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Abstract—We consider a finite buffer shared by multiple as there is room, regardless of which session they belong to;
packet queues. Throughput can be considerably improved by whereas in CP, the buffer is divided into disjoint partigon
partitioning the buffer space among the queues judiciously, gegicated to each active session. CS possesses a degree of
especially under a high load regime. We formulate optimal flexibili d d diti hi highd
buffer partitioning as a resource allocation problem, the solution _eX'_ ility, and can under somg conditions achieve hig er.Ut
of which is found through a greedy incremental algorithm in lization of the buffer. However, it has the drawback thatghhi
polynomial time. The rest of the work is devoted to applying the rate session, or one which is highly bursty, could compjetel
optimal buffer allocation strategy in different scenarios modeling  occupy the memory space, causing low-rate sessions ta suffe

a wireless downlink. First, the strategy is applied in a general ;
parallel M/M/1/m; system and a numerical study verifies that packet drops, or bg dropped altogether (for example, if they
have delay constraints.)

the strategy may boost the throughput considerably. Then, a

multichannel extension of this system is considered when the . .
users have different arrival rates and channels have different ~ Another drawback of a CS architecture specific to a shared

outage probabilities. Jointly optimal buffer space allocation and wireless link is the potential loss of multiuser diversigx-
channel assignment problems in this scenario are shown to be ploiting multiuser diversity, i.e., the increasing probiayp of
separable. Lastly, buffer allocation is considered in a system finding good channels as the number of users increases [3]

where users need to be multiplexed and scheduled based on . . .
channel state. It is shown that this system can be modeled €dUIres the base station to have packets to transmit to each

as a set of parallel M/G/1/m; queues to which the optimum Uuser [4]. When some sessions “hog” the buffer, blocking

buffer allocation strategy is again applicable. The improvement others, potentially the full multiuser channel capacitgioa

brought by optimal buffer allocation to scheduling based solely on cannot be used, thus limiting throughput. Partitioning the

channel—state is explored. It is obser_ved that buffer optimization buffer presents a sure remedy to the “hogging” problem, as

can result in remarkable throughput increase on top of channel- . \ .

based user selection. it does not _Iet users enter each o_ther_s space. While there
may be obvious drawbacks of partitioning as well, such as
its inflexibility, it performs extremely well in the high-aml

|. INTRODUCTION regime [1], which is the motivation for this work.

Memory is a limited resource in communication devices. A multiuser wireless downlink may work in the overloaded
While communication, computation and memory capabilitieegime for several reasons. Such a system typically serves
continuously increase, with the advance of standards av@fious uncoordinated users, as in fixed wireless [5] Imtern
systems such as 3G and broadband wireless MAN, thé&ecess, as well as in cellular systems. It is to be expected
is also a substantial increase in the demand for bandwidktrat sessions initiated by various user applications ddaoé
and memory. For example, a typical WiMax base station @rrect estimates of the transmission rate available to iz
supposed to serve a metropolitan area with hundreds of ugétotal number of sessions is dynamic, as well as the channe
demanding high speed multimedia applications. With a &ohit itself. Under such uncertainties, operating close to bikta
memory space, buffer management is necessary for maximoray be preferable to occasionally idling and not fully atitig
performance in such a multiuser system. the tight wireless resource, as consequent packet dropbenay

tolerated by higher-layer mechanisms (such as TCP). That is

Sharing limited buffer space among multiple packet strearperhaps the unstable regime is a practical reality in wisle
is a problem that previously attracted interest in the cdrdé systems.
shared-memory switches [1] and wireline networks [2]. The
two opposite extremes of buffer management are Completé/Vhile higher layer mechanisms can adjust arrival rate for
Sharing (CS) and Complete Partitioning (CP). In Comple&$able data transmission, they do not obviate the need to
Sharing, packets that arrive are placed in the buffer as loagdress the overloaded regime because their response times

are typically much longer than coherence times of outdoor
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loaded between congestion window updates. which the new arrivals are dropped. For example in [1],
Irland computationally finds the optimal buffer sharingipgl
Hence, we claim that optimal buffer partitioning can be useflat finds a simple threshold rule, which performs close to
together with higher layer mechanisms in order to bettdizati optimal. Kamoun and Kleinrock [2] defined some hybrid
wireless resources. As an example, consider the situagen gchemes in addition to complete sharing and partitioning.
picted in Figure 1 where the last hop along the network rgutimrhese schemes provide the minimum number of dedicated
path is wireless. The buffers at the wireless transmittdl whuffers and/or determine a maximum instantaneous occypanc
need to have a sufficient number of packets to be able to @it for each session. Simulation results indicate thathes
ploit multiuser diversity and operate at a timescale deftgeth |oad increases the optimal allocation converges to a cdmple
by the state of wireless channel. The queue lengths here copértitioning. Foschini and Gopinath [10] analytically et
be capped at the optimal partitioning levels. The TCP’s thatine the structure of the optimal sharing policies. Theropti
work end to end could be responsible for satisfying a lomgite policy involves limiting the buffer occupancy and dedicati
rate requirement to ensure that the right number of packesme buffer space for each session. Krishnan et. al. [11]
is maintained. The buffer partitioning problem also reseal propose a dynamic buffer partitioning mechanism, which can
trade-off between buffer utilization and multiuser divgrand  pe difficult to implement in practice. Optimum schedulinglan
the tradeoff between giving individual throughput guae&st memory management with finite buffer space was studied in
to low rate users and maximizing overall throughput. [8]. A closed form optimal scheduling policy was found for
2 x 2 switches with equal arrival rates [8]. The policy involves
push-out where an existing packet is discarded in favor of a
new arrival, which may be difficult from an implementation

B
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H\ Fm 4 )}» % % perspective.
) @a % To the best of our knowledge, the buffer partitioning prob-
W em has not been previously addressed in the context of
Hosik-1l B/\A// wireless networks. A related idea of modifying the Transpor
HostK Control Protocol for exploiting multiuser diversity wasepr

sented by Andrew et.al. [12].
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Fig. 1. End-to-end network connection of multiple users watlshared
wireless last hop. This paper mainly asks two questions: (1) Given a finite

buffer, how should we partition it among users with given
rrival and service rates to maximize total throughput? (2)
hat is the throughput performance if we let scheduling
done without regard to queue state, and use optimally
partitioned buffer for the resulting service rates? In agrste
g&first guestion, an optimal iterative algorithm for aditing
u

Buffer partitioning can also be performed jointly with use
scheduling. This more general problem falls in optimal foi
buffer management and scheduling under finite memory whi
is still open [8]. It is well known that maximum weight
matching between queue lengths and channel rates at . . )
time (in short, MaxWeight) is throughput-optimal [9] unde er space to queues based on their arrival and servies rat

infinite memory. Though not necessarily optimal, MaxWeigiWi" pe. dgrived. The_un.iqugness_of the resulting throughput
[8] is a benchmark algorithm for the finite memory systerﬂnax'm'z'r?g buffer distribution will be shown. Thg seconq
Note that MaxWeight requires making rate allocation decisi question s mainly agjdresseq by extensive numerical SZKUdIe
based on joint queue and channel state information. Wevelid!'SINg MATLAB. We first consider a "toy problem” on which

that being able to separate the rate allocation problem froff get an encouraging answer that separately handlingrbufte

the buffer management problem carries practical value, ?agement ?:Ad %Ca.nr;]ttalvscrt]ﬁdulmg (.:jm git usl. nlfar Ithe
the former is traditionally in the physical layer and it cafperformance ot Maxvyeight. Ve then considera downlink mu-

be cumbersome to keep physical layer algorithms informtl\'éj|Ser system, where N independent packet arrival prosesse

about queue state. The search towards this direction isl;clezf‘re separately queued to be sent by a single transmitter over
encouraged by subobtimality of MaxWeight a wireless channel which can be described as a stationary

stochastic process. The service model depends on how the
data streams are multiplexed to be transmitted. We consider
A. Related Work two main channel allocation mechanisms:

The work on buffer management in the literature mostly « Case 1. Fixed channel allocation (e.g. an FDMA system
focused on shared memory switches in wired networks. The with orthogonal channels, experiencing outage and pos-
main problem is finding the buffer occupancy threshold, @bov  sibly correlated fading.)



o Case 2. Channel-Aware Dynamic Scheduling (e.g. seleat- throughput that would result from increasing the buffer
ing user(s) with good channel states at each schedulispgace in queué to m + 1.

interval.) AT;(m) = Ty(m + 1) — T;(m) (1)

In Case 1 (with parallel channels) we show that the jointiyhcreasing the waiting room always increases the through-
optimal buffer allocation-scheduling problems are sepl@ta put [15], [16], so AT;(m) > 0. But, concavity implies
In Case 2, the buffer allocation problem is solved using afiminishing returns, i.AT;(m + 1) < AT;(m) Vm.
approximation to thél//G/1/m blocking probability, and the
resulting schemes are compared with queue-aware schgdulinThe buffer allocation that maximizes total throughput is a

policies. solution to the following optimization problem:
Problem 1:
I[I. BUFFER PARTITIONING N
) ) maxZTi(mi) st.mev (2
In a system ofN users sharing a total buffer pool of size P
B, the set of feasible buffer partitions i&, defined as the ) ] ) )
following: We now present an iterative algorithm for calculating the
optimal allocation that exploits the monotonicity and cawity
ol of throughput function. As no user will be denied service in
_ _ . + . . '
W= qm=(my,ma,....my), mi € N7 Z:lml =B our modef, we must allocate a buffer space of at least one

unit to each user. The remaining buffer space3of N units
Accordingly, an arriving packet of useris accepted if there then need to be distributed among tNeusers. The following
are less thamm, packets belonging to userin the queue, pseydo-code summarizes the algorithm.
otherwise, it is blocked
Optimal Partitioning Algorithm (OP):
Partitioning is not necessarily throughput-optimal. letfa
a dynamic allocation of buffer space among queues accordinginitialize the allocationm; = 1 Vi
to a coordinate-convex policy whe@jﬁil m; > B (thatis, 2. ComputeAT;(m;) for all i
users are allowed to spill over to each other’s allocatioay m3. While B, £ >, m; < B, do step 4
result in higher throughput [2], [10]. There are also push-04. For j = argmax; AT;(m;), m; := m; + kmax
type of policies [13] where an existing packet in the queugherek,,.x = max{k = 1,2,..., B— B,|AT;(m;+k—1) >
can be dropped in case of arrival of another packet. HowevexT; (m;)Vi # j}
partitioning was observed to perform very well (and is ppeha

optimal) for unbalanced and high loads [2]. It is shown in Thijs algorithm was previously reported in [17] as a com-
[10] that optimal policy for two user balanced high load casgutationally efficient version of Shih’s algorithm [18], Wh
is equally partitioning the available buffer for users. B8n solves an optimal resource allocation problem equivalent t
of buffer partitioning for unbalanced load are also disedssours. In our setting, the basic idea of the algorithm is to
in [14], [11] under different data and flow models. The regjreedily allocate one more buffer space in each step to &e us
of the paper will be about optimal partitioning and its jointor one of the users) that would incur the maximum increase in
application with scheduling in a number of scenarios. throughput from that additional buffer space. Because ef th
monotonicity and concavity of thé\T;(m;)’s, the increase
A. Maximizing Total Throughput under Buffer Partitioning N throughput in each iteration is non-increasing with buff
size for each user. Taking advantage of this fact, the number
é%f computations needed is reduced by allocating not one, but

Our optimization rests on the concavity and monotonici > 1 buff t a time to the wi ; h iteration. if
of throughput with respect to both arrival rate and buffdf = * PUTTer spaces ata time to the winner of €ach iteration, 1

space in an M/G/1/m system [15], under a fixed service tin"f'(;[er an Increase of — 1 it wil St'." be the winner among all
distribution. Consider a set of queu¢s 1 < i < N} that gueues in terms of throughput increase per added buffer. We

work in parallel. LetT()\;, m) be the throughput of theth next prove _the optimality of algorithm OP, and then discuss
gueue, with arrival rate,; when a waiting room ofn packets its complexity.

is allocated to this queue. In the rest, we use the shorthan
T;(m) to meanT'(A;, m). We denote byAT;(m) the increase

q‘heorem 1:Algorithm OP results in an optimal solution to
roblem 1.

1in queues occurring in practical communication systems (ssctoaters . -
and switches) keeping track of the number of packets belgngineach Proof. We refer the interested reader to the pI’OOf n [17]' yet,

session is usually excessive. We realize that the paiititiorodel as given is for completeness, we include a concise proof of optimality
not necessarily practical. We will go on with this idealizedbdel regardless

within the scope of this work, with the intention that theustural results 2Combining buffer allocation with admission or flow control iry
obtained can provide guidelines to more sophistical models. interesting, yet outside the scope of this work.



here: Let {m}} be an optimal allocation. By feasibility, in time, which belongs to Case 2 defined in the Introduction.

>>mj < B. The total throughput with this allocation is: This time, the buffer allocation problem is solved for pbaial
~ N M/G/1/my, queues.
Y Titmi) = Y [(Ti(m}) = Ti(m] —1))
=1 =1
+ (Ti(mi = 1) =Ti(mj —=2)) + ... A. Parallel M/M/1in;, Queues
( 2) = Ti(1)) + T5(1)]
N mi Consider paralleM /M /1/m,, systems such that}, m;, =
= ZT + ZZ Ti( B. We want to know the throughput-maximizirgn; }. Av-
i=1 i=1 k=1 erage throughpufl” and packet drop probability’; of the
Note that after initialization of each user with oneM/M/1/m queue [20] are:
unit of buffer, every possible allocation of the to- (1-p)p™
tal B buffer spaces to theN users corresponds to TApym) = A1 = T—"07) 3)
choosing B — N numbers out of the following set p
of size (B — N)N: {ATy(1),ATy(2),...,ATy(B — Palp.m) = (L=p)p™ @

N),...,ATn(1),ATN(2),...,ATy(B — N)}. OP performs
an iteration for each next buffer unit, deciding which user t
allocate this buffer unit. There are a total Bf— N units of Application of OP with the above throughput expression
buffer left after initialization, hencés — IV iterations in total. yields the optimal buffer partitions. We observe that even
In iterationk, OP choses the highest of number among the yiir parallel queues with Poisson arrivals and memoryless
unchosen elements of the set. Since for eachT;(m%) are service distribution, optimal partitions can yield a sfigznt
non-increasing from one iteration to the next, the algamits increase in throughput compared to an even buffer allogatio
equivalent to choosing the largeBt— N largest numbers in as exhibited by numerical results some of which are predente
the set{ATj(m;)}, i =1,2,..., N, m € V. The resulting sum in Figure 2. This observation motivates considering other
cannot be smaller thaEf\LlTi(m;‘). As OP also respects application scenarios for optimal partitioning. Note thhaé
feasibility, we conclude that the sum throughput of OP canno

exceed the optimal, and is therefore equal to the optimal,

vy Ti(my). °

14

1) Complexity: OP makes a total ofB — N selections 12
in step 4, and per selection (except the final one) it makes
N — 1 comparisons. Overall, no more thdhelements of the
set {AT;(m;)} are computed. So overall, OP maké$B)

1— pm+1

10

% Increase
B

computations and (N (B — N)) comparisons. Therefore, this “
is a polynomial-time algorithm. Incidentally, note thateth 2
problem amounts to selecting tlie— NV largest entries out of .
a set of sizeV(B— N). Hence, depending on the relative sizes ’ o Gersipufier °

of B and N it may be possible to reduce the computations

further usmg a blnary search in this set, akin to "bubbléZ9. 2. The percentage increase in total throughput v.sisuger buffer.
Optimal buffer allocation is compared to even buffer allomatin parallel

SO!’t”. In fact, a COhSI(}Ie_rany more d'ﬁ'_cu“ to state- aimm M/M/1/m; system with a total buffer oB = 3500. 25% of all users have
using Lagrange multipliers and the binary search idea, with = 1.1, and the remaining haye; = 0.1. As more users share the buffers,

complexityO(N2 (1093)2) is reported in [19]. This could be buffer allocation yields higher increase in throughput.
advantageous foB > N.

Next, we consider the application of optimal buffer allocalercentage increase in the throughput becomes higher & mor
tion in several scenarios. users share the available buffer space. This is due to moaoto

decreasing property cAT;(m).
[Il. APPLICATIONS

We start by presenting the solution of thé/M /1/my, case. B. Parallel M/D/1/m; Queues
Next, we investigate an idealized a model of a system with par
allel channels that undergo independent outage correggpnd Towards a somewhat more realistic service model, consider
to Case 1 in the Introduction. We state and solve joint bufferfinite memory constraint, and packets of fixed length. There
allocation and channel assignment problem. We then turnare parallel channels with constant rate, hence the service
a setting where users or groups of users share the charnimees are deterministic. For M/D/1/K, the buffer occupancy



10 for on to off and off to on transitions respectively. For chah
© we have, 3
out __ 1
P ot 7, (6)
Various settings forx and 8 model various rates of channel
variation with respect to arrival rate. The case wherg <<
A, 1, modeling a channel variation timescale much slower than
| arrivals, is particularly interesting, because in the fimi— 0,
2 I R 8 — 0 (a/ 3 being constant), a closed-form expression can be
o0 0 e Teutter . % written for long term-average drop rate. In this extremeegas
both outage durations and the periods between two outages
Fig_-t 3;] d?ercentage inctrtease intthFOLtJ_ghplut Wtht_en the _w&ir?gmem is are long enough for sufficiently many packet arrivals and
ISDVE\:”r(?er?tagZzomcfgzgepiirklligr?gsg‘oro h?ghlg:anupn%élrocr)]fmugsclermgMEqk:juef?eer.s. services such that the que'jje reaches steady-state. Sice th
gueue reaches steady-state in both outage and non-ousabe, e
user's queue behaves like &d/M/1/m; queue during non-
outage, and is full (contains exactly; packets) during outage.
probabilities are P, = Ry Fo, k= 1,..., K, where Specifically, let queué be served in frequency baridwhose
k (i) (Ad)k—i-1 outage probqbility igout. In this regime, the queue is fqll at
Ry = Z(—l)k‘lem[ — + - ] for k>2  steady state in outage, so the stationary probability op dno
i=1 (k=0 (k—i-1)! outage isl. In the non-outage case the packet drop probability

(5) is Py(p,m). The overall long term average drop rate for user
R, = e —1 and A is the load factor. Fromz = is then:

1, we have, the blocking probability?, = m and avg ot o ot
normalized throughput” = 1 — P,. The effect of optimally P p ma) = (1= p7*) Pa, (A, ma) + p; ™
partitioning buffers is observed in Figure 3.

% Increase in Throughput

Correspondingly, the long-term average throughput is:

C. FDMA with Channel Outage T(A,p°,m) = A[L — P{"(A, p”, m)] (8)
= (1= p" )ALl = Pa(A, m)] ©)

Consider a frequency division multiple access (FDMA)

multi-user downlink. There are N users, and a frequency ban

will be allocated to each user. Each frequency band exhlbg

outageat random times, that is, the SNR dips below a level tha

can support the (fixed) code rate being used. On every chan@el’?" (m;, pi**) = (1 —p?*“)N\i[Pa(Ai, m;) — Py(Ni,mi+1)]

the outage periods are i.i.d. across time, and the staitimgpst (10)

of outage events form a renewal process. The probability dhder these assumptions, the introduction of outage channe

outage depends on the frequency band used, and not on whatthe problem brings forth a new dimension in terms of

user is using this chanrel optimization: assigning the channels to users for optirogl t

throughput. Channels with outage probabilitigsps, . . ., pn

are matched to the users in a one-to-one fashion.

dThe algorithm to find optimal buffer allocation can be
plied with a slight modification in this case.

TN
tect @ Problem 2: Given )\; and available channels’ outage prob-
abilities p;, maximize ) ,(1 — pr(;))Ti(Xi,m;) subject to
>.m; = M andm; > 1 and r is any permutation of

el A @ i=1,2,.. N.

We shall reach the solution of Problem 2 in Theorem 3,
Fig. 4. State transition diagram for joint channel and qustates. Channel Which will show that the problems of buffer allocation and
is either on or off and queue states are allowed up to allddaifer K. channel assignment are separable in our outage formulation
The optimal solution is a best-channel highest-arrivak rat
allocation, i.e, channel assignment is based on arrival rate
The channel outage process of each user is assumed to Bgtanot on queue (buffer) state. We start by noticing that the
continuous time Markov chain with rate of transitiomgnds  throughput functions are “monotone inverse disuniting”.

3The channel statistics not depending on user (and hencizeetecation) Two monotone positive real functions arenotone disunit-

may correspond, for example, to the case when the receiveigeagraphi-  ing if their difference diverges to infinity. Note that monotone
cally clustered far away from the base station.



functions have well-defined inverse functions. In our asialy 7 (iy) = 7’(i1) yields better, which is a contradiction. Hence,
we will use the same idea for inverses and we introdutke identity permutation™ (i) = < yields the joint optimal.

monotone inverse disuniting functions
[ |

Definition 1: Monotone Inverse Disuniting Functions

The pair of functionsf; and f are said to be monotone inverse Lemma 1:For Ay > Xg, let fi(m) = T(A\;;m) i = 1,2
disuniting if as in Eqn 8.f; and f, are monotone inverse disuniting with

fi(m) > fa(m) Ym € RT.
1) f1 Rt — I and f2 R — I, Il,IQ C R are
monotone increasing witlf (z) > f2(z) Vx € RT.
2) Yoo € L0 T2 u g1 >y = 4 Theorem 3:Suppose\; > Xy > ... > Ag and pg*t <
(fa (ya) = fr (1)) > (fa (y2) = fr (2)) pgt < ... < p%¥t. Optimal channel allocation that solves
Problem 2 isn*(i) = i.

Proof of Lemma 1 can be found in the Appendix.

1.8

16} f ] Proof: The result immediately follows from Theorem 2 and
val / ] Lemma 1. |
Y ] It is of interest whether the separation of the channel-awar
R N ~ ] scheduling and buffer partitioning can be carried on to more
" oaf f, ] general multiplexers.
> D. User Selection and Multiplexing in a Time-Varying Chan-

o 1 2 3 4 5 nel

Fig. 5. Monotone Inverse Disuniting Functions. The differe increases as  Now, we generalize our service model to cover the al-
y is increased location mechanism of Case 2 in the Introduction. Here,
rather than having parallel channels, the transmitternallo

The following theorem is useful in finding the jointlythe transmission of packets of a proper subset of users at

optimal resource allocation. each time. Hence, there is a scheduling decision that needs t
be made: which user/users to select at each time to transmit
Theorem 2:Let M be a positive constant and the data of. In greatest generality, this scheduling dewisi
could be a function of all that is known: instantaneous clednn
SE{(w1,22) w1 + 22 < M,z > 1,20 > 1} states and time-average channel coding rates availabkcto e

) o user, as well as the instantaneous queue states and long term
If f1, f2 are monotone inverse disuniting ang > a2 > 0, packet arrival rates of each user. We will restrict attentio
schedulers that are informed of arrival rates and instaaias
maxq o x1)+ « X > maxqo T2) + « x o . .
xeS{ 1ilz) 2f2(z2)} xeS{ 1f2(@2) 2fi(z1)} channel states. Specifically, we shall consider the folgwi

Proof of Theorem 2 can be found in the Appendix. NotlyPe of policy: the scheduling decision is made based only on

that this theorem is valid if the arguments of functigfisand channel state (without re_s_pe<_:t to queue state). The queaes a
fo are assumed real numbers, though they are integers in dled by a buffer partitioning policy. The buffer panits

problem. However, the argument in the proof is almost alwa)?ée calculated as a function of average arrival rates, aed th
true for the integer case also (see Appendix) ong-term average transmission rates (note that the amerag

transmission rates are a function of the scheduling pdlicy.

Corollary 1: For a; > ag > ... > ax > 0, and (f;, f;)
Vi < j are monotone inverse disuniting, permutatioh that
solves the joint optimization problem

Our ultimate goal is to understand whether the scheduling
and buffer management problems are separable. Toward that
goal, we first explore the issue on the simplest possible

max o () fi(2;) problem. In the following, we describe and explore this “toy
T,XES ” . .
problem”. Then, the more general problem will be considered
is the identity permutation™ (i) = ¢
1) Toy problem: two-users with on/off channelSonsider
Proof: Assume another permutatiori(i) # i solves the the model depicted in Figure 6. There is a single-user trans-
joint optimization problem. There exists at least two irgic mitter, shared by two users. Packet arrival streams of the tw
i1,42 such thati; < i; andn’(i1) > 7/(iz) so thata,(;;) < users are Poisson with ratas and \,. W.L.o.g, letA; > Xs.
Qi (iy)- If @bove theorem is applied to these two indices, it iBacket sizes are i.i.d., exponential with mean 1 unit. At any
deduced that another permutationwith = (i;) = 7/(iy) and time, the channel states of the two users are independently



"on” with probability p, and "off” with probability 1 — p, algorithm OP with the throughput functions stated above.
(symmetric channels).
Proof: If Ay = Xy, then by symmetrya = 1/2.

There is a scheduler that controls which user will acceket \; > Xo. First, by the previous separation theo-
the transmitter. The scheduler works as follows: duringcepo rem, it is clear thata > 1/2. The proof is based on
that only one of the channels is "on”, the corresponding ustte fact that 2 [Ty (A1, m}(a),a) + To(X2,m}(a),a)] >
is selected for transmission, and its data will be tranguitt0 where mj(a) and mj(a) are the optimizing buffer al-
(at unit rate.) When both channels are "on”, user 1 will blcations for fixed a > 1/2. More precisely, leta
selected with probability:, and user 2 will be selected forbe fixed and m}(a) be the corresponding buffer allo-
transmission with probability — a. As in the outage model cation. Since 2 [Ty (A, m}(a),a) + To(A2, m3(a),a)] =
of subsection 11I-C, we assume that channel change is sle@/(fi(m}) — f2(m3)) where f; and f, are monotone inverse
so that scheduling epochs will be long enough (with respetisuniting functions as discussed in Theorem 3. An implicit
to packet transmission) for the queues to reach steady-statresult of Theorem 2 is thaf, (m7) > f2(m3) because other-
each epoch. Hence, whenever a usés selected, its buffer wise it would be possible to obtain better total throughput b
size evolves as anf/M/1/m; queue, wheren; is the buffer assigning worst channel to the higher rate user. In coramysi
partition assigned to it. The question we want to answeras tfor fixed buffer allocation, it is possible to increase total
joint optimization ofm; anda, and whether the optimization throughput by incrementally increasing Since this result is
of one depends on the other, in this very simple setup.  true for all @ and corresponding optimal buffer allocations,

then the optimizing value of must be 1. [ ]
The long term average fraction of time each user is effec-

tively in outage is given by: It will be interesting to compare this policy with benchmark
PO = (1= po) 4+ (1 a)p? (11) queue-aware scheduling aIgonthm MaxWe|ght(MW). In this

1 . © ) o setting, MW reduces to selecting the user with longest queue

3" = (1=po)+ap; (12)  when channels of both users are “on”. Figs. 7 and 8 depict the

comparison of the proposed policy and MW: we see that the

PR performance of the simple scheduler with qptim_al partitign
A A [1] Seheduler Single-User is very close to Ma'x.\Ne_lght with equal partitioning. Hereg th
| | Transmitter significance of partitioning to throughput is exhibitedaly:
Partiioned Bufer MW with CS has a throughput that falls with increasing load.
F;:ziest This is due to “hogging” of the buffer by the first user.

o
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Fig. 6. The model for two user joint buffer management and uderdiding

in a time-varying channel 0.38
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We now proceed to apply thé//M/1/m optimal parti- 022r

tioning results to find the buffer allocation and state thatjo *¥ o2 o3 _os oz 07

Load of User 1

buffer allocation-scheduling problem as follows:

Fig. 7. Performance comparison of the proposed joint poliay palicies

Problem 3: with MW scheduling. B=5 buffers per useP, = 0.3 and Az = 0.1.
max 13 ()\1, mi, a) + TQ()\Q, ma, a) (14)
subject to 2) The General Case:Now, a more general multiuser
my,me>1, mi+me<B, 0<a<1 wireless downlink model similar to polling. Selection ofens

is based on channel state and the scheduling is performed at
Interestingly, the partitioning and channel allocatiomkpr the end of service of a packet. Packet lengths are assumed

lems turn out to be separable. We summarize the optinféinstant. The achievable rate of any user is drawn from the
policy in the following theorem: same distribution, independently. Let this rate Be The

random variableR € {1,2,...,mmax} iS described by some

Theorem 4:Let (a*, m}, m3) be a solution of Problem 3. probability mass functiompr(r). We will assume that users

The following are true: (1) IfA; = Xq, thena* = 0.5, and have symmetric channels; more explicitly, their channéhga
if A1 > \g, thena* = 1. (2)(m7, m3) are found by running h;(t) are independent memoryless random processes with the



074 ‘ ‘ ‘ =t by more than one user. We assume that the scheduler has the
information of arrival rate\ and the user with higheh is
selected in case of ties. This way, MC scheduler does not
° process the instantaneous backlog information but rathsr fi
| order statistic of the arrival process, which makes opemati

ey — o of MC less complex than MW. TDM scheduling, the simplest
oeal ] of the three, is basically the round robin scheduling of siser
As buffer management policies, complete sharing (CS), lequa
partitioning (EP) and optimal partitioning (OP) schemes ar
11 considered. CS policy allows each user to be accommodated

if there is an available space. On the other hand, EP reserves
Fig. 8. Performance comparison of the proposed joint poliay policies €qual buffer spaces for each user. OP policy is the one
with MW scheduling. B=5 buffers per useP, = 0.5. A3 = 0.4. proposed in Section Il with Gelenbe’s expression used in the
packet drop probability. The service rate and second order
statistic of the service process is assumed to be known to the
buffer manager.

0.721
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same statistics. Accordingly, if the packet of usdras been

selected for service, the service time of a packet will be may argue that the proposed scheduling and buffer par-

1/R; where R; has the same distribution a8: R; ~ R. . . ; . . = :
v T . ' . titionin mptions rely mainly on the idealisti op
Scheduling is performed at the same instant as the serwcett? g assumptions rely mainly on the idealistic asst

revious packet is finished and the user with maximum rateoﬁ Poisson arrivals. In the simulations, we will also exaenin
P pa ) L. thve performance of the joint policies for bursty arrivals.
selected. Since channels vary independently, schedufirest

are 1ID. As arrivals are Poisson, the individual user packet 1) Simulation Setting and Resultd¥ireless channel of

queues can be viewed as M/G/i/ systems. We will use sers js modeled as four-state independent discrete random
Gelenbe’s approximate expression [21] for M/Git}/packet \4riaples. In each state, a rate is achievable. Assuming fixe
drop probability F;. length packets, we normalize the rate with packet length.
A — )\)6_2% For channel staté, i packets can be sent in each slote

@5) {0,1,2,3}.

Pd(Aa K, m) =

_9 (p—=XA)(m—1)
’u2 — A2 Aps2
wheres = VE“(’“T(T)Q Throughput can be expressed in terms of v e
P, as follows: ¥ :
T(A7 o, m) = )\(1 - Pd<>\a Hy m)) (16) 11 T’-_m:gpp

—&— MW +CS
—+—MC +CS
—e— TDM +CS
—— TDM +CS

n

It can be verified that throughput in (16) is monotone increas
ing and concave with respect foand m. Hence, the incre-
mental buffer allocation algorithm also solves the thrqugh
maximization problem here.

o
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E. Comparison of Queue-Aware and Queue-Blind Policies Load of User 1
Fig. 9. N=2 and B=5 buffers per usgrz = 0.3. MC-OP performs quite
In this section, we will compare throughput performanceese to MW.
of several joint buffer management and scheduling polibies
means of simulations. In particular, queue aware and queue
blind scheduling with and without buffer partitioning witle We simulated several joint buffer management and user
compared in a multiple state wireless downlink channel.  scheduling policies and compared their total throughpuat an
average packet drop probability performances using MAT-
Simulated user scheduling mechanisms are MaxWeighiB. In each experiment]10° packet service time in the
(MW), Max. Channel (MC) and Time Division Multiplexing slowest rate are simulated. Operation is not slotted. Amiv
(TDM). MW scheduling calculates the product of backlog anflackets are accepted if the management policy allows and
rate at each slot and selects the user that has the maximy@ scheduling is done at the end of service of each packet.
of the products. Note that MW scheduler relies on cross laysince the channel states of users vary independently, tee ra

operation of link layer and physical layer as it necessitatg|iocated to a packet is independent from those of other
instantaneous backlog and channel state information. Mfackets.

selects the user that has the best rate. Due to discretesnatur
of the rates, there may be ties, i.e. best rate can be achieveBirstly simulated is a 2 user system wiMy fixed and\;



is varied. Channel service capacity;is= 0.35 pkts/slot/user. burstier.
Total throughput for different policies are depicted in §i@

and 10. Loads and throughput are normalized according to

p2 = 0.3 in Fig. 9 andps, = 0.6 in Fig. 10. The multiuser
diversity gain is observed when TDM and MC scheduling

are compared. Throughput of MW scheduling with CS or EP

is observed to outperform the others but the MC scheduling

with OP performs quite close to MW. CS policy in each
scheduling has decreasing throughput after some load level
though partitioning retains its performance.

I
w

-
N

s
N

—&— TDM + CS
—— TDM + EP

o
©
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g Fig. 12. The performance of buffer partitioning under MMPAttwmodu-
5 lating Markov chain transition probabilities equal to O/rival rate is0.2X
3 and 1.8\ according to the state of the Markov chapy. = 0.3
<
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o8r o il IV. CONCLUSION

0.7

‘Load of User 1~ In this paper, we examined buffer partitioning as a buffer
management method, and its possible use in enhancing the
use of a multiple-user wireless channel. Partitioning dmsff
for unbalanced load according to the arrival and service
statistics came out as an effective method to boost through-
) o o ~ put performance. We exhibited a polynomial-time iterative
Next, we experiment the joint policies in a 5 user downlinkiqorithm for finding optimal partitions, and adapted it for
with unbalanced loads. The results are shown in Fig. 11. M\’/\égrious scenarios. We showed the separability of the optima
scheduling clearly outperforms the others. MC + OP poligyfer partitioning and user scheduling or channel assigrm
comes after the MW. The advantage of optimal partitioning |§oplems under several simple models. It was numerically
observed. observed that using first order statistic of the arrival pssc
along with buffer partitioning can provide good performanc
‘ improvement. These results encourage further study ofnapti
scheduling and buffer management in more realistic system
models.

0.6

Fig. 10. N=2 and B=5 buffers per user. Load of user 1 is changinthe
x-axis while po = 0.5
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V. APPENDIX
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A. Proof of Theorem 2

0%4 o6 os 1L 1& 1f_4 Ul.G 1,:?- 2 22 PrOOfZ Let Z = maxxes{a1f2($2) + anl(xl)}v X" =
oad of User (x7,23) = argmax,cs{a fo(r2) + azfi(z1)}. It is enough

H *k kK
Fig. 11. N=5 and B=5 buffer per user. A realistic unbalanastllregime: to show that there exists Son(ejl 42 ) € & such that

x-axis represents load of user 1 angl= 0.2 p3 = 0.8, pa = 0.3, p5 = 0.9 @1f1(27") + azf2(23*) > Z. To show this, we will consider
two cases:

1: Assumef; (z7) > fo(x3). Then settingei* = =7 andz3* =

In the last experiment, we examine the performance of the and exchanging the channels, f, (1) 4 as fo (z5*) > Z.
policies under bursty arrivals though we use the formulas fo
Poisson arrival. In particular, Markovian Modulated Poiss 2:Assume nowf;(z}) < f2(z3). Let's exchange the channels
Arrivals (MMPA) are assumed. Total throughput and packend definex:** = f;'(fa(z3)) and x5 = fy'(fi(z])).
drop probability of the joint policies are shown in Fig. 12Note that by definition we have f1(z7**) + as fo(z5**) =
Similar trends are observed as the Poisson case. Finally, The same throughput is achieved with total buffer
as expected, CS policies enter the hogging regime (wWheXe™* = f;'(fa(x3)) + f5 '(fi(z})). In the previous allo-
throughput starts its downward slope) sooner as arrivals gation, total buffer wasX* = 27 + x5 = f; '(fi(z?)) +



f;l(fg(m§)). Because of the monotone disuniting propthe pair of functions are monotone inverse disuniting. ®
ety (and for fi(z}) < fa(23)), we have f, (fa(w3)) — o _
i (fa(z3)) > £ YA (xD) — fr Y (fi(a)). After rearrang- Acknowledgment: The material in this paper is based upon
ing we get, f; 1(f2(23)) + frl(fi(z?) > f5'(fi(x})) + Work supported by TUBITAK under Kariyer grant 106E119
f Y (f2(x5)). This means thak *** < X*. The same through- and NSF under grant CCF-0635242.
put is achieved with smaller buffer memory. Hence, there
exists some allocatiofw}*, 25*) € S such thato fi(«7*) + REFERENCES
azfa(25") > Z. n
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