
Iterative Decoding Beyond Belief Propagation
Shiva Kumar Planjery, Shashi Kiran Chilappagari, Bane Vasić

Department of ECE
University of Arizona

Tucson, AZ 85721, USA
Email: {shivap,shashic,vasic}@ece.arizona.edu

David Declercq, Ludovic Danjean
ETIS

ENSEA/UCP/CNRS UMR 8051
95014 Cergy-Pontoise, France

Email: {declercq,ludovic.danjean}@ensea.fr

Abstract—At the heart of modern coding theory lies the fact
that low-density parity-check (LDPC) codes can be efficiently
decoded by belief propagation (BP). The BP is an inference
algorithm which operates on a graphical model of a code, and
lends itself to low-complexity and high-speed implementations,
making it the algorithm of choice in many applications. It has
unprecedentedly good error rate performance, so good that when
decoded by the BP, LDPC codes approach theoretical limits of
channel capacity.

However, this capacity approaching property holds only in the
asymptotic limit of code length, while codes of practical lengths
suffer abrupt performance degradation in the low noise regime
known as the error floor phenomenon.

Our study of error floor has led to an interesting and surprising
finding that it is possible to design iterative decoders which are
much simpler yet better than belief propagation! These decoders
do not propagate beliefs but a rather different kind of messages
that reflect the local structure of the code graph. This has opened
a plethora of exciting theoretical problems and applications. This
paper introduces this new paradigm.

I. INTRODUCTION

Traditional message passing algorithms for decoding low-
density parity-check (LDPC) codes are based on belief prop-
agation (BP) [1], and operate on a graphical model of a code,
known as the Tanner graph [2]. The BP, as an algorithm to
compute marginals of functions on a graphical model, has its
roots in the broad class of Bayesian inference problems [3].
While inference using BP is exact only on loop-free graphs
(trees), it provides surprisingly close approximations to exact
marginals on loopy graphs.

Exact inference in Bayesian belief networks is not only
hard in general, but is hard even under strong restrictions
of graphical model topology [4]. Thus, the research efforts
are directed towards the design of efficient approximation
algorithms [5]. It has been widely recognized that the al-
gorithms that take into account the loopy structure of the
graph can outperform algorithms that neglect the structure.
However, with an exception of special-case or results of
limited scope [6], [7], or empirical evidences [8], there have
been no significant breakthroughs in this direction, especially
in coding theory, and the decoder design has not moved further
from the variations on the theme of generalized BP algorithms.
One reason is that it is believed that such algorithms would
have to closely approximate the exact inference, which would
prohibitively increase the complexity.

A glimpse at the iterative decoders developed so far reveals
a wide range of decoders of varying complexity. The simple
binary message passing algorithms such as the Gallager A/B
algorithms [9] occupy one end of the spectrum, while the BP
lies at the other end of the spectrum. The gamut of decoders
filling the intermediate space can simply be understood as the
implementation of the BP (and variants) at different levels of
precision. The thresholds for the quantization in these cases
are optimized using density evolution [10]. Given the inappli-
cability of the asymptotic methods to finite length codes, it
is hardly surprising that such quantized decoders exhibit poor
performance leaving a large room for improvement.

It is apparent from the above discussion that the current
decoders completely ignore the topology of the bit neighbor-
hood as they still operate under the assumption that the graph
is a tree. It is therefore appropriate to consider decoders in
which the messages also convey information regarding the
local neighborhood of a node in the graph.

In this paper, we shall introduce a novel approach for design
of message-passing decoders that can outperform BP with a
finite number of bits used to represent the messages. The bits
in these messages do not represent beliefs but are chosen to
reflect the local neighborhood of a particular node in the graph.
In some cases, we show that only three bits are sufficient for
the message-passing decoder to outperform BP in the error
floor region and guarantee correction of a higher number of
errors. We begin by providing a motivating example in Section
II. We then describe a 2-bit decoder in Section III. In Section
IV, we discuss the philosophy of our approach, and in Section
V, we explain why these decoders have potential to outperform
BP. We then provide a 3-bit decoder in Section VI along with
numerical results in Section VII. We discuss relations to other
decoders in Section VIII, and finally we provide conclusions
and future work in Section IX.

II. A MOTIVATING EXAMPLE USING TWO BITS

It was previously mentioned that BP is suboptimal for loopy
graphs and decoders that utilize the local structure of the
graph during message-passing can achieve better performance.
A natural question that arises in this context is that what
should the local message-passing rules be so that information
about the neighborhoods can be inferred from the incoming
messages and utilized in the determination of the outgoing
messages? We begin with a simple example that involves



introducing errors on cycles for which the Gallager-A algo-
rithm fails to decode, and demonstrating how a variable node
involved in the cycle can capture its local neighborhood by
the addition of just one extra bit in the messages.

Let us consider the decoding over binary symmetric channel
(BSC) and assume that the all-zero codeoword is transmitted.
This is valid since we consider only symmetric decoders as
explained in [10]. Note that these assumptions shall be used
during analysis of decoders throughout the paper. Consider the
Tanner graph in which each variable node has degree three.
Let V denote the set of all variable nodes and C denote the
set of all check nodes in the Tanner graph. Assume that the
channel introduced three errors and that the subgraph induced
by the three variable nodes in error is a six cycle as shown in
Fig. 1. Let V1 = {v1, v2, v3} denote the set of variable nodes
in the six cycle and let C1 = {c1, c2, c3} and C2 = {c4, c5, c6}
denote the set of degree-two check nodes and degree-one
check nodes in the subgraph respectively. Assume that no two
check nodes in C2 are connected to a common variable node
in V \V1 .

Fig. 1. Six-cycle present in the Tanner graph. The three variable nodes are
initially in error.

A. Gallager-A decoder fails

Recall that the outgoing message at the variable node in
the Gallager A algorithm is calculated as the majority of the
incoming two messages and the received value. The outgoing
message at the check node is simply the XOR of all the
incoming extrinsic messages. Fig. 2(a) illustrates the message-
passing process for the Gallager-A algorithm. Note that for
figures throughout this paper, we shall use •/◦ to represent
a variable node that is initially incorrect/correct, and a �/�
to represent an odd/even degree check node. Following these
rules, one can see that at the end of every iteration, all variable
node neighbors of C2 receive two message that coincide with
their received value and one message that disagrees with the
received value. Since, the neighborhood of C2 consists of both
correct and corrupt variable nodes, the algorithm cannot distin-
guish between the two based solely on the incoming messages.
The variable nodes initially in error remain in error and all the
other variable nodes remain uncorrupted. One realizes that this
situation primarily arises due to the circulation of incorrect

(a)

(b)

Fig. 2. Decoding on a six-cycle. Three variable nodes are initially incorrect,
and all other variable nodes are correct. The variable node degree is three.
Check node degree is arbitrary but only significant connections are shown. a)
The messages as defined by Gallager A algorithm. The decoder is blind for the
presence of a six-cycle, and cannot correct the above error configuration. b)
Two-bit messages indicating the involvement of a variable node in a six-cycle.

messages in the six cycle, but unfortunately the decoder cannot
detect this scenario.

B. 2-bit decoder succeeds

Now consider adding one more bit to represent the messages
in the decoder. Let the first bit (left-most bit) be used for
conveying information on the local neighborhood and let the
second bit (right-most bit) be used to denote the binary value
of the variable node. In the initial iteration, the first bit of the
outgoing message of a variable node is set to 0 and the second
bit is set to the received value. At the check node, the first
bit of the outgoing message is set to 1 if all the incoming
messages have the first bit as 1; else it is set to 0. The second
bit is simply the XOR of all the second bits in the incoming
messages. In the second iteration at the variable node, the first
bit of the outgoing message is set to 1 if the second bit of the
two incoming messages agree with the received value; else, it
is set to 0. The second bit is computed by taking the majority



of the second bits of the incoming messages along with the
received value (as in Gallager-A). It can be seen that at the
end of the second iteration, the variable nodes in V1 receive
two messages with the first bit being 0 and one message with
the first bit being 1 (Fig. 2(b)).

Let N (U) denote the set of the neighbors of all nodes in a
set U . Additionally, let V2 = N (C2)\V1 and C3 = N (V2)\C2

and assume no two checks in C3 and C1 share a common
variable node in V \(V1 ∪ V2). Based on the update rules
defined so far, it can be shown that if the channel introduces
only three errors, a variable node receives the above type of
messages only if it is involved in a six cycle and the remaining
two variable nodes in the six cycle are also in error. Moreover,
the variable node can exactly identify which messages are
coming from the six cycle and which are coming from the
rest of the graph into the six cycle.

The decoder can now exploit this knowledge to intelligently
choose the message passing rules so that the initially wrong
variable node in the six cycle relies on the message coming
from outside subgraph to start sending correct messages (mes-
sages containing the correct binary value in the second bit),
whilst the remaining variable nodes outside the cycle continue
sending correct messages.

III. 2-BIT DECODER FOR COLUMN-WEIGHT-THREE
CODES

We now completely specify the algorithm for the 2-bit
decoder under which the error pattern in the previous example
can be corrected. The message-passing rules for the variable
node and check node can be considered as simple Boolean
functions. These Boolean functions can also described as a
set of conditions used to determing the outgoing messages.
Note that for a degree-3 variable node, only two incoming
messages are used for variable node update whereas all three
messages are used in the decision rule.

2-Bit Decoding Algorithm
Initialization: The first bit of all outgoing messages from a
variable node is set to 0, and the second bit is set to the
received value.
Check node update: The first bit of the outgoing message is
the AND of all the first bits in the incoming messages. The
second bit is the XOR of all the second bits in the incoming
messages.
Variable node update: Let m1 = a1a2, m2 = b1b2, denote
the 2-bit incoming messages and mo = x1x2 denote the 2-bit
outgoing message at a variable node. a1, a2 denote the first
and second bits in m1. and similarly defined for b1,b2 and
x1, x2. Let r denote the received value at the variabe node.
Then do the following.

1) If a1 = b1 = 1, a2 = b2; set x1 = 1 and x2 = a2.
2) If a1 = b1, a2 6= b2; set x1 = 0 and x2 = r.
3) If a1 = b1 = 0, a2 = b2; set x2 to be majority of a2,

b2 and r. If a2 = b2 = r, set x1 = 1, else set x1 = 0.
4) If a1 6= b1, a2 = b2; set x1 = 1, x2 = a2.
5) If a1 6= b1, a2 6= b2; set x1 = 0. set x2 = a2 if a1 = 1

else set x2 = b2.

Decision rule: Let û denote the binary decision value at the
variable node. Also in addition to m1 and m2, let m3 = d1d2

denote the third message entering the variable node. û is the
majority of a2, b2, d2, and r. If there is no clear majority,
then do the following.

1) If a1 = b1 = d1, then set û to be majority of a2, b2, d2

(exclude r).
2) Else, let q be an auxillary Boolean variable and compute

q = a1 ⊕ b1 ⊕ d1.
If q = 1, set û = (a1 · a2)⊕ (b1 · b2)⊕ (d1 · d2).
If q = 0, set û to be majority of a2, b2, d2.

⊕ denotes XOR and · denotes AND.
It can be shown based on the update rules defined that this

decoder is symmetric. Table I shows the Boolean map of the
update rule at the variable node. Note the instance of the rule
specified for incoming messages of ‘10’ and ‘01’ in Table I,
which is critical for the variable node in the cycle to start
sending correct messages.

m1 m2 r mo

00 00 0 10
00 00 1 00
00 10 0 10
00 10 1 10
00 01 0 00
00 01 1 01
00 11 0 01
00 11 1 01
10 10 0 10
10 10 1 10

m1 m2 r mo

10 01 0 00
10 01 1 00
10 11 0 00
10 11 1 01
01 01 0 01
01 01 1 11
01 11 0 11
01 11 1 11
11 11 0 11
11 11 1 11

TABLE I
BOOLEAN MAP USED AT THE VARIABLE NODE FOR THE 2-BIT DECODER

Although the example was specific to a three error pattern
on the six cycle, the arguments can be generalized to cycles
of arbitrary length and disjoint union of cycles. This leads to
the following theorem pertaining to the defined 2-bit decoder
for column-weight-three LDPC codes.

Theorem 1: Let V1 denote the set of variable nodes involved
in a cycle of length 2k contained in the Tanner graph, and
let the subgraph induced by V1 contain k degree-one checks.
Let C1 denote the set of degree-two checks and C2 denote
the set of degree-one checks in the subgraph respectively. Let
V2 = N (C2)\V1. If the channel introduces k errors exactly
on the variable nodes involved in the cycle, and if no two
checks in N (V2)\C2 and C1 share a common variable node
in V \(V1 ∪ V2), then the 2-bit decoder successfully decodes
this error pattern.

Sketch of proof: This follows by carrying out the message-
passing process on the cycle similar to the previous example.
Since all variable nodes outside the cycle are correct, using
the previously defined update rules, it can be shown that the
messages entering C2 from nodes outside the cycle are ‘10’ in
the second iteration. Hence, at the end of the second iteration,
every vi ∈ V1 will receive two messages of ‘01’ from a check
in C1 and one message of ‘10’ from a check in C2. Because
of the update rule, every vi ∈ V1 will send correct messages



to checks in C1, and the decoder converges at the end of three
iterations.

The above theorem validates the fact that the 2-bit decoder
can perform better than Gallager-A which is not surprising.
However, by adding more bits into the messages and cleverly
choosing message-passing rules that incorporate the local
neighbhorhood of a node, one would hope that the perfor-
mance can be dramatically improved especially in the error
floor region, so much so that it even outperforms floating-point
algorithms such as min-sum and BP. In fact, we will later show
that for certain classes of codes such as high-rate quasicyclic
codes that are of great practical value, 3 bits are sufficient for
the decoder to outperform BP provided the update rules are
appropriately chosen.

IV. PHILOSOPHY OF OUR APPROACH

The previous example illustrated the use of one extra bit
in the messages to capture the neighborhood of cycles, but
then the next question that arises is how can additional bits
be appended to the messages so that the variable nodes can
utilize more complex neighborhoods (instead of just cycles)
into the local computations without prohibitively increasing
the complexity. At first sight, conveying the local structure of
the Tanner graph by employing more bits appears complicated.
However, as the previous example demonstrates, the topology
surrounding the variable node can be compressed into a small
number of bits in messages by using knowledge of what
messages are possible for a given topology.

Also another desirable aspect that was illustrated in the
previous example was that the variable nodes in the six cycle
did not know a priori that they were part of the cycle and
this was only inferred from their incoming messages during
decoding. This is important since we would like decoders that
are not specifically designed for any particular code, but rather
perform well on any general code.

A. Adding bits to design increasingly successful decoders

The central idea behind deriving good message-passing
rules that account for the local neighborhood can be described
as follows. We first identify a set of potentially troublesome
topological structures that are known for traditional message-
passing decoders such as Gallager-A/B or BP. These trouble-
some structures generically termed as trapping sets [11], are
the primary reason for the error floor phenomenon in LDPC
codes and can be present in any finite-length code. A standard
notation for a trapping set is (a, b) where a is the set of
variable nodes that eventually failed to decode [11] and b
is the number of odd-degree check nodes in the sub-graph
induced by a. Parameters (a, b) do not completely describe a
trapping set but we will use this notation because of traditional
reasons. Given a list of trapping sets, the main goal would be
to derive rules that can correct a majority of these trapping
sets with minimal number of bits used in the messages, by
analyzing the decoding on their induced subgraphs. Through
the analysis of decoding on these subgraphs, more and more
extra bits can be can be progressively added to the messages

such that the nodes in the subgraph capture a more complicated
local neighborhood in these trapping sets and the rules can be
derived to eventually correct all of them. For instance, the 2-
bit decoder is guaranteed to correct all (a, a) trapping sets of
Gallager-A because of Theorem 1.

In order to provide a clearer understanding of our approach,
we shall illustrate with an example how a third bit can be
added to the messages of a 2-bit decoder so that a local
neighborhood that is larger and more complex than a cycle
can be captured by a variable node. The example we shall use
will be in the same spirit of the previous example but now we
consider a more complicated topological structure for which
the 2-bit decoder fails to decode. We will later elaborate on
the concept of decoding beyond BP which is the ultimate aim.

B. Using three bits to decode a trapping set

Consider the subgraph induced by a (5, 3) trapping set of
the 2-bit decoder as shown in Fig. 3, and let this subgraph
be contained in the Tanner graph of a column-weight-three
code. Assume that the channel introduces five errors exactly
on the variable nodes in this subgraph and the remaining
variable nodes that are outside the subgraph receive correct
values (which is 0). Let V denote the set of all variable
nodes and C denote the set of all check nodes in the Tanner
graph. Let V1 = {v1, v2, v3, v4, v5} denote the set of variable
nodes in the subgraph and let C1 = {c1, c2, c3, c4, c5, c6} and
C2 = {c7, c8, c9} denote the sets of degree-two check nodes
and degree-one check nodes in the subgraph respectively.
While performing decoding on this subgraph, we shall assume
that the neighborhood of this subgraph in the Tanner graph is
such that the messages being propagated within the subgraph
do not in any way influence the messages that are entering
the subgraph from outside the subgraph. A more rigrous
explanation to such a condition will be explained in Section
V-A. Under these assumptions, we will in fact show that this
structure is indeed a trapping set for the 2-bit decoder.

v1 v2 v3

v4 v5

c1 c2 c3 c4 c5 c6

c7 c8 c9

Fig. 3. Subgraph induced by (5, 3) trapping set that is present in the Tanner
graph. The five variable nodes are initially in error.

1) 2-bit decoder fails: Consider the decoding on the sub-
graph with the 2-bit decoding algorithm defined in the previous
section. Fig. 4 illustrates the message-passing process on
the subgraph for the first two iterations. In the beginning
of iteration 1, all variable nodes in V1 will send ‘01’ to
their neighboring checks as they are initially wrong, and all
remaining variable nodes in V \V1 will send ‘00’ as they are
initially correct. At the end of iteration 1, nodes v1, v2, v3



(a)

(b)

Fig. 4. Decoding on subgraph induced by a (5, 3) trapping set using 2-
bit decoder which fails to converge. a) The messages passed at the end of
iteration 1. b) Messages passed at the end of iteration 2

will all receive two messages of ‘01’ and one message of ‘00’,
whereas nodes v4 and v5 will receive three messages of ‘01’,
and nodes in V2 will receive two messages of ‘00’ and one
message of ‘01’, as shown in Fig. 4(a). In the beginning of
second iteration, nodes v1, v2, v3 will send messages of ‘01’
to checks in C1, and nodes v4 and v5 will all send ‘11’ to
their neighboring checks. At the end of iteration 2, nodes v1,
v2, v3 receive two messages of ‘11’ and one message of ‘10’,
whereas nodes v4 and v5 will again receive three messages
of ‘01’, as shown in Fig. 4(b) . Since the update rule at the
variable for the instance of ‘10’, ‘11’, and r = 1, is ‘01’,
the same type of messages are passed again as in iteration
2 and the decoder fails to converge. Notice that the 2-bit
decoder failed to converge since the two bits in the messages
were not enough to capture the local neighborhood of this
particular topology, i.e, it was equipped to only capture local
neighborhoods of cycles.
Remark: The Gallager-A algorithm also fails on the (5, 3)
trapping set with just three variable nodes v1, v2, and v3
initially in error. Whereas the 2-bit decoder fails only if all
nodes in V1 are initially in error. So the 2-bit decoder is still
better than Gallager-A .

2) 3-bit decoder succeeds: Now consider adding an extra
bit in the messages and define the message-passing rules
as follows. In iteration 1, for every outgoing message of a
variable node, let the first bit be set to 0, second bit be set
to 1 and the third bit be set to the received value. Then we
see that all nodes in V1 send ‘011’ and all nodes in V \V1

send ‘010’ to their neighboring checks. At the check node, set
the first bit of the outgoing message to 1 only if all incoming
messages are 1; else set to 0. Set the second bit of the outgoing

(a)

(b)

(c)

Fig. 5. Decoding on subgraph induced by a (5, 3) trapping set using 3-bit
decoder. a) Messages passed at the end of iteration 1. b) Messages passed at
the end of iteration 2 . c) Messages passed at the end of iteration 3.

message to be the second bit of the incoming message with
‘0’ as its first bit. Set the third bit to be the XOR of third
bits of all the incoming messages. Then at the end of iteration
1, nodes v1, v2, v3 will receive two messages of ‘011’ and
one message of ‘010’, and nodes v4 and v5 will receive three
messages of ‘011’, as shown in Fig. 5(a).

If we continue to define rules for more iterations and the
message-passing process is continued up to iteration 3, since
there are many different 3-bit messages that can possibly be
passed (eight as opposed to only four for the 2-bit decoder)
based on the rules defined, the nodes v1, v2, and v3 (under
certain assumptions that will be explain in the next section),
can infer that they are part of this subgraph from the type of
incoming messages they receive in each iteration. In essence,
these variable nodes are able to infer the topology with the help
of an extra third bit in the messages, and now the message-
passing rules can be derived so that nodes v1, v2, and v3 start
sending correct messages. Note however that each of the nodes
v4 and v5 will still be blind to its local neighborhood as all
its neighbors are initially wrong. Therefore, a key point to
note here is that the message-passing rules must be derived so



that the nodes v1, v2, and v3 infer their local neighborhoods
and start propagating correct messages in the fewest possible
iterations to inhibit the propagation of wrong messages by
nodes v4 and v5.

We note that there are possibly many different 3-bit de-
coders that can correct the above (5, 3) trapping set. However,
not all of them are good decoders especially when consid-
ering decoders beyond BP. The decoder must be designed
to correct many potentially troublesome subgraphs and the
(5, 3) trapping set is only one such structure. So one aspect
of our approach is identifying the relevant trapping sets and
using trapping set ontology [16] that is known for existing
message-passing decoders to design good update rules. The
other important aspect is related to the speed of convergence
of such decoders which will be addressed in Section V-B.

So far we have discussed how bits can be added to the
messages to incorporate the local structure in the message-
passing rule and therefore improve the ability of the decoder
to correct trapping sets. We will now attempt to explain how
these decoders have potential to even outperform BP with the
help of a concept called isolation assumption.

V. DECODING BEYOND BP AND ISOLATION ASSUMPTION

From our discussion of the two examples, it was established
that the underlying strategy behind deriving good message-
passing rules lied in the analysis of subgraphs induced by
trapping sets. However, note that in both the examples, the
decoding was carried out under certain assumptions, and it
is quite likely that those assumptions will not be valid on a
Tanner graph of a practical code. A pivotal notion that enables
us to analyze decoders on subgraphs induced by trapping
sets, is the concept of isolation assumption which was also
inherently used in the previous two examples. We shall now
discuss this concept in greater detail.

A. Isolation assumption

While considering decoding on a particular trapping set,
in order to verify whether a given decoder succeeds on the
trapping set, it is in fact necessary not only to know the
subgraph induced by the trapping set, but also the neighbor-
hood of the induced subgraph and messages coming from
this neighborhood. Since this neighborhood can be different
for different Tanner graphs, the derivation of the message-
passing rules can become very complex. Therefore, to facilitate
the design process, we work under the assumption that the
messages to the nodes of the trapping set from the nodes
outside the induced subgraph of the trapping set are known.
We coined this the isolation assumption to signify the fact that
the trapping set can be considered in isolation from the rest
of the graph and can be analyzed as an independent entity.

A more formal definition taken from our work in [13] is
provided in the Appendix that uses the notion of computation
trees [14], [15]. It is important to note that this is different from
the independence assumption considered by Gallager [9] and
an explanation for this can also be found in [13]. This concept
gives rise to the isolation theorem that helps us determine

the messages coming from the neighborhood of the induced
subgraph. The theorem is also included in the Appendix.

Note that the isolation assumption is independent of the
decoder and can be considered as a property of the Tanner
graph in relation to a particular subgraph. This assumption
validates up to how many iterations a subgraph can be con-
sidered isolated from its Tanner graph for decoding. This is
precisely the reason why the speed of convergence of the
decoder becomes important while decoding on an isolated
subgraph, since for Tanner graphs of practical codes, the
isolation assumption becomes hard to satisfy for large number
of iterations by the subgraph. If the isolation assumption is
violated by the subgraph for a particular Tanner graph, then
the decoder is not guaranteed to correct the error pattern in
the subgraph (even though a rule was derived to correct it).

B. BP and min-sum fail due to slow convergence

The concept of isolation assumption can now be used to
explain why these newly defined message-passing decoders
can correct certain error patterns that are uncorrectable even
by floating-point algorithms such as BP and min-sum. An
intuitive reason for this improvement can be provided as
follows.

Consider the subgraph induced by an uncorrectable low-
weight error pattern of BP or min-sum along with sufficient
neighborhood of this subgraph that is present in the Tanner
graph. Perform decoding on this subgraph under the isolation
assumption with the help of computation trees and the isolation
theorem. Since the nodes in the graph for BP or min-sum
decoders do not have any knowledge of their local neigh-
borhood, the decoder can take several iterations to converge
on the isolated subgraph. Now in the actual Tanner graph
that contains this subgraph, the isolation assumption of the
subgraph will be violated within few iterations and therefore,
this is the reason why the BP or min-sum decoders fail to
decode on such error patterns. This was found to be especially
true for codes with dense graphs. On the other hand, in the
case of the 3-bit decoder, the variable nodes can propel the
decoder through their update rules to converge much faster on
the same error pattern, so that the decoder converges before
the isolation assumption is violated on the subgraph. Hence,
our message-passing decoders such as the 3-bit decoder can
successfully correct such error patterns and thereby guarantee
a higher error-correction capability than BP or min-sum. Our
numerical results which we will show in Section VII, also
support this argument, since we considered codes that have
relatively dense graphs such as high-rate quasicyclic codes,
and on such codes a simple 3-bit decoder was enough to
outperform BP and min-sum.

VI. 3-BIT DECODER FOR COLUMN-WEIGHT-THREE
CODES

We now provide a particularly good 3-bit decoder that was
derived by considering a systemtatic hierarchy of trapping
sets called trapping set ontology [16]. The update rules at
the variable nodes and check nodes are judiciously designed



Boolean functions that can guarantee correction of higher
number of errors than BP or min-sum over the BSC. Some
important criteria that were considered in the derivation of the
rules are increase in critical number [17] and convergence in
fewest possible iterations.

The first two bits in the messages are used to capture the
local neighbhorhood and the third bit (right-most bit) is used
to denote the binary value of the variable node. Also for this
particular decoder, the messages ‘001’ and ‘000’ are treated as
the same, since they can be regarded as erasures as in Gallager-
E algorithm [10]. For convenience we just use one message
‘000’.

3-bit Decoding Algorithm
Initialization: For all outgoing messages passed from a vari-
able node, the first bit is set to 0, the second bit is set to 1,
and the third bit is set to the received value.
Check node update: Let y1, y2, y3 denote the first, second and
third bits of the outgoing message of a check node respectively.
The set of update rules that define the Boolean function for
the check node are as follows.

1) y3 is the XOR of the third bits of all the incoming
messages.

2) y1 is the AND of the first bits of all the incoming
messages.

3) a) If all the incoming messages have their first bit as 1,
then y2 is the AND of the second bits of all the incoming
messages.
b) Else consider only the incoming messages that have
their first bit as 0. Then y2 is the AND of all the second
bits corresponding to only these messages.
c) If there is only one incoming message having a first
bit as 0, then y2 is the same value as the second bit of
that particular message.

Variable node update: Let m1 = a1a2a3, m2 = b1b2b3, and
mo = x1x2x3 denote the incoming messages and outgoing
message of a variable node respectively. a1, a2, a3 denote the
first, second, and third bits of m1, and similarly defined for
bits of m2 and m3. Let r denote the received value at the
variable node. We can similarly define the set of rules for
the variable node update as a set of conditions. For example,
the following conditions specify the rule when the incoming
messages are either ‘110’ or ‘111’, and the received value is
0 or 1.

1) If a1 = b1 = 1 and a2 = b2 = 1, set x2 = 1, x3 = r.
2) In addition, if a3 = b3, set x1 = 1; Else, set x1 = 0.

Since there are many cases that need to be considered, we shall
not provide the entire set of conditions required to determine
the bits of the outgoing message. Instead, we provide the
complete Boolean map used at the variable node in the form of
Table II. It is quite possible that with deeper introspection into
the boolean map, simple boolean expressions can be derived
to determine the bits of the outgoing message.

Reverting back to the the example involving the (5, 3)
trapping set, note that the instance of the update rule defined
for incoming messages of ‘100’, ‘101’ and r = 1 which gives

m1 m2 r mo

010 010 0 100
010 010 1 000
010 100 0 100
010 100 1 010
010 110 0 110
010 110 1 100
010 000 0 010
010 000 1 000
010 011 0 010
010 011 1 011
010 101 0 011
010 101 1 101
010 111 0 101
010 111 1 111
100 100 0 110
100 100 1 100
100 110 0 110
100 110 1 110
100 000 0 100
100 000 1 010
100 011 0 100
100 011 1 010
100 101 0 010
100 101 1 011
100 111 0 101
100 111 1 101
110 110 0 110
110 110 1 110

m1 m2 r mo

110 000 0 110
110 000 1 100
110 011 0 110
110 011 1 100
110 101 0 100
110 101 1 100
110 111 0 010
110 111 1 011
000 000 0 010
000 000 1 011
000 011 0 000
000 011 1 011
000 101 0 011
000 101 1 101
000 111 0 101
000 111 1 111
011 011 0 000
011 011 1 101
011 101 0 101
011 101 1 101
011 111 0 101
011 111 1 111
101 101 0 101
101 101 1 111
101 111 0 111
101 111 1 111
111 111 0 111
111 111 1 111

TABLE II
BOOLEAN MAP USED AT THE VARIABLE NODE FOR THE 3-BIT DECODER.

‘011’ in the second iteration , and the instance of the update
rule for incoming messages of ‘110’,‘101’, and r = 1 which
still gives ‘011’ in the third iteration, as shown in Fig. 5(b)
and Fig. 5(c) , are crucial for the nodes v1, v2, and v3 to
inhibit the propagation of wrong messages by v4 and v5 and
start sending correct messages to them after third iteration.

Alternatively, Boolean functions can be described alge-
braically where the messages take values (or levels) from a
finite set [13]. In this case, the actual value of the message
contains information about the local structure of the node
rather than likelihood of particular bits. There is a one-to-
one correspondence between the algebraic form and boolean
function form. The algebraic description could sometimes be
more convenient while deriving good update rules especially
when considering higher number of bits or levels allowed in
the messages. Also the decision rule which was not specified
in the algorithm can easily be derived using the algebraic
description. For more details on the algebraic description, refer
to our work in [13].

We now provide numerical results for this 3-bit decoder and
compare it with BP and min-sum.

VII. NUMERICAL RESULTS

Simulations were carried out on four different column-
weight-three codes: 1) n = 155, R = 0.4, Tanner code, 2)
n = 768, R = 0.75, quasicyclic code with dmin = 12, 3)
a n = 4085, R = 0.82, MacKay code, and 4) n = 1503,
R = 0.668, array code with dmin = 16. Frame error rates



10
−2

10
−1

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

cross−over probability (α)

Fr
am

e 
E

rr
or

 r
at

e 
(F

E
R

)

Min−Sum

BP

3−bit

Fig. 6. FER results on the n = 155, R = 0.4, Tanner code

10
−3

10
−2

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

cross−over probability (α)

Fr
am

e 
E

rr
or

 R
at

e 
(F

E
R

)

Min−Sum

BP

3−bit

Fig. 7. FER results on the n = 768, R = 0.75, Quasicyclic code

(FER) are plotted as a function of the cross-over probability
α of the BSC. n denotes the length of the code, R denotes the
code rate, and dmin denotes the minimum distance of the code.
The codes were chosen to cover a broad spectrum of LDPC
codes in order to validate our approach. The Tanner code is
well-understood and has been analyzed for many different
decoders. The high-rate quasicyclic code was chosen since
the error floor problem is much more challenging for high-
rate codes. A MacKay code was chosen as an example of a
high-rate random code. A moderate length high-rate array code
with fairly reasonable minimum distance was chosen since
these codes have high practical value as they enable simple
implementations. Fig. 6, Fig. 7, Fig. 8, Fig. 9 show the FER
results. The parity check matrices of all four of these codes
can be found in [19].

10
−3

10
−2

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

cross−over probability (α)

Fr
am

e 
E

rr
or

 R
at

e 
(F

E
R

)

Min−Sum

BP

3−bit

Fig. 8. FER results on the n = 4085, R = 0.82, MacKay code

10
−2

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

cross−over probability (α)

Fr
am

e 
E

rr
or

 R
at

e 
(F

E
R

)
Min−Sum

BP

3−bit

Fig. 9. FER results on the n = 1503, R = 0.668, array code

The numerical results epitomize the underlying philosophy
of our approach as we see that the 3-bit decoder outperforms
BP and min-sum in the error floor region for all the four
codes. Notice the difference in slopes in the FER curves which
is related to number of fixed errors a decoder can correct
[18]. By using just three bits in the messages and deriving
message-passing rules that take the local neighborhood into
consideration, we see that these decoders are able to achieve
this performance improvement with only a fraction of the
complexity of the BP and min-sum decoders.

Although we did not provide specific examples, it can be
shown that this 3-bit decoder is capable of correcting certain
low-weight error patterns that are uncorrectable by BP and
min-sum depending on the structure of the code. In fact for
the Tanner code, the 3-bit decoder guarantees correction of



all error patterns upto 5 errors. An interesting remark to note
is that the highly complex linear programming (LP) decoding
fails to correct all 5-errors on the Tanner code, whereas the
simple 3-bit decoder is able to. Also, the 3-bit decoder did
not fail for any 4-error patterns on the n = 768, R = 0.75,
quasicyclic code whereas the BP and min-sum decoders failed
on such error patterns in the region of simulation in Fig. 7.
For a specific example on how the 3-bit decoder is able to
correct such error patterns, refer to [13]. In the next section,
we shall discuss the relations of our message-passing decoders
to other relevant decoders and highlight key differences in our
approach from existing approaches.

VIII. RELATIONS TO OTHER DECODERS

A. Quantized message-passing decoders

It can be recognized that the message-passing decoders
considered in this paper are related to the class of quantized
decoders. There have been many significant works related to
the design and analysis of quantized decoders as well as low-
complexity implementations of BP-based decoders. Some of
the notable works include (but not limited to) the quantized
decoders (such as Gallager-E) proposed by Richardson and
Urbanke [10], low-complexity BP decoders by Chen et al.
[20], and by Fossorier, Mihaljevic and Imai [21], quantized
BP decoders by Lee and Thorpe [22], and quantized min-
sum decoders by Smith, Kschischang and Yu [23]. A key
distinction that is to be noted between our approach and all
these aforementioned works is that their primary objective is
to approach BP rather than outperform BP, since they are all
based on asymptotic analytical methods. In addition, they do
not guarantee good performance on a finite-length code in the
low noise region.

B. Modifying decoders to reduce error floor

Efforts to reduce error floors by modifying the decoder
have also received significant attention and have doubtlessly
provided valuable insights into the working of iterative decod-
ing. Augmented belief propagation in which selected initial
channel messages are saturated after sufficient number of
iterations has been suggested as an effective way to reduce
error floor [24]. Adapting the parity-check matrix at each
iteration or running the decoder in parallel on equivalent
parity-check matrices and combination of both has also proved
to be useful [25]. Adding redundant rows to the parity-check
matrix has also been considered in [26]. Multi-stage decoding,
in which decoders of increasing complexity are used in a
sequential manner so as to result in progressive improvement
in the FER performance was proposed by Wang, Yedidia, and
Draper in [27].

Many of these techniques have certainly proved to be useful
for improving the performance of a particular decoder or a
particular code. However, most of the approaches are either
complex or restricted to a specific class of codes, and some
methods consist of searching Tanner graphs for subgraphs that
are believed to be harmful, where the harmfulness of such
subgraphs are not proven or are only restricted to certain cases.

Our approach differs from the above works in that no a priori
assumptions are made about harmfulness of subgraphs.

C. Statistical mechanics methods
Methods to systematically account for the presence of loops

in BP was studied in the most general setting by Yedidia,
Freeman and Weiss [28] and later by Chertkov and Chernyak
[29] and by Lu, Measson and Montanari [30].

Yedidia et al. [28] showed how the free energy hierarchy
approximations can be improved using generalized belief
propagation. Chertkov et al. [29] used loop calculus to improve
the approximations provided by the BP and also demonstrated
how it can be used to reduce error floors. More recently, Lu
et al. [30] proposed a tree pruning (TP) decoding algorithm,
which prunes the computation tree so as to provide a closer
approximation to the true marginal compared to BP. In this
way, it systematically accounts for loops and provides a way
to successively improve the approximations from BP to the
optimal decoder.

These methods while supported by strong theoretical jus-
tifications are still far from finding their way into practical
decoders for moderate length codes.

IX. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a new methodology for designing
low-complexity message-passsing decoders that utilized bits in
the messages wherein the rules were derived using trapping
set ontology of traditional decoders. From the results, we
see that there is a certain aspect of universality in the 3-
bit decoder; the 3-bit decoder is good on a variety codes,
which is highly desirable. Although the simulation results were
performed on only certain classes of codes such as high-rate
quasicyclic codes, we surmise that by considering more bits
in the messages, better decoders can be designed that have
potential to outperform BP even on codes with moderate rates.

Our future work includes further investigation into the prop-
erties of these decoders, deriving bounds on error-correction
capability, providing conditions on the graphs based on the
isolation assumption that guarantees higher correction of errors
than BP, and possibly relating all these to bounds on the
number of bits required to guarantee correction of fixed
number of errors in a fixed number of iterations. We would
also like to investigate the concept of time-varying decoders
where the message-passing rules are allowed to change from
iteration to iteration. A small comment be noted regarding
the FER results of the Tanner code is that in addition to the
message-passing rules defined for the 3-bit decoder in the
Section VI, a slightly modified rule that was also derived using
trapping sets, was used sequentially (whenever the previous
failed) to correct certain 5-error patterns of the Tanner code.
We do not provide the details of this modified rule but it shall
be explained in our future work when we obtain more results
on time-varying decoders.

APPENDIX

Let G = {V ∪ C,E} be the Tanner graph. Let H be the
induced subgraph of a trapping set (a, b) contained in G with



variable node set P ⊆ V and check node set W ⊆ C. Let
N (u) denote the set of neighbors of a node u. Let T k

i (G) be
the computation tree of graph G corresponding to a messagee-
passing decoder enumerated for k iterations with variable node
vi ∈ V as its root. Let P ′ ⊆ P denote the set of variable
nodes in subgraph H that have degree-one check nodes as its
neighbors. Let W ′ ⊆ W denote the set of degree-one check
nodes in the subgraph H . Let supp(r) denotes the set of all
variable nodes that received wrong values (which is 1) from
the BSC. Let Φv denote the Boolean map used at the variable
node, which is a function of the incoming messages and the
received value.

Definition 1: A vertex w ∈ Ti(G) is said to be a descendant
of a vertex u ∈ Ti(G) if there exists a path starting from vertex
w to the root vi that traverses through vertex u. The set of all
descendants of the vertex u in Ti(G) is denoted as D(u). For
a given vertex set U , D(U) (with some abuse of notation)
denotes the set of descendants of all u ∈ U .

Definition 2 (Isolation assumption): Consider the compu-
tation tree T k

i (G) with the root vi ∈ P ′. Pick a cj ∈
N(vi) ∩W ′ which is a degree-one check node in H . If the
condition D(cj) ∩ D(N (vi) \ cj) = ∅ is satisfied ∀cj ∈
N(vi)∩W ′, and if for any two check nodes cr, cs ∈W \W ′,
D(cr) ∩D(cs) ⊆ (P ∪W ), then the tree T k

i (G) is said to be
isolated. If T k

i (G) is isolated ∀vi ∈ P ′, then the subgraph H
is said to satisfy the isolation assumption for k iterations.

Theorem 2 (Isolation theorem): If r is input to the
message-passing decoder from the BSC such that supp(r) ∈
P , and if H satisfies the isolation assumption for k iterations,
then for each cj ∈ W ′, the message from cj to its neighbor
in H in the lth iteration denoted by µl, is determined as the
output of Φv(µl−1, µl−1, 0) ∀l ≤ k.

For details on the proof, refer to [13]

ACKNOWLEDGMENT

This work is funded by the NSF under Grants CCF-
0634969, IHCS-0725405 and CCF-0830245. Authors would
like to thank Dzung Viet Nguyen for providing the high-rate
array code used in our simulation.

REFERENCES

[1] J. Pearl, Probablisitic Reasoning in Intelligent Systems. San Francisco,
CA: Kaufmann, 1988.

[2] R. M. Tanner, “A recursive approach to low complexity codes,” IEEE
Trans. Inform. Theory, vol. 27, no. 5, pp. 533–547, May 1981.

[3] B. J. Frey, Graphical models for machine learning and digital commu-
nication. Cambridge, MA, USA: MIT Press, 1998.

[4] G. F. Cooper, “The computational complexity of probabilistic inference
using Bayesian belief networks (research note),” Artif. Intell., vol. 42,
no. 2-3, pp. 393–405, 1990.

[5] P. Dagum and M. Luby, “Approximating probabilistic inference in
Bayesian belief networks is NP hard,” Artif. Intell., vol. 60, no. 1, pp.
141–153, 1993.

[6] Y. Weiss and W. T. Freeman, “Correctness of belief propagation in
Gaussian graphical models of arbitrary topology,” Neural Computation,
vol. 13, no. 10, pp. 2173–2200, 2001.

[7] D. Weitz, “Counting independent sets up to the tree threshold,” in STOC
06: Proceedings of the thirty-eighth annual ACM symposium on Theory
of computing. New York, NY, USA: ACM, pp. 140–149, 2006.

[8] K. P. Murphy, Y. Weiss, and M. I. Jordan, “Loopy belief propagation
for approximate inference: An empirical study,” in Proc. of Uncertainty
in AI, pp. 467–475, 1999.

[9] R. G. Gallager, Low Density Parity Check Codes. Cambridge, MA:
M.I.T. Press, 1963.

[10] T. Richardson and R. Urbanke, “Capacity of low-density parity-check
codes under message-passing decoding,” IEEE Trans. Inform. Theory ,
vol 47, pp. 599–618, Feb. 2001.

[11] T. Richardson, “Error floors of LDPC codes,” in Proc. 41st Annual
Allerton Conference on Communications, Control and Computing, 2003.

[12] S. K. Chilappagari, S. Sankaranarayanan, and B. Vasic, “Error floors
of LDPC codes on the binary symmetric channel,” in Proc. IEEE
International Conference on Communications (ICC 06), vol. 3, Istanbul,
Turkey, pp. 1089–1094, 2006.

[13] S. K. Planjery, D. Declercq, S. K. Chilappagari, and B. Vasic, “Mul-
tilevel decoders surpassing belief propagation on the binary symmetric
channel,” Preprint [Online]. Available: http://arxiv.org/abs/1001.3421

[14] N. Wiberg, “Codes and decoding on general graphs,” Ph.D. dissertation,
Univ. Linkoping, Sweden, Dept. Elec. Eng., 1996.

[15] B. J. Frey, R. Koetter, and A. Vardy, “Signal-space characterization of
iterative decoding,” IEEE Trans. Inform. Theory, vol. 47, no. 2, pp. 766–
781, Feb. 2001.

[16] B. Vasic, S. K. Chilappagari, D. V. Nguyen, and S. K. Planjery,
“Trapping set ontology,” Proc. 47th Annual Allerton Conference
on Communications, Control, and Computing, Sept. 2009.
[Online]. Available: http://www.ece.arizona.edu/∼vasiclab/Projects/
CodingTheory/TrappingSetOntology.pdf

[17] S. K. Chilappagari, A. R. Krishnan, and B. Vasic, “LDPC codes
which can correct three errors under iterative decoding,” in Proc. IEEE
Information Theory Workshop, pp. 406–410, May 2008.

[18] M. Ivkovic, S. K. Chilappagari, and B. Vasic, “Eliminating trapping sets
in low-density parity-check codes by using Tanner graph covers,” IEEE
Trans. Inform. Theory, vol. 54, no. 8, pp. 3763–3768, 2008.

[19] “Error Floors of LDPC Codes.” [Online]. Available: http://www.ece.
arizona.edu/∼vasiclab/Projects/CodingTheory/ErrorFloorHome.html

[20] J. Chen, A. Dholakia, E. Eleftheriou, M. Fossorier, and X.-Y. Hu,
“Reduced-complexity decoding of LDPC codes,” IEEE Trans. Commun.,
vol. 53, no. 8, pp. 1288–1299, Aug. 2005.

[21] M. Fossorier, M. Mihaljevic, and H. Imai, “Reduced complexity iterative
decoding of low-density parity check codes based on belief propagation,”
IEEE Trans. Commun., vol. 47, no. 5, pp. 673–680, May 1999.

[22] J. K. Lee and J. Thorpe, “Memory-efficient decoding of LDPC codes,”
in Proc. International Symposium on Information Theory (ISIT 2005),
Adelaide, Australia, pp. 459–463., Sept. 2005.

[23] B. Smith, F. R. Kschischang and W. Yu, “Low-density parity-check
codes for discretized min-sum decoding,” in Proc. 23rd Biennial Sym-
posium on Communications, pp. 14–17, 2006.

[24] N. Varnica, M. Fossorier, and A. Kavcic, “Augmented belief propagation
decoding of low-density parity check codes,” IEEE Trans. Commun., vol.
55, no. 7, pp. 1308–1317, July 2007.

[25] T. Hehn, J. B. Huber, S. Laendner, and O. Milenkovic, “Multiple-bases
belief-propagation for decoding of short block codes,” in Proc. IEEE
International Symposium on Information Theory (ISIT 07), Nice, France,
pp. 311–315, June 2007.

[26] S. Laendner, T. Hehn, O. Milenkovic, and J. Huber, “The trapping
redundancy of linear block codes,” IEEE Trans. Inform. Theory, vol.
55, no. 1, pp. 53–63, Jan. 2009.

[27] Y. Wang, J. S. Yedidia, and S. C. Draper, “Multi-stage decoding of
LDPC codes,” in Proc. IEEE International Symposium on Information
Theory (ISIT 09), Seoul, Korea, pp. 2151–2155, July 2009.

[28] J. S. Yedidia, W. T. Freeman, and Y.Weiss, “Constructing free energy
approximations and generalized belief propagation algorithms,” IEEE
Trans. Inform. Theory, vol. 51, pp. 2282–2312, July 2005.

[29] M. Chertkov and V. Y. Chernyak, “Loop calculus helps to improve
belief propagation and linear programming decodings of low-density-
parity-check codes,” in Proc. 44th Annual Allerton Conference on
Communications, Control and Computing, Monticello, IL, USA, Sept.
2006. [Online]. Available: http://arxiv.org/abs/cs/0609154.

[30] Y. Lu, C. Measson, and A. Montanari, “TP decoding,” in Proc.
45th Annual Allerton Conference on Communications, Control and
Computing, Monticello, IL, USA, Sept. 2007. [Online]. Available:
http://arxiv.org/abs/0710.0564.


