a subgradient of the full objective (10) is 
readily obtained: 

 ( )
, . . ( ) 1

ln 2 2
j

i

j

B
i i i i

i s t A i
w λ

=

= ⋅ − ⋅ ⋅ ⋅∑g g e            (11) 

This procedure to compute the subgradient (11) has a clear 
intuition behind it. For every active user, the 1st step of 
Procedure 1 encourages this user to transmit 1 more bit, 
because it can increase its own rate by 1 bit (which corresponds 
to j j

i iB D−  in the expression of j
iR .) In the 2nd step, every 

active user pinpoints one of its dominant interferers – user *k . 
If the dominant interference is higher than noise, this dominant 
interferer will be encouraged to transmit one fewer bit. 

B. Subgradient Projection and Backtracking 
The master problem (6) and the relaxed sub problems (8) 

have two common properties: 

1) They are both convex optimizations with computable 
subgradients (as in part A.)  



Algorithm 1 

Dual Decomposition with Activity Vector Search, 
Subgradient Projection and Backtracking 

Initialize 1 2 3[ ... ]nλ λ λ λ ′=λ  

Initialize { }j
iB  ( 1 2, ,..., mB B B ) 

Repeat (Outer iterations) 

For j = 1 to m    (traverse all channels)  

For l = 1 to 
1

( 1)
c

k
k

n
=

+∏  (or 2n , traverse all jA ) 

Apply the next candidate activity vector jA  

Repeat (Inner iterations) 

Compute the sub-problem objective value  

Compute the sub-problem subgradient g  (11) 

Update jB  with g  using subgradient projection (12) 

Until 1 2 3[ ... ]j j j j
j nB B B B ′=B  converges 

End 

End 

Update the lowest dual achievable value, i.e. the upper 
bound on the primal optimal value. 

If { }j
iB  are primal feasible, update the best primal 

feasible solution and the best primal achievable value. 

Compute the master problem subgradient h  (9) 

Update λ  with h using subgradient method with 
backtracking 

Until λ  converges 

2) The constraints in (6) and (8) are both non-negative 
orthants n

+R . 

With 1) and 2), the subgradient projection method becomes 
simple to apply, because the projection of a vector x  on the 
non-negative orthant n

+R  is simply max( , 0)x  (comparison 
made element-wise.)  

In each inner iteration for the jth sub-problem with a 
specified activity vector jA , the solution is updated by  

( 1) ( )max( , 0)r r
j j rt
+ = + ⋅B B g , where 1 2 3[ ... ]j j j j

j nB B B B ′=B , (12) 

r is the iteration index, and rt  is the rth step size. There are 
various ways of choosing the step size rt  [12]. For this 
problem, using a constant step size in (12) will suffice, and it 
converges much faster than diminishing step sizes. 

For the master problem, however, simple subgradient 
projection will cause severe numerical problems for the 
following reasons. In a projection iteration 

( 1) ( )max( , 0)r r
rt

+ = − ⋅λ λ h , suppose ( 1), 0r
kk λ +∃ = , i.e. a non-

trivial projection of kλ  on  +R  is performed. Then in the next 
outer iteration with ( 1)r+λ , the sub-problem becomes 

( )( 1) ( 1)

0
( ) sup 2

j
i

j
i

Br j r j
j i i i k k

B i k
g w R w Rλ+ +

≥ ≠

⎛ ⎞
= − ⋅ +⎜ ⎟

⎝ ⎠
∑λ . 

Clearly, the lack of penalty on j
kB  due to ( 1) 0r

kλ
+ =  will result 

in ( 1)( )r
jg + = ∞λ , since j

kB (and hence j
kR ) is unconstrained 

above to infinity in the sub-problem. Therefore, the situation 
with any 0iλ =  must be avoided, meaning that no simple 
projection to the boundary of n

+R  should be performed in the 
subgradient method. Thus, backtracking of ( 1)r+λ  to the strictly 
positive orthant is necessary. Various backtracking directions 
can be used, e.g. backtracking along the direction from the 
projected point, or along the subgradient direction. In our 
algorithm, we backtrack λ  along the subgradient direction 
when the projected point is on the boundary of n

+R . 

C. Dual Decomposition with Activity Vector Search  
The complete dual decomposition algorithm with activity 

vector search is listed as Algorithm 1. It consists of outer 
iterations and inner iterations that solve the master and sub 
problems respectively. In each outer iteration, m single-channel 
sub-problems are solved. For the jth sub-problem, (j = 1, 2,…,  
m,) all activity vectors jA  that are not ruled out to be optimal 
are traversed. With each jA , a subgradient projection method 
that consumes inner iterations is applied to solving the relaxed 
sub-problem (8). In general networks, there are 2n candidate 

jA , whereas in cellular structured networks, there are 

1

( 1)
c

k
k

n
=

+∏  candidates. After traversing all candidate activity 

vectors in each of the m channels, a dual achievable objective 
value with the current λ  is obtained. If the corresponding 

{ }j
iB  is a primal feasible solution, we update the best primal 

solution and the best primal achievable value. At the end of an 
outer iteration, λ  is updated with the computed subgradient (9) 
using backtracking method. After the algorithm terminates, the 
dual optimal value that serves as an upper bound on the 
optimal value of the original primal problem (3) is obtained. 
Meanwhile, the best achieved primal feasible solution is also 
obtained. The gap between these two is asymptotically zero. 

 

V. SIMULATION AND RESULTS 
In this section, we provide simulation results of the 

proposed algorithm applied to cellular structured networks. 
Several comments are made on the performance observed. 
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Figure 5.  Gaps between the sum-rates achieved and the 
final upper bound, divided by the maximum achieved sum-
rate, plotted in Log Scale. 20 channels vs. 1 channel 
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Figure 3.  The geometric setting of the simulation. 
                7 cells, 15 users. 
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Figure 4. Primal feasible sum-rates achieved and the upper 
bounds obtained from dual feasible solutions, averaged 
over 20 independent realizations. 

A. Simulation Scenario  
1. Wireless Channel Model 

We consider path loss (PL), shadowing and multipath 
fading while computing the wireless channel gains. All 
simulated channel gains are translated into numbers of bit level 
shifts, to be applied in the deterministic channel model. We 

employ a simplified path loss model [10]: 0
r t

d
P PK

d

γ−
⎛ ⎞= ⎜ ⎟
⎝ ⎠

. 

We consider an indoor propagation scenario with 
03, 2d mγ = = , and normalize 1K = . Since the channel gains 

are represented by the number of bit-level shifts (by taking a 
base 2 Log on the actual power gain,) a numerical example of 
the above PL setting is that when d = 20m, 3 1010 2PL − −= ≈  
which corresponds to a 10 bit-level shift. We assume an indoor 
Log-Normal shadowing with a variance of 3dB [9]. It naturally 
corresponds to a (0,1)N  Gaussian random variable added to 
the channel gains in terms of the number of bit-level shifts. 
Finally, since we are interested in optimizations of multi-
channel frequency selective problems, we assume independent 
Rayleigh fading in all parallel channels. 

2. Geometric Setting and Optimization Parameters 

We setup a seven-cell scenario, in which the positions of 
the 7 APs form a hexagon. The distance between adjacent APs 
is set to be 20m. We simulate multiple independent realizations 
of 15 users uniformly scattered within a circle with a radius of 
30m. Each user communicates with the AP to which it has the 
shortest distance. A typical realization of the above setting is 
plotted in Fig. 3. 

We consider 20 parallel channels that are available to all 
users. We assume a common receiver noise floor on bit-level 
zero. In our simulation, we assume that all users have a 
common power constraint of 16 transmit bit-levels per channel 
in 20 channels (or equivalently, 20.3 transmit bit levels with 

only one channel occupied.) In other words, if a user’s distance 
to its AP is 20m with no shadowing and fading, it can transmit 
120 bits if it occupies all 20 channels (or 10.3 bits if it occupies 
one channel,) interference free. Finally, we use an equal weight 
on all users’ rates in the objective in our simulation. 

B. Simulation Results  
With 20 parallel channels, 20 independent realizations of 

15 users scattered in 7 cells are simulated, and results are 
averaged. As the number of outer iterations grows, the best 
sum-rate achieved and the sharpest upper bound obtained are 
plotted in Fig. 4. A closer look into the gaps between the best 
sum-rate achieved and the final upper bound (since we know it 
a-posteriori) is given in Fig. 5, in which the ratio between the 
gap and the optimum is plotted. We make several interesting 
observations. First, within less than 15 iterations, the gap 
between the best sum-rate achieved to the final upper bound 
falls exponentially to a very small level. Second, there is a non-
zero floor for this gap, essentially due to the small but still non-



zero duality gap from the non-convexity of the problem. Third, 
after we plot the simulation results of the single-channel case 
as a comparison to the 20-channel case (Fig. 5), we see a 
similar exponential decay of the performance gap, but a 
relatively higher floor ( / 0.0242Gap Optimum = ) than the 20 
channel case ( / 0.0127Gap Optimum = ). This is consistent 
with the intuition from the asymptotic zero duality gap result in 
the literature (as pointed out in Section III.B.): the non-zero 
duality gap goes to zero as the number of sub-channels goes to 
infinity.  

VI. CONCLUSIONS 
We designed a low complexity power and channel 

allocation algorithm that approaches the optimal throughput 
performance using the recently developed deterministic 
channel model. We formulated the weighted sum-rate 
maximization into a new form. Although it is still a non-
convex problem, we proved that knowing the optimal channel 
assignment (i.e. the activity matrix/vector) is sufficient for 
solving a convex optimization to get to the original global 
optimal power allocation scheme. Applying this activity vector 
search idea with the dual decomposition method, we reduced 
the complexity of solving the non-convex optimal power and 
channel allocation to 2n . We further show that for cellular 
structured networks with a fixed number of cells, this 
complexity can be reduced to be strictly polynomial. We 
designed the complete algorithm applying subgradient methods. 
While our algorithm provides primal feasible solutions which 
converge to the optimum, it also provides upper bounds from 
dual feasible solutions, acting as a check of the performance 
gap from the achieved to the optimum. Simulation results have 
shown that the proposed algorithm achieves the global 
optimum with almost zero gaps. 

The polynomial complexity of our algorithm enables 
solving the global optimal solutions of the non-convex problem 
of power and channel allocation for relatively large networks. 
It thus can serve as a benchmark in performance evaluations, 
especially on how far from optimality distributed and lower 
complexity algorithms perform. However, the complexity of  
( )/ 1 cn c +  is still quite high while the number of cells c is large. 
Future research to further reduce the complexity of solving 
such problems with performance guarantees remains very 
interesting. 
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