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Abstract—We consider the problem of RF signal analysis
where one sensing node observes a frequency band possibly
used by multiple packet based radio transmitters. Analysis
of the received signal consists of two steps. In the first step
we use spectrogram to perform temporal segmentation of the
received piecewise statistically homogeneous signal. This task
is formulated as a clustering problem. In the second step we
compute a certain 2-D slice of the fourth order spectrum for each
of the segments found in the first step. The fourth order spectrum
slices are arranged in a three-way array. Key idea of the second
step is to use uniqueness properties of the low rank decomposition
of the three-way array to recover spectra and associated activity
sequences of individual components in the received signal. We
derive a numerical algorithm for the low rank decomposition,
which computes estimates of the spectra and activity sequences by
optimizing a weighted least squares criterion under application
specific constraints. The approach is illustrated with simulation
examples involving signals used in 802.11a/b/g and Bluetooth
networks. The proposed algorithm can be used as a spectrum
analysis tool, providing crucial information needed for achieving
efficient utilization of radio spectrum and elimination of mutual
interference between the coexisting systems.

I. INTRODUCTION
Most existing wireless systems use static allocation of

radio spectrum. Each system operates in a predefined fixed
frequency band. Since the allocated spectrum is not used at
all locations and at all time instants, this static allocation
leads to creation of spectrum holes, which implies inefficient
utilization of the available radio spectrum. A much better spec-
trum utilization can be achieved with systems using dynamic
spectrum allocation. These systems must have a completely
new feature: spectrum sensing capability [1]. Spectrum sensing
can be defined as RF signal analysis whose goal is to determine
if the observed frequency band is occupied and also identify
or characterize the signals present. Most of the existing work
in spectrum sensing is motivated by its application in the
emerging 802.22 standard, where the goal is to detect presence
of so-called primary user, which in this case is digital TV
signal in the 400-800 MHz frequency band [2]. This task
is usually formulated as a binary hypothesis testing problem.
Three main signal processing tools proposed for solving this
problem and spectrum sensing in general are energy and
related PSD based detectors, matched filter and cyclostationary
detectors (see [1] [3] [4] and references in [4]).
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In this work we consider the spectrum sensing problems
arising when the transmitters of interest form packet based
radio networks. These networks are common in unlicensed
frequency bands such as 2.4 GHz ISM and 5 GHz UNII bands,
which are used by systems such as WLAN(802.11a/b/g),
Bluetooth, Zig-Bee, cordless phones, etc. There are two ap-
plication scenarios for spectrum sensing in this environment.
In the first scenario, there is a communication network which
identifies and exploits unused portions of the spectrum in the
observed frequency band [5]. In the second scenario there
is a dedicated spectrum sensing network. This concept is
adopted in the emerging IEEE 1900.6 standard [4], which
considers three types of systems: legacy systems using static
spectrum allocation, a dedicated spectrum sensing network,
and new systems using dynamic spectrum allocation. The role
of the spectrum sensing network is to provide information
about spectrum usage in the observed frequency band. This
information can be used by the communication systems ca-
pable of dynamic spectrum allocation to access the available
spectrum without causing interference to the legacy systems.
Hence, the information provided by the spectrum sensing
network could be crucial for achieving efficient utilization of
radio spectrum. Spectrum sensing network could also be used
for continuous monitoring of spectrum usage, detection and
localization of transmitters violating established protocols for
spectrum access, etc.
In the environment with packet based radio networks there

are two key differences compared to the problems considered
in the previous work. The first is the presence of multiple,
possibly heterogeneous, transmitters, which in some cases
transmit signals that overlap in time and frequency. The second
difference is due to the fact that transmitters in packet based
networks are regulated by their protocols and can transmit
only in certain time slots. Thus, the transmitted signals are
characterized by non-persistent excitation.
Let us now discuss applicability of existing approaches for

spectrum sensing in this scenario. An obvious brute force
approach would consist in building full receiver for each signal
type. This approach would require complete knowledge of
each transmitted signal format including the set of possible
center frequencies. It is not only expensive and complicated,
but also excessive since the goal here is to detect and identify
the signals present and not to demodulate their transmitted
information. A much simpler approach would be to use



preambles, which are sequences of known symbols embedded
in packets to enable packet detection and synchronization.
If these known sequences exist we can build matched filter
detectors for them and thus, detect and identify signals present.
Obviously we must build a separate detector for each signal
format. This approach would also require the knowledge of
possible center frequencies for each system. Its performance
in an ideal case of a fully known signal in Gaussian noise
is limited by the total signal energy [6], which in this ap-
plication is limited by duration of the preamble. Finally, we
note that presence of signals with non-persistent excitation
prevents straightforward application of energy, PSD based, and
cyclostationary detectors, since they all assume signals with
persistent excitation during the observation interval.
We conclude that existing approaches do not offer a satis-

factory solution in this scenario. Here, we present an entirely
different approach. Each transmitted signal is characterized
using its 2nd and 4th order statistics and an on/off activity
sequence modeling its non-persistent excitation. The sensing
node receives a superposition of these signals. As will be
shown, using the 2nd and 4th order statistics of the re-
ceived signal and certain uniqueness properties of low rank
decomposition of three-way arrays, it is possible to identify
spectra and activity sequences of individual signals forming
the received signal. In other words, in contrast to existing
spectrum sensing methods based on hypothesis testing(usually
binary), we localize each signal in time and frequency by blind
identification of its relevant parameters. The method is blind
in a sense that the knowledge of signal pulse shapes and their
center frequencies is not assumed.

II. SIGNAL ANALYSIS METHOD

We consider a setup where one sensing node observes a
frequency band with M packet based radio sources. Now
we make a number of assumptions. During the observation
interval each source operates with constant power when on.
However, the excitation in not persistent, which is modeled
by an on/off activity sequence. We consider two types of
transmitted signals: (1) linear modulation formats and (2)
nonlinear modulation formats that can be approximated as a
sum of finite number of signals in linear modulation formats.
The transmitted signals can be characterized using their var-
ious statistical indicators. In this work we will use second
order statistic(PSD) and partial information form fourth order
statistic. Hence, each transmitted signal will be characterized
by its second and fourth order spectra and an associated
on/off activity sequence modelling its nonstationary behaviour.
Received signal at the sensing node is a sum of transmitted
signals and sensor noise. We assume that each transmitted
signal is non-Gaussian and the sensor noise is stationary
Gaussian signal with arbitrary PSD. Our approach performs
analysis of the received signal in two steps. In the first step we
perform temporal segmentation of the received nonstationary
signal using its spectrogram. In the second step we use partial
information from the fourth order spectra computed for the

segments found in the first step to find spectra and activity
sequences of individual signals forming the received signal.

A. Temporal segmentation algorithm
Under the stated assumptions the received signal consists

of on/off contributions from various transmitted signals and
stationary sensor noise. Thus, this signal is nonstationary
consisting of a number of statistically homogeneous segments.
Our goal is to determine those segments. We are going to
assume that each segment is uniquely identified by its PSD
and use spectrogram of the received signal for this task. Let T
be the time resolution of the spectrogram. Assuming mutually
uncorrelated source signals, the received PSD as a function of
frequency f over the time interval [(k − 1)T, kT ] is

S(f, k) =
M
∑

m=1

|Hm(f)|2Sm(f)bkm + Sn(f) (1)

where Hm(f) is the channel transfer function between the m-
th source and the sensor, Sm(f) is PSD of them-th source and
bkm ∈ {0, 1} indicates whether the m-th source is off or on
during the time interval [(k−1)T, kT ]. It is also assumed that
the sensor noise is uncorrelated with source signals and has
a PSD Sn(f). The choice of T is the result of the inevitable
trade-off between accuracy in tracking non-stationary changes
of the source signals(a smaller T is better) and the achievable
resolution in PSD estimation(a larger T is better). Let K
measurements be performed over the observation interval of
length KT . Let the total observed bandwidth be W = J∆f
where ∆f is the frequency discretization step. We define the
matrix X with entries

X(j, k) =

∫ j∆f

(j−1)∆f

S(f, k)df =
M
∑

m=1

ajmbkm + nj (2)

where ajm =
∫ j∆f

(j−1)∆f
|Hm(f)|2Sm(f)df for j = 1, . . . , J ,

J = W/∆f and, nj =
∫ j∆f

(j−1)∆f
Sn(f)df . In an obvious

matrix notation we have

X =
[

A n
] [

B 1
]T (3)

where A = [ajm] =
[

a1 . . . aM

]

, n = [nj ], and B =
[bkm]. Let X̂ be an estimate of X , where each column x̂
is computed as periodogram with frequency smoothing [7].
We observe that the columns of X̂ form clusters, where each
cluster(segment) is defined as a union of time intervals with the
same combination of active sources. For example, the cluster
centroids could be n, a1 + n, a1 + a2 + n, etc. Hence,
the segmentation problem is in fact a clustering problem. We
model the columns of X̂ using the mixture pdf model

f(x̂) =
N

∑

i=1

pig(x̂|µi,Σi) (4)

where N is the number of clusters, pi is the probability of the
i-th cluster, and g(x̂|µi,Σi) is a multivariate Gaussian pdf
with mean µi and covariance Σi. Dispersion around cluster
means is caused by inevitable PSD estimation errors due to



the finite sample size effects. True distribution of these errors
is signal dependent and hence, unknown in our application.
However, we estimate each PSD value as an average value
over several neighbouring frequencies and hence, it makes
sense to assume that the estimation errors are approximately
Gaussian. Assuming the model given by (4) the clustering
problem reduces to the estimation of the parameters pi, µi, and
Σi for i = 1, . . . , N . Maximum likelihood estimates of these
parameters can be obtained using EM algorithm as follows
[8]. Let us define the cluster membership matrix W = [wik],
where wik = 1 if the k-th column of X̂ belongs to the i-th
cluster, otherwise wik = 0. Assuming the model parameters
are known wik can be estimated as its expected value, which
can be found using the Bayes’ rule as

ŵik = P (Ci|x̂k) =
pig(x̂k|µi,Σi)

∑N
i=1 pig(x̂k|µi,Σi)

. (5)

where P (Ci|x̂k) is the probability that the k-th column of X̂
belongs to the i-th cluster. Assuming now that W is known
the ML estimates of the model parameters are given as [8]

p̂i =
1

K

K
∑

k=1

wik, µ̂i =

∑K
k=1 wikx̂k

∑K
k=1 wik

, (6)

and

Σ̂i =

∑K
k=1 wik(x̂k − µ̂i)(x̂k − µ̂i)

T

∑K
k=1 wik

. (7)

We start from random initial estimates for the model param-
eters and then use equations (5)-(7) until convergence. The
algorithm converges monotonically to a local maximum of
the likelihood function of the model (4). The global maximum
can be found by repeatedly using the algorithm from different
initial points. This concludes the segmentation procedure.
Now we would like to know what combination of transmitted
signals was present in addition to sensor noise in each of the
identified signal segments. It is difficult to answer this question
reliably using only PSD information. As it will become clear,
we can get a satisfactory answer to this question by using
information contained in fourth order spectrum.

B. Signal analysis using fourth order spectrum
Let us first introduce a few definitions. Let x(t) be

a random process admitting Cramer spectral representation
x(t) =

∫ ∞
−∞ ej2πfdX(f) where dX(f) is called spectral

process [9]. The second order spectrum(PSD) of x(t) is
defined as S2x(f)df = E[|dX(f)|2] and the fourth order
spectrum(trispectrum) is defined as [9]

S4x(f1, f2, f3)df1df2df3 =

cum(dX(f1), dX(f2), dX(−f3)
∗, dX(f1 + f2 + f3)

∗) =

E[dX(f1)dX(f2)dX(−f3)
∗dX(f1 + f2 + f3)

∗]

− E[dX(f1)dX(f2)]E[dX(−f3)
∗dX(f1 + f2 + f3)

∗]

− E[dX(f1)dX(−f3)
∗]E[dX(f2)dX(f1 + f2 + f3)

∗]

− E[dX(f1)dX(f1 + f2 + f3)
∗]E[dX(f2)dX(−f3)

∗] (8)

where we used the definition of the fourth order cumulants
[10]. In our work we are going to use the following 2-D slice
of the trispectrum S̃4x(f, v) = S4x(f, v,−v) which using the
definition (8) can be written as

S̃4x(f, v)dfdv = cum(dX(f), dX(v), dX(v)∗, dX(f)∗).
(9)

The quantity S̃4x(f, v) for f = v is the 4-th order au-
tocumulant(kurtosis) at frequency f . It is zero for Gaussian
signals and non-zero for most non-Gaussian signals. Thus, it
can be interpreted as deviation from Gaussianity at frequency
f . The quantity S̃4x(f, v) for f #= v measures a certain
form of statistical dependency between spectral components
at frequencies f and v. In contrast, the PSD S2x(f) measures
only average power at frequency f and contains no information
about statistical dependencies between spectral components
at different frequencies. Hence, the slice S̃4x(f, v) contains
significant information about the received signal, which is not
present in its PSD.
Let S̃4(f, v, i) be the trispectrum slice defined above for the

i-th segment(cluster) found in the first step of the algorithm.
Assuming statistically independent signals we have

S̃4(f, v, i) =
M
∑

m=1

|Hm(f)|2|Hm(v)|2S̃4m(f, v)cim+S̃4n(f, v)

(10)
where S̃4m(f, v) is the trispectrum slice of them-th source and
cim ∈ {0, 1} indicates whether them-th source is on in the i-th
segment for i = 1, . . . , N . We define C = [cim] and note that
B = W T C, which follows from the definition ofW given in
Section II.A. Since we assumed the receiver noise is Gaussian,
we have S̃4n(f, v) = 0. Hence, using the fourth order spectrum
we can discriminate between communication signals which are
practically always non-Gaussian and Gaussian receiver noise.
Let us define a three-way array Y with entries

Y (j, n, i) =

∫ j∆f

(j−1)∆f

∫ n∆f

(n−1)∆f

S̃4(f, v, i)dfdv =
M
∑

m=1

qjnmcim

(11)
where qjnm =

∫ j∆f

(j−1)∆f

∫ n∆f

(n−1)∆f
|Hm(f)|2|Hm(v)|2

S̃4m(f, v)dfdv for j, n = 1, . . . , J . As defined earlier J =
W/∆f , where W is the total observed bandwidth. Let Y i be
the J by J matrix obtained by fixing the index i in (11). We
have

Y i =
M
∑

m=1

Qmcim (12)

where Qm = [qjnm] is the matrix characterizing the m-th
source. These matrices depend on transmitted signal formats.
We consider two classes of transmitted signals.
Linear modulation formats. We now consider an important

class of linear modulations where the m-th source signal has
the following form

xm(t) =
∞
∑

k=−∞

akmpm(t − kTsm) (13)



where akm is an iid sequence of input symbols, pm(t) is the
pulse shape, and Tsm is the symbol period. Using the definition
it can be shown that the trispectrum of xm(t) is

S4m(f1, f2, f3) =
S4am(f1, f2, f3)

Tsm
Pm(f1)Pm(f2)

Pm(−f3)
∗Pm(f1 + f2 + f3)

∗ (14)

where Pm(f) =
∫ ∞
−∞ pm(t)e−j2πftdt. Since akm

is an iid sequence S4am(f1, f2, f3) = γ4am =
cum(akm, akm, a∗

km, a∗
km). Using (9) we have

S̃4m(f, v) = km|Pm(f)|2|Pm(v)|2 (15)

where km = γ4am/Tsm. It follows that qjnm = kmfjmfnm,
where fnm =

∫ n∆f

(n−1)∆f
|Hm(f)|2|Pm(f)|2df . We see that for

linear modulation formats Qm is of rank one. In this case the
entries of Y are

Y (j, n, i) =
M
∑

m=1

kmfjmfnmcim. (16)

Now we observe that

Y i = FΛiF
T (17)

where F = [fjm] and Λi = diag(
[

k1ci1 . . . kMciM

]

).
We see that the matrix F jointly diagonalizes the matrices
Y i for i = 1, . . . , N . The problem of finding F from the
set of matrices Y i for i = 1, . . . , N is known as joint
diagonalization by congruence. It is well known that, under
some mild conditions, the matrices F and C = [cim] can be
determined up to a scaling and permutation of their columns by
joint diagonalization of the matrices Y i for i = 1, . . . , N [11].
This is the key idea of our method. Several important blind
signal separation methods also reduce to joint diagonalization
problems(see references in [12] and [13]). Let us explain this
key idea from another point of view. We observe that (16)
represents decomposition of Y into M three-way rank-one
terms [14]. This decomposition is unique under certain alge-
braic conditions [15]. When the uniqueness conditions hold
the rank-one terms in (16) are uniquely determined. In other
words, we can uniquely determine terms in the sum in (16),
which represent contributions of different transmitted signals
to the observed three-way array Y . Thus, the decomposition
of Y into rank-one terms becomes a parameter estimation tool.
Nonlinear modulation formats.When the source signals are

in nonlinear modulation formats(e. g., FM signals), we cannot
put the trispectrum slices S̃4m(f, v) in the form given by (15).
In that case rank(Qm) > 1 and the above procedure cannot
be applied. Obviously, nonlinearity is not a property and
therefore, it cannot be treated without introducing additional
assumptions. Let us assume that the m-th source signal can
be represented or approximated as a sum of Rm signals in
linear format given by (13). Then its trispectrum slice can be
represented as

Qm =
Rm
∑

r=1

krmf (m)
r f (m)T

r = F mDmF T
m (18)

where Dm = diag(
[

k1m . . . kRm,m

]

) contains constants
defined in (15) and F m =

[

f
(m)
1 . . . f

(m)
Rm

]

contains
the associated squared magnitude frequency responses of the
linear signals used to represent the m-th source signal. The
entries of Y can be written as

Y (j, n, i) =
M
∑

m=1

qjnmcim =
M
∑

m=1

Rm
∑

r=1

krmfjrmfnrmcim

(19)
where F m(j, r) = fjrm. Equation (19) represents decompo-
sition of Y into M block terms. Now each signal contributes
one block term rather than one rank-one term, which was the
case with linear modulation formats. Using the operator vecr
which transforms real symmetric matrix into a vector [13], the
decomposition into block terms can be represented as

Y V =
[

vecr(Y 1) . . . vecr(Y N )
]

= F V KCT (20)

where

F V = [vecr(f (1)
1 f

(1)T
1 ) . . . vecr(f (1)

R1
f

(1)T
R1

) . . .

vecr(f (M)
1 f

(M)T
1 ) . . . vecr(f (M)

RM
f

(M)T
RM

)], (21)

K =









































k11 0 . . . 0
...

...
. . .

...
kR1,1 0 . . . 0

0 k12 . . . 0
...

...
. . .

...
0 kR2,2 . . . 0
...

...
. . .

...
0 0 . . . k1,M

...
...

. . .
...

0 0 . . . kRM ,M









































, (22)

and C = [cim] is an N by M matrix defined earlier with
entries cim ∈ {0, 1}. We note that decomposition into rank-
one terms is a special case of the decomposition into block
terms obtained for R1 = · · · = RM = 1. The decomposition
into block terms can also be unique under certain algebraic
conditions [16], which are generalization of those from [15].
When these conditions hold block terms in (19), represent-
ing contributions of different transmitted signals to Y , are
uniquely determined and hence, the decomposition of Y into
block terms becomes a parameter estimation tool.
It should be mentioned that uniqueness conditions derived in

[15] and [16] do not take into account our application specific
constraints: symmetry(Y i = Y T

i ), nonnegativity(fjrm ≥ 0),
and finite alphabet(cim ∈ {0, 1}). Hence, uniqueness condi-
tions in our application are probably even less restrictive than
those from [15] and [16]. However, it is very difficult to find
minimal uniqueness conditions in this application and express
them in some easy to check form. As will be demonstrated
with concrete examples in section IV, decomposition of Y into
rank-one or block terms is indeed a useful signal analysis tool



in some important practical situations. Another important point
is that the uniqueness conditions from [15] and [16] do not
hold for two-way arrays(i. e., matrices). This fact explains why
we could not solve the problem using second order spectra and
had to use fourth order spectra.

III. COMPUTATIONAL METHODS
In this section we develop algorithms needed to compute an

estimate of the three-way Y and to decompose it into block
terms, which represent contributions of individual signals
present in the received signal.

A. Estimation of fourth order spectra
First, we need to compute estimates of the trispectrum

matrices Y i for each of the N temporal segments found in the
first step. Let yk be the column vector computed by applying
FFT on the received signal samples over the k-th time interval
defined in (1) for k = 1, . . . , K . We compute an estimate of
Y i by replacing dX(f) in (9) with the corresponding entries
from yk and performing averaging over the i-th temporal
segment

Ŷ i =
1

τi

K
∑

k=1

ŵik(yk • y∗
k)(yk • y∗

k)T

−

(

1

τi

K
∑

k=1

ŵikykyT
k

)

•

(

1

τi

K
∑

k=1

ŵikykyT
k

)∗

−

(

1

τi

K
∑

k=1

ŵikykyH
k

)

•

(

1

τi

K
∑

k=1

ŵikykyH
k

)∗

−

(

1

τi

K
∑

k=1

ŵik(yk • y∗
k)

) (

1

τi

K
∑

k=1

ŵik(yk • y∗
k)T

)

(23)

where • denotes elementwise(Hadamard) matrix product, τi =
∑K

k=1 ŵik , and ŵik are estimates from (5) computed using
(5)-(7). The estimate Ŷ i is computed by temporal averaging.
Additional frequency averaging can be done by applying a 2D
interpolation filter on Ŷ i. The estimates of fourth order spectra
computed over the determined temporal segments have much
smaller variance compared to the corresponding estimates
computed over the time intervals of duration T defined in (1).
This fact explains why temporal segmentation was performed
as the first step.

B. Determining the number of rank-one and block terms
Our final objective is to develop an algorithm for decompo-

sition of Y into block terms given by (19) and (20). In order
to do that we need to know the number of block terms M
and the number of rank-one terms in each of the block terms
R1, . . . , RM . In this subsection we describe how (at least in
theory) the parameters M and R = R1 + · · · + RM can be
determined from Y . First, we apply vecr operator on (12) for
i = 1, . . . , N . We have

[

vecr(Y 1) . . . vecr(Y N )
]

= QV CT (24)

where

QV =
[

vecr(Q1) . . . vecr(QM )
]

. (25)

Assuming that J +
(

J
2

)

≥ M , N ≥ M , and that QV and C
are of full rank we have

rank
([

vecr(Y 1) . . . vecr(Y N )
])

= M (26)

which can be used to determine M . Next, we show how R =
R1 + · · · + RM can be found from Y . Using (12) and (18)
we have

Y i = F ALiF
T
A (27)

where

F A =
[

F 1 . . . F M

]

(28)

and

Li = diag(L(i, :)) (29)

where L(i, :) is the i-th row of the matrix

L =



























k11c11 . . . k11cN1
...

. . .
...

kR1,1c11 . . . kR1,1cN1
...

. . .
...

k1Mc1M . . . k11cNM

...
. . .

...
kRM,Mc1M . . . kRM ,McNM



























T

. (30)

It is very simple to check that
[

Y 1 . . . Y N

]

= F A(L % F A)T (31)

where the symbol % denotes Khatri-Rao product defined as
[14]

L % F A =
[

L(:, 1) ⊗ F A(:, 1) . . . L(:, R) ⊗ F A(:, R)
]

(32)
where the symbol ⊗ denotes Kronecker product. Assuming
that J ≥ R, rank(F A) = R, and rank(L % F A) = R we
have

rank
([

Y 1 . . . Y N

])

= R (33)

which can be used to determine R.
If Y is perfectly knownM and R can be found from SVDs

of the matrices in (26) and (33). In any practical situation
only an estimate Ŷ , containing some amount of error, is
available. In that case M and R can be found as effective
ranks of the matrices given by (26) and (33). These problems
are very difficult themselves and require separate algorithms(e.
g., [17]), which are beyond the scope of this paper. In the
simulation examples presented in Section IV the parameters
M and R are assumed to be known.



C. Decomposition into rank-one terms
In this subsection we develop an algorithm for decomposi-

tion of Y into rank-one terms given by (16). We have seen
that this decomposition is equivalent to joint diagonalization
of the set of matrices Y i for i = 1, . . . , N . There are several
numerical algorithms for joint diagonalization problems [13]
[18] [12], but they do not take into account our application
specific constraints. In [19] and [20] two methods for decom-
position of three-way arrays into rank-one terms under op-
tional nonnegativity constraints are presented. However, these
methods are not concise algorithms that can be implemented
and tried, but very complicated optimization programs where
the author made numerous implementation decisions. Hence,
these methods do not provide a satisfactory solution for our
problem. Here, we develop an algorithm specifically for this
application. In order to compute the decomposition given by
(16), we form the following weighted least squares criterion

Cwls =
J

∑

j=1

J
∑

n=j

N
∑

i=1

ωi

(

Ŷ (j, n, i) −
M
∑

m=1

kmfjmfnmcim

)2

.

(34)
where Ŷ (j, n, i) is the observed(estimated) value given by
Ŷ (j, n, i) = Y (j, n, i) + E(j, n, i) where E(j, n, i) is the
estimation error. We also used the symmetry Ŷ (j, n, i) =
Ŷ (n, j, i). One reasonable choice for weights is ωi = p̂i, since
each matrix Ŷ i is estimated from a cluster with probability pi

as defined in (4). We seek parameters F = [fjm], C = [cim],
and k =

[

k1 . . . kM

]T that minimize Cwls subject to the
constraints fjm ≥ 0 and cim ∈ {0, 1}. First, we will solve the
problem where the second constraint is relaxed to cim ≥ 0. We
will explain in the next section how to impose cim ∈ {0, 1}.
We seek parameter estimates satisfying

[F̂ , Ĉ, k̂] = argmin
F≥0,C≥0,k

Cwls(F , C, k). (35)

Next, we apply certain tools for numerical optimization, dis-
cussed in [21] and [22], on problem (35). Our first step is to
take into account nonnegativity constraints using logarithmic
barrier function, which is a well known method [21, ch. 11].
This method was also used in [19]. We define new criterion

Cbf = Cwls − α





J
∑

j=1

M
∑

m=1

log fjm +
N

∑

i=1

M
∑

m=1

log cim





(36)
where α is a small positive constant, which regulates influence
of the added logarithmic terms. When any of the parameters
with nonnegative constraint, say fjm, approaches zero its
logarithmic term tends to negative infinity. Hence, Cbf tends
to plus infinity, which prevents that parameter from becoming
zero or negative. Now we can consider the unconstrained
problem

[F̂ , Ĉ, k̂] = argmin
F ,C,k

Cbf (F , C, k). (37)

Let us try to solve (37) using Newton’s method. We define the
parameter vector

p =
[

vec(F )T vec(C)T kT
]T

. (38)

Starting from an initial point we update parameter vector p in
each step as follows. Let p0 be the current parameter vector.
We approximate the objective function around the current
point using quadratic approximation

Cbf (p0 + ∆p) ≈ Cbf (p0) + gT ∆p +
1

2
∆pT H∆p (39)

where g is gradient and H is Hessian of Cbf (p). We find the
step ∆p by solving

min
∆p

gT ∆p +
1

2
∆pT H∆p (40)

For positive definite H the optimal step is found from [21]

g + H∆p = 0 (41)

and the updated parameter vector is

p = p0 + ∆p. (42)

However, there is a problem in direct application of Newton’s
method on minimization of Cbf (p). As mentioned previously
the columns of F and C are determined up to arbitrary scaling
factors. This means that there is no unique vector p that
minimizes Cbf (p). In other words, the problem of minimizing
Cbf (p) has a continuum of solutions rather than one solution.
In vicinity of any of these solutions there is no unique solution
for ∆p in (41) and hence, H must be singular. This problem
is solved by imposing unit length constraints on the columns
of F and C. Since the entries are nonnegative we can impose
the following constraints:

∑J
j=1 fjm = 1 and

∑N
i=1 cim = 1

for m = 1, . . . , M . These constraints can be expressed as
Aeqp = 1 where Aeq is a 2M by (J + N + 1)M matrix
of zeros and ones. Now we need to minimize Cbf (p) subject
to linear constraints Aeqp = 1, which can be done using
methods from [21, ch. 10]. It follows from (42) Aeqp =
Aeq(p0 +∆p). Since the equality constraint must be satisfied
in every iteration, we also have Aeqp = Aeqp0 = 1, which
implies Aeq∆p = 0. Now we need to solve (40) subject to
Aeq∆p = 0. The optimal step is found by solving [21, pp.
526]

[

H AT
eq

Aeq 0

] [

∆p
λ

]

=

[

−g
0

]

(43)

where λ is a vector of Lagrange multipliers. This procedure is
equivalent to elimination of equality constraints and perform-
ing the minimization in (40) over ∆p ∈ Null(Aeq). Finally,
we need to compute gradient g and Hessian H of the criterion
function Cbf (p) given by (36). Let us define the vector

ŷ =
[

vecr(Ŷ 1)T . . . vecr(Ŷ N )T
]T (44)

and in the same way y(p) as a result of vectorization of
Y , where we emphasised the functional dependence on the
parameter vector. The functional dependence is given by (16)
and (38). Now we have



Cwls(p) =
Q

∑

q=1

wq (ŷq − yq(p))2 (45)

where Q = N(J +
(

J
2

)

) and ŷq and yq(p) are q-th entries of
ŷ and y(p) respectively, and weights wq are diagonal entries
of the matrix

Γ = diag
([

ω1 . . . ω1 . . . ωN . . . ωN

])

. (46)

Using (36) and (45) we find the gradient of Cbf (p) as

g(p) = −2J(p)T
Γ(ŷ − y(p)) − αglog(p) (47)

where J(p) is the Jacobian matrix [22] of y(p) with entries
jqr(p) = ∂yq(p)

∂pr
and

glog(p) =
[

f−1
11 . . . f−1

JM . . . c−1
11 . . . c−1

NM 0 . . . 0
]T

.
(48)

The Hessian of Cbf (p) is

H(p) = 2J(p)T
ΓJ(p) −

Q
∑

q=1

wq (ŷq − yq(p))Gq(p)

+ αH log(p) (49)

where Gq(p) is Hessian of the function yq(p) and

H log(p) =

diag(
[

f−2
11 . . . f−2

JM . . . c−2
11 . . . c−2

NM 0 . . . 0
]

).
(50)

Newton’s method with equality constraints can be used only
if the Hessian H(p) given by (49) is positive definite on
Null(Aeq). We see that the second term on the right hand
side of (49) is in general indefinite and hence, H(p) is also
indefinite. Now we have two options. The first is to use
modified Newton’s methods, where indefinite Hessian H(p)
is replaced with a positive definite matrix, which is close to
the original Hessian in certain sense [22, sec. 4.4.2]. The
second option is to simply ignore the second term in (49)
and approximate the Hessian as the sum of the first and third
term, which produces a positive definite matrix. This approach
is sometimes called Gauss-Newton method [22, sec. 4.7.2]. We
experimented with these two approaches and found that both
of them lead to reliable algorithms. Finally, we decided to pick
Gauss-Newton method since it requires fewer computations.
The Hessian approximated as

H(p) ≈ 2J(p)T
ΓJ(p) + αH log(p) (51)

is used to compute the step ∆p using (43). With positive
definite Hessian on Null(Aeq) the computed step ∆p repre-
sents a descent direction [22]. However, using (42) to compute
the updated parameter vector may not lead to Cbf (p) ≤
Cbf (p0), since the updated vector is based on the quadratic
approximation (39). Also the logarithmic barrier function is
approximated in the same way and hence, using (42) may
violate nonnegativity constraints. These problems are resolved

by introducing procedure for step length control [22], which
is also known as line search [21]. Here, we use a very simple
line search where we compute the updated parameter vector
as

p = p0 + µk∆p. (52)

where 0 < µ < 1 and k = 0, 1, 2, ..., K. We start with
k = 0 and keep increasing k until all nonnegativity constraints
are satisfied and Cbf (p) < Cbf (p0). These conditions are
satisfied for sufficiently small step length since∆p is a descent
direction for Cbf (p). The line search procedure is the final part
of the algorithm.
Let us summarize the algorithm for decomposition into

rank-one terms(joint diagonalization). The algorithm computes
parameter estimates

[F̂ , Ĉ, k̂] = argmin
F≥0,1T F =1T ,C≥0,1T C=1T ,k

Cwls(F , C, k)

(53)
as follows. Starting from a random initial point we iteratively
update the parameter vector p defined by (38). In each iteration
we compute J(p) as partial derivatives of model equations
(16),H(p) using (51), and g(p) using (47). Then we compute
∆p by solving equations (43) and update the parameter
vector using line search (52). The iterations are repeated until
convergence.

D. Decomposition into block terms
In this section we develop an algorithm for decomposition

into block terms given by (19) and (20). Given the estimate
Ŷ we wish to compute the set of JxJ symmetric matrices
Qm given by (18) for m = 1, . . . , M and the NxM matrix
C = [cim] by minimizing the following weighted least squares
criterion

Cbwls =
J

∑

j=1

J
∑

n=j

N
∑

i=1

ωi

(

Ŷ (j, n, i) −
M
∑

m=1

Rm
∑

r=1

krmfjrmfnrmcim

)2

. (54)

where we set ωi = p̂i. We assume that the parameters M and
R = R1 + · · · + RM are known or estimated from Ŷ using
(26) and (33). We propose the following three-step procedure
for decomposition of Ŷ into block terms.
First, we observe that decomposition into block terms in

(19) is equivalent to a decomposition into R rank-one terms,
where the rank-one terms from the same block term have
the same activity sequence vector cm =

[

c1m . . . cNm

]T

for m = 1, . . . , M . Hence, our first step is to compute
a decomposition of Y into R rank-one terms. We impose
appropriate nonnegativity and normalization constraints and
use the algorithm described in Section III.B to compute

[F̃ , C̃, k̃] = argmin
F≥0,1T F=1T ,C≥0,1T C=1T ,k

Cwls(F , C, k).

(55)
where the matrices F̃ =

[

f̃1 . . . f̃R

]

, C̃ =
[

c̃1 . . . c̃R

]

and k̃ =
[

k̃1 . . . k̃R

]

define rank-one



terms. In the second step we wish to group rank-one terms into
block terms. Since we imposed nonnegativity and unit length
constraints on the columns of C̃, they should formM clusters,
where each cluster defines one block term. We find these clus-
ters by applying agglomerative hierarchical clustering [23] on
the columns of C̃. Initially, each vector belongs to a separate
cluster. These clusters are then successively merged so that
in each step a Euclidean distance based criterion measuring
dispersion around cluster centroids is minimized. We continue
this process until the number of clusters is reduced to M .
The clustering algorithm finds the parametersR1, . . . , RM and
the matrix of cluster centroids C̃

(cl)
=

[

c̃
(cl)
1 . . . c̃

(cl)
M

]

,
which will be used in the third step, where we seek parameter
estimates

[F̂ B, Ĉ, k̂B] = argmin
F B ≥ 0,1T F B = 1

T ,

C = [cim ∈ {0, 1}], kB

Cbwls(F B, C, kB).

(56)
where F B =

[

F 1 . . . F M

]

and kB =
[

k11 . . . kR1,1 . . . k1M . . . kRM ,M

]

contain
the parameters defined in (18). We solve (56) using an
alternating least squares strategy, where we find an update for
one set of parameters assuming that all other parameters are
known. Starting form an initial point computed using results
from the first two steps, we perform the following two steps
in each iteration of the algorithm.
Update for F̂ B and k̂B . Assuming C = Ĉ we seek the

estimates

[F̂ B, k̂B] = argmin
F B≥0,1T F B=1T ,kB

Cbwls(F B, C, kB). (57)

This problem can be solved using Newton’s method with
nonnegativity and unit norm constraints in the same way as
described in Section III.C.
Update for Ĉ. We find this update assuming F B = F̂ B

and kB = k̂B . Using vecr operator the criterion function (54)
can be written as

Cbwls =
N

∑

i=1

ωi‖vecr(Ŷ i) −
M
∑

r=1

vecr(Qr)cir‖
2
2 (58)

where Qr is computed from F B and kB using (18). Let us
define ci =

[

ci1 . . . ciM

]T for i = 1, . . . , N . From (58)
we see that update for each ĉi can be computed separately.
The update is found by solving

min
ci=[cim∈{0,1}]

||vec(Ŷ i) −
[

vec(Q1) . . . vec(QM )
]

ci||
2
2

(59)
which is done by evaluating criterion function in (59) for
each of the 2M possible values of ci and picking the one
that yields the lowest value of the criterion function [24].
The algorithm iteratively computes updates for F̂ B and k̂B ,
and Ĉ until convergence. The matrix Ĉ contains estimates of
activity sequences over the temporal segments computed using
the clustering algorithm as described in Section II.A. We still
need to find an estimate of B defined in (3), which contains

activity sequences over time intervals of duration T defined in
(3). Using the definition of parameters W = [wik] and their
estimates Ŵ = [ŵik] obtained using EM algorithm, we have
B̂ = Ŵ

T
Ĉ.

IV. NUMERICAL EXAMPLES
We illustrate the proposed algorithm with three simulation

examples. In all three examples we consider a setup with one
sensor and two sources, whose locations are shown in Figure 1.
Channels between the sensor and sources are transfer functions
measured in ORBIT room in WINLAB for the setup shown in
Figure 1 [25]. Thus, the real world propagation environment
is faithfully reconstructed in the simulations.
Example 1. Both sources are transmitting DBPSK signals

with Barker sequence spreading used in 802.11b systems [26].
The sources transmit in the same channel with equal power.
The sensor observes one 20 MHz wide channel over the
observation interval of 40 ms. Figure 2 shows power trace
of the received signal at the sensor, where each point is the
average power computed over the interval of T=10µs. We see
a typical 802.11 traffic: one source is sending packets and the
other one is replying with acknowledgments. Received signal
at the sensor is corrupted with additive white Gaussian noise.
We define SNR for each source-sensor pair as the ratio of the
average received source signal power(when the source is on) at
the sensor and the average sensor noise power. The SNR values
in this example are −0.48 and 5.07 dB. Both sources transmit
linearly modulated signals and hence, contribute rank-one
components in the observed three-way array Ŷ . Applying the
proposed method with R = M = 2 recovers the trispectrum
slice and activity sequence for each source, shown in Figures 3
and 4. Figure 3 shows magnitude of diagonal entries(kurtosis
values) of the recovered trispectrum slices versus frequency.
We see that the contributions from the two sources have been
correctly recovered. The recovery of the two spectra in this ex-
ample is possible due to the strong influence of the frequency
selective channels between the sensor and the sources, which
is evident in the recovered spectra in Figure 3. In frequency flat
channels these two sources would contribute only one rank-
one component in Ŷ since they use identical signals and hence,
have proportional trispectrum slices(i. e., Q1 = αQ2 in (12)).
In that case, we would get from (26) and (33) R = M = 1.
Applying our method for R = M = 1 without imposing
cim ∈ {0, 1} would recover the common trispectrum slice and
one temporal sequence describing the activity of both sources.
We note that this decomposition is also a useful result of signal
analysis. Resolving the contributions of the two sources may
be possible by using multiple sensors which will be considered
in our future work.
Example 2. One source is transmitting DBPSK signals with

Barker sequence spreading and the other source is transmit-
ting GFSK signal with frequency hopping used in Bluetooth
systems [27]. Each Bluetooth packet is transmitted over one
of 79 different channels, where each channel is approximately
1 MHz wide. The SNR values are -0.48(802.11b) and 6.76dB
(Bluetooth). The spectrogram of the received signal computed
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with time resolution of T=10µs is shown in Figure 5. The
sensor observes one 20 MHz wide channel over the 3 ms
time interval during which each source transmits two packets.
Both Bluetooth packets collide with 802.11b packets as can be
seen in Figure 5. As already mentioned DBPSK signal with
Barker sequence spreading is an example of linear modulation
and hence, it contributes one rank-one term to the observed
three-way array Ŷ . The two Bluetooth packets are transmitted
using GFSK signals at two different frequencies. These two
signals have different spectra and hence, Bluetooth source
contributes two spectra in Ŷ . We conclude from this analysis
that, in this example, M = 3. GFSK signal is an FM signal
with Gaussian pulse shaping [28]. This signal is nonlinear.
Hence, each GFSK signal contributes possibly multiple rank-
one terms in Ŷ . We applied our method for M = 3 and
increasing number of rank-one terms starting with R = 3
and observed the computed spectra and activity sequences.
The best results were obtained for R = 6. For R < 6 some
meaningful rank-one terms were missed and for R > 6 some
included rank-one terms were due to estimation errors in Ŷ .
The recovered M = 3 block terms have R1 = 3(due to
the first GFSK signal), R2 = 2(due to the second GFSK
signal), and R3 = 1(due to the DBPSK signal) rank-one
terms. The results are shown in Figures 6 and 7, where the
graphs in the two top rows correspond to GFSK signals and
the bottom graphs to DBPSK signals with Barker sequence
spreading. The contributions of different signals have been
correctly resolved despite the collisions between the packets.
In this example the first GFSK signal is modeled using R1 = 3
rank-one terms and the second GFSK signal is modeled using

R2 = 2 rank-one terms, which seems inconsistent. This effect
can be intuitively explained as follows. Each GFSK signal is
nonlinear and requires infinite number of rank-one terms for
perfect representation. However, it can be well approximated
using several most significant rank-one terms. The observed
three-way array Ŷ consists of systematic variation modeled
by six rank-one terms that form three block terms and error
term E. The systematic variation includes three rank-one
terms from the first GFSK signal and two from the second
GFSK signal because of significant difference in the received
powers(about 4.8 dB) of these two signals, which is caused by
frequency selective channel between the source and the sensor.
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Fig. 5. Spectrogram of the received signal computed with T = 10µs
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Example 3. One source is transmitting DBPSK signals
with Barker sequence spreading and the other is transmitting
OFDM signal used in 802.11a/g systems [26]. The sensor
observes one 20 MHz wide channel over the observation
interval of 40µs. The SNR values are -0.48(DBPSK) and 4.84
dB(OFDM). The transmitted packets from the two sources are
interleaved in time and there are no collisions as can be seen
from Figure 8. Obviously, in this example M = 2. We know
that DBPSK signal with Barker sequence spreading contributes
one rank-one term to the observed three-way array Ŷ . OFDM
signal is a superposition of 52 linearly modulated carriers.
Hence, OFDM signal is nonlinear and its trispectrum slice
consists of 52 rank-one terms. Now, we should apply our
method for M = 2 and R = 53. Since this computation
requires a lot of memory and is very slow we applied our
method for M = 2 and R = 25. The two recovered block
terms here have R1 = 1(due to the DBPSK signal) and



R2 = 24(due to the OFDM signal) rank-one terms. The
results are shown in Figures 9 and 10, where the graphs in
the top rows correspond to the DBPSK signal and the bottom
graphs to the OFDM signal. Again, we observe significant
effects of the frequency selective channels on the recovered
spectra. Although, the OFDM signal was modeled using only
R2 = 24 rank-one terms, the algorithm still captured the
most significant signal components. This example illustrates
potential computational difficulties in application of the pro-
posed method. But it also illustrates how fourth order spectrum
reveals the difference between single carrier(DBPSK) and
multicarrier(OFDM) modulations, which cannot be seen from
second order spectrum.
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Fig. 8. Power trace of the received signal computed with T = 10µs

−10 −8 −6 −4 −2 0 2 4 6 8 10
−20

−15

−10

−5

0

5

10

−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−5

0

5

10

frequency [MHz]

m
ag

ni
tu

de
 [d

B]

Fig. 9. Magnitude of diagonal
entries(kurtosis values) of the re-
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V. CONCLUSIONS AND FUTURE WORK

This work shows that fourth order spectrum could be a
very useful tool for analysis of packet based radio signals.
Fourth order spectrum contains important information about
the received signal which is not contained in the second
order spectrum and thus, it enables design of qualitatively
different algorithms. Currently, we are developing an extension
of the method that uses multiple sensors. A more detailed
performance analysis of these algorithms will be presented in
our future publications.

REFERENCES
[1] D. Cabric, “Cognitive radios: System design perspective,” Ph.D. disser-

tation, Univ. of California, Berkeley, Nov 2007.
[2] C. Cordeiro, K. Challapali, D. Birru, and S. S. Nanandagopalan, “IEEE

802.22: An Introduction to the First Wireless Standard based on Cog-
nitive Radios,” Journal of Communications, vol. 1, no. 1, 2006.

[3] C. M. Spooner, “Multi-resolution white-space detection for cognitive
radio,” MILCOM 2007., pp. 1–9, 29-31 Oct. 2007.

[4] D. Noguet. (2009, April) ”Sensing techniques for cognitive radio-
State of the art and trends”(White paper). [Online]. Available:
http://www.scc41.org/

[5] H. Rahul, N. Kushman, D. Katabi, C. Sodini, and F. Edalat, “Learning
to share: narrowband-friendly wideband networks,” SIGCOMM Comput.
Commun. Rev., vol. 38, no. 4, pp. 147–158, 2008.

[6] S. M. Kay, Fundamental of Statistical Signal Processing: Detection
Theory. Upper Saddle River, NJ: Prentice-Hall, 1998.

[7] P. Stoica and R. Moses, Introduction to Spectral Analysis. Upper Saddle
River, NJ: Prentice-Hall, 1997.

[8] Fraley C. and Raftery A.E., “Model-Based Clustering, Discriminant
Analysis, and Density Estimation,” Journal of the American Statistical
Association, vol. 97, pp. 611–631(21), 1 June 2002.

[9] P. O. Amblard, M. Gaeta, and J. L. Lacoume, “Statistics for complex
variables and signals—Part II: signals,” Signal Process., vol. 53, no. 1,
pp. 15–25, 1996.

[10] C. L. Nikias and A. P. Petropulu, Higher-order Spectra Analysis:
A Nonlinear Signal Processing Framework. Englewood Cliffs, NJ:
Prentice-Hall, 1993.

[11] B. Afsari, “Sensitivity analysis for the problem of matrix joint diago-
nalization,” SIAM Journal on Matrix Analysis and Applications, vol. 30,
no. 3, pp. 1148–1171, 2008.

[12] A. Yeredor, “Non-orthogonal joint diagonalization in the least-squares
sense with application in blind source separation,” IEEE Transactions
on Signal Processing, vol. 50, no. 7, pp. 1545–1553, Jul 2002.

[13] A. J. van der Veen, “Algebraic constant modulus algorithm,” in Signal
Processing Advances in Wireless and Mobile Communications, G. B.
Giannakis, Y. Hua, P.Stoica, and L. Tong, Eds. Upper Saddle River,
NJ: Prentice Hall, 2001, ch. 3, pp. 89–130.

[14] N. Sidiropoulos and R. Bro, “Parafac techniques for signal separation,”
in Signal Processing Advances in Wireless and Mobile Communications,
G. B. Giannakis, Y. Hua, P.Stoica, and L. Tong, Eds. Upper Saddle
River, NJ: Prentice Hall, 2001, ch. 4, pp. 131–179.

[15] J. B. Kruskal, “Three-way arrays: Rank and uniqueness of trilinear
decomposition with applications to arithmetic complexity and statistics,”
Linear algebra and its applications, vol. 18, pp. 95–138, 1977.

[16] L. D. Lathauwer, “Decompositions of a Higher-Order Tensor in Block
Terms—Part II: Definitions and Uniqueness,” SIAM Journal on Matrix
Analysis and Applications, vol. 30, no. 3, pp. 1033–1066, 2008.

[17] M. Wax and T. Kailath, “Detection of signals by information theoretic
criteria,” IEEE Transactions on Signal Processing, vol. ASSP-33, no. 2,
pp. 387–392, april 1985.

[18] A.-J. van der Veen, “Joint diagonalization via subspace fitting tech-
niques,” ICASSP 2001, vol. 5, pp. 2773–2776, 2001.

[19] P. Paatero, “A weighted non-negative least squares algorithm for three-
way PARAFAC factor analysis,” Chemometrics and Intelligent Labora-
tory Systems, vol. 38, October 1997.

[20] ——, “The Multilinear Engine: A Table-Driven, Least Squares Program
for Solving Multilinear Problems, including the n-Way Parallel Factor
Analysis Model,” Journal of Computational and Graphical Statistics,
vol. 8, no. 4, pp. 854–888, Dec., 1999.

[21] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, UK:
Cambridge University Press, 2004.

[22] P. E. Gill, W. Murray, and M. H. Wright, Practical optimization.
London: Academic Press, 1981, 1981.

[23] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification (2nd
Edition). Wiley-Interscience, 2000.

[24] S. Talwar, M. Viberg, and A. Paulraj, “Blind separation of synchronous
co-channel digital signals using an antenna array. Part I: Algorithms,”
IEEE Transactions on Signal Processing, vol. 44, no. 5, pp. 1184–1197,
May 1996.

[25] H. Kremo, J. Lei, I. Seskar, L. Greenstein, and P. Spasojevic, “Char-
acterization of the orbit indoor testbed radio environment,” VTC-2007
Fall, pp. 946–950, Sept. 30 2007-Oct. 3 2007.

[26] Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specification, IEEE Std. 802.11, 1999.

[27] J. C. Hartsen, “Bluetooth radio system,” IEEE Personal Communica-
tions, vol. 7, no. 1, pp. 28–36, Feb. 2000.

[28] T. Rappaport, Wireless Communications: Principles and Practice. Up-
per Saddle River, NJ, USA: Prentice Hall PTR, 2001.


