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Abstract—The capacity of multiuser networks has been a long- humber of nodes. Specifically, in [1], the single relay chelnn
standing problem in information theory. Recently, Avestinehr et and the diamond network are considered. For these examples,
al. have proposed a deterministic network model to approximte j; js shown that the schemes which achieve the capacity for
multiuser wireless networks. For wireless multicast relaynet- L .
works, they have shown that the capacity for the determinist the det_erm'n'suc models lead to SChemeS_for the 00”9399”0' .
model is equal to the minimal rank of the incidence matrix of Gaussian networks. These schemes achieve a rate within 1 bit
a certain cut between the source and any of the sinks. Their and 2 bits, respectively, from the cut set bound, for all galu
proposed code construction, however, is not guaranteed toeb of channel gains.
efficient and may potentially involve an infinite block lengh. We 141 ‘the many-to-one and the one-to-many Gaussian inter-
propose an efficient linear code construction for the deterrimistic ference networks are considered. These networks are kpecia
wireless multicast relay network model. Unlike several preious . : g P
coding schemes, we do not attempt to find flows in the network. cases of interference networks with multiple users, whieee t
Instead, for a layered network, we maintain an invariant whee interference are either experienced (many-to-one) orechlg
it is required that at each stage of the code construction, ¢&in  (one-to-many) a single user. It is shown that in these céises,
sets of codewords are linearly independent. gap between the capacity of the Gaussian interference ehann
and the corresponding deterministic interference chaisel
again bounded by a constant number of bits. The work in

Establishing the capacity and finding codes for multiuse4] provides an alternative proof to [5] on the existence of a
networks have been long-standing problems in informatig@heme that can achieve a constant gap from capacity for all
theory. Even relatively simple networks, such as the brastdcvalues of channel parameters. The near optimality of the-Han
channel and the relay channel, have not been fully charagbayashi scheme is shown using the deterministic model.
terized. Multiuser channels generally have two sources Phe converse proof in [4] is simpler than that in [5] for
disturbances. The first is noise at the receivers and thendecghe Gaussian interference channel, since it avoids coatplic
is interference among different users in the network. Réégen genie-aided arguments.

a deterministic model which approximates Gaussian msiu |n [6], the half duplex butterfly network is considered. An
wireless networks has been introduced in [1]. The detesninputer bound which is tighter than the cut-set bound is obthin

tic model in [1] takes into account the multi-user interfeze for the deterministic model of that specific network. For the
but not the noise. The model is especially applicable for th@se of symmetric channels, the authors of [6] propose a
case of high SNR. scheme that achieves the outer bound and characterizes the

A deterministic model for wireless multicast relay netw®rkcapacity. They show that the deterministic model approtésia
is analyzed in [2]. In multicast networks, there is a certaihe symmetric Gaussian butterfly network to within a cortstan
source which wishes to transmit the same data to a certairFor the deterministic model of wireless multicast relay
number of nodes in the network, called the sinks. It igetworks, the achievability proof in [2] is not construetiv
shown [2] that the capacity of the deterministic model for and involves information-theoretical arguments. Thuse th
wireless multicast relay network is equal to the minimalkarncode construction is not guaranteed to be efficient and may
of an incidence matrix of a certain cut between the source apgtentially involve an infinite alphabet size (or equivalgn
any of the sinks. This can be viewed as the equivalent of th@ infinite block length). An important problem is to find
min-cut criterion in network coding for wireline network3]{ an efficient code construction for the deterministic model o

It has been shown that for several networks, the ga@reless multicast relay networks.
between the capacity of the deterministic model and that of
the corresponding Gaussian network is bounded by a constantCode Constructions for Unicast Communication
number of bits, which does not depend on the specific channeln the special case of unicast communication, a number of
fading parameters. For the networks analyzed, the gap nm@gvious code constructions have been proposed for wireles
depend on the topology of the particular network or on thelay networks. Amaudruz and Fragouli [7] propose an al-

gorithm which can be viewed as an application of the Ford
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of edges, and is the rate of the code. It is shown that for In contrastto previous schemes in [7],[8] and [9], we do not
the unicast case, one-bit operations at the intermediatesnoattempt to find the flows in the network. Instead, we maintain
suffice to achieve the maximal rate. In [8], another algamithfor the layered network an invariant where it is required tita
for finding the flow for unicast networks is developed. Theach stage of the code construction, certain sets of codewor
algorithm is based on an extension of the Rado-Hall tranrsvere linearly independent. We assume that any node in the
sal theorem for matroids and on Edmonds’ theorem. Timetwork can potentially be a sink. We design the code such
transmission scheme in [8] extracts at each relay node &sulikat if the capacity from the source to a certain node is &t lea
of the input vectors and sets the outputs to the same valdles required rate, then the node will be able to reconsthect t
as that subset. In [9], it is shown that the deterministic edoddata of the source using matrix inversion.
can be viewed as a special case of a more abstract flow modalVe find a code construction for the deterministic model of
based on linking systems and matroids. Using this approaehwireless multicast relay network. Our construction can be
the authors of [9] achieve a code complexi®yr N2 log N,.), viewed as a non-straightforward generalization of the -algo
wherer is the number of layers in the layered network, andthm in [13] for the construction of linear codes for muéit
N, is the maximal number of nodes in a layer. It is importanwireline networks. Since it is shown in [2] that linear codes
to observe that in the above code constructions for unicasfffice for achieving the optimal rate, we restrict our ditam
communication, routing or one-bit operations are sufficien to linear codes. Each sink receives on its incoming edges a
achieving the capacity of the deterministic model. linear transformation of the source. The generalizatiothef
o code construction to the wireless case is not straightfatwa
B. Our Contribution mainly due to the following two subtleties:

In this paper, we consider the problem of multicast commu- 1) In the deterministic model for wireless networks, a
nication in the deterministic model for wireless relay nefths. node transmits the same symbol to all of its neighbor-
Unlike the unicast case, for which it has been shown that one ing nodes. In contrast, in network codes for wireline
bit operations [7] or routing [8] suffice for achieving the-ca networks, each transmitting node has more degrees of
pacity, coding over a larger field is in general necessarién t freedom, and can transmit different symbols on each of
case of multiple sinks. This can be shown by considering the its outgoing edges. Even for the case when a node has
example in Figure 1, which is analogous to the example given  only a single input and the code is memoryless, the node

in [10],[11],[12] for network coding. From the analysis for can choose to transmit on each of its outputs either the
network coding, it follows that in the case of the deterntinis incoming symbol, or the zero symbol. This ability to

model, the maximal rate df can be achieved simultaneously choose to transmit the zero symbol in the wireline case
for all sinks only with an alphabet size which is at ledst is crucial. The wireless case is therefore significantly

Since the channels are all binary in the deterministic model  different.

it follows that the minimal required alphabet sizedsand  2) In the deterministic model for wireless networks, a node
therefore the minimal vector length isg,(4) = 2. receives only the bit XOR of all the incoming bits. In
contrast, in wireline network coding, each node receives
several independent inputs. The node can transmit at its
outputs any linear combination of the input symbols it
receives.

II. NETWORK MODEL

The deterministic model of wireless Gaussian relay net-
works [2] assumes that each channel in the network is a real
scalar point-to-point Gaussian channel. The transmit powe
and noise power are both normalizedlt@and the signal-to-
noise ratio (SNR) is captured by a fixed channel gain.

The wireless Gaussian relay network is modeled as a layered
graphG = (V, E) with |V| = N supernodesThe supernodes
of the deterministic model are the nodes of the original
wireless network. Each supernode containmput ports and
n output ports, where = [1 logmax; jyep{SNR; ;}], and
SNR; ; is the signal-to-noise ratio of linki, j). See Figure
2. Denote the set of input ports of supernadiey

Lin(r) = {1, a5} 1)

— and the output ports by
Fig. 1. Example Network for a Non-Binary Code
9 P Y Lour(r) ={yi, - yn} ()
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X two sets such that. NT. = ¢ andS. UT. = V. The setS,
1 contains the source and the sefl,. contains a certain sink
-x2 O O t;. As in [2], we define for each cutS.,T.) the incidence
o o matrix Hs, 7). The matrix is associated with the bipartite
o— o graph with the output ports of the supernodesSinon the
xn o o Igft sm!e and the_ input ports of the.supernodesnnon the
right side and with all the edges going frafa to 7.
supernode

For the multicast case, it is shown in [2] that for sitk
the optimal achievable rate of the deterministic model isa¢q
to the rank of the incidence matrix of the cut that separates
andt;. We denote this rank by;. The optimal rate which can
be achieved simultaneously for all the sinks in the netwisrk,

The rate of the code is. The network is assumed to havehe minimum of the individual optimal ratés; for each sink.

A layers, where all links are from layerto layer/ + 1, e denote this optimal rate by, (since each; > hoin).

l = 1,---,A — 1. The source is at layet. We consider The optimal raté,;, is also the rate achieved by our coding
multicast communication with a general number of sinkshEagcheme, as shown below. It is assumed that, is either
supernode in the network can potentially be a sink. The coflgown or thath,,,;, is larger or equal to the source rate

is designed such that for each supernode, if the the capacity

between the source and _that supernode is equal or larger than I1l. OVERVIEW OF CODING SCHEME

h, then the supernode will be able to reconstruct the source.

To illustrate the links in the deterministic network model, We now present an overview of our linear coding scheme.
consider supernodein layer! and supernode in layer/+1. We proceed through the ports in the topological order as
In the sefl oy (u), assume that output porgg, ---,y%_, ., defined above, and for each port we reach, we choose the
are connected to supernodeand porty®_, ., is not con- coding coefficients from an algebraic field, in a manner
nected to supernode The output porf/* is connected to input described as follows. Similar to network coding, each pag h
porta?, ., , of supernode, for 1 <i < n. See Figure 3.  a coding vector associated with it. Denote the coding vector
of the input ports of supernodeby

Fig. 2. Supernode

Layer / Layer [+ 1
!T?N(T)Z{Xg,---,x;}. ()
o—1 wherex] € Flmin
o—| It is shown in [2] that linear codes suffice for achieving the
o capacity. We therefore restrict our attention to linearexd
o—j specifically scalar algebraic linear codes, where the apdin
O supernode - coefficients are taken froqu_. The coc_iing vectoly’ of an
u output porty; of supernode- is determined from the coding
5 vectors of the incoming ports of the same supernadsince
Supernode the code is linear,
v
Y; :Zmi,jxf,l <jsn 4)
Fig. 3. Supernodes andv i

wherem; ; € F, are the coding coefficients to be determined

Since the network is acyclic, we can arrange all the portsy the code construction. We refer to this step of the coding
including input ports and output ports, in topological ardeprocess as “forward coding”. Once the coding vegtgrof
Specifically, for each port;, all of the ports which have the output port is determined, we have the degree of freedom
edges from them tac precedex in the topological order. to multiply it by the coding coefficienkt;. We refer to this
For the deterministic model, this means that the input pontsirt of the coding process as *“virtual coding.” This “virtua
of a certain supernode always precede the output portscofding” can in fact be incorporated into the “forward coding
the same supernode. In addition, our convention is thaspoktowever, we separate the coding into two distinct phases for
of supernodes in layer precede all the ports of supernodepurposes of presentation.
in layer [ + 1, for eachl = 1,---,\ — 1. We also make An input portz] of a supernode at layer/ may have
the assumption that within a single layer, the supernodes ar< p < N,. edges incoming into it, wher®, is the maximal
ordered from top to bottom. This completely specifies theumber of supernodes at a layer. These incoming edges emerge
topological order. from output ports of several supernodes in layer 1. We

We define a cut of supernodés = (S.,T.). The cut is denote this set op ports by P(z}). If the coding vectors of
defined as a partition of the supernodes in the network intfee output ports in the sét(z]) are given byyy, - - -, y,, then



the coding vector of the input post] is given by: already been determined, and the $gtfor the rest of the
» ports. The coding coefficients of ports$h will not be further
X! = Z kiy; (5) updated by the coding process. An output port isSinif the
=1 coding coefficientsn,; ; of its supernode have already been
etermined. An input port] is in S, if all of the virtual
oefficientsk; of the output ports inP(x]) have already been
paﬂtermined. Figure 5 shows the portsgg and7..

wherek; € F, are the coding coefficients to be determined b
the code construction. For a certain output pgrtthere can
be several edges emerging from it and incoming into seve
input ports of different supernodes in the next level. Weaden
the set of these input ports by (y;). The constraint on the
coding coefficientk; is that for all of the ports inN(y;),
we can choose during the “virtual coding” step only a single
coefficientk;. See illustration of the setB(z;) and N (y,) in
Figure 4.

N(yj) °
P(x[) ©
Layer / Layer /+1 ®Ports in S,
OPorts in 7,
Fig. 5. S. andT.
3_7\ . L We note that a cut of port§; is not necessarily a cut
o v_o of supernodes. In a cut of ports, different ports of the same
A_g supernode can be in two different parts of the cut. We do,
o however, restrict ourselves to a specific type of cuts ofgort
In our discussion, all the input ports of a specific supernode
are on the same side of the cut, and all the output ports of a
specific supernode are on the same side of the cut.
We denote the boundary of the aiitby D, . It is defined
o_v as the union of two sets:
S A
0—7\ L Me, = {PortsinT, which are either
O— A~
» v—;’ input ports with incoming edgAes fros).
A:’; or output ports with inputs irb..}
Qc, = {PortsinS, which are either
input ports with outputs ir7}, (6)

or output ports with edges outgoing 126;}

That is,
D¢, = Me, U Qc, (7)

The edges on the boundary are between ports on the boundary,

I
K

i o—| o from Q¢, to Mc,. Figure 6 shows the ports B¢, and Figure
O—v—‘o’ 7 shows the ports i, .
o—A—o By considering the cut that separates the ports of source

s and the other ports in the network, we havg;, < n .
Since a single supernode contributeports to the boundary,
it follows that there are at least ports in Q¢,. The maximal

Fig. 4. P(z;) and N(y;) number of ports inQc, is finite and is denoted bY¥t,,qq. It
follows that
We now define acut of ports For the coding process, let hmin <1 <1Qc,| < Mz = max |Qg,|. (8)
Ce

the current cut of the algorithifi;, wheret is the time index
for the current step of the algorithm, be a separation of theThe code construction considers each subseét,f, ports
ports into the setS., for which the coding coefficients havein Q¢,. Such a subset can be a collection of both input



linearly independent coding vectors, as long as the togolog
allows for that. If that invariant is maintained throughadli¢
code construction, then the code is optimal in the sense that
if this construction fails to find linearly independent cogli
vectors for a set of edges, then any other construction will
also fail. Subsets iy, which have linearly independent coding
vectors can be used by the sinks to reconstruct the data of the
source by matrix inversioA.

The algorithm maintains at each stagea list £, of
®Ports in D, subsets with sizé,,;, which according to the topology of the
network, can be associated with linearly independent gpdin
vectors. In other words, the lisf, C S; contains only the
subsets of ports i, which can be linearly independent. As

Fig. 6. D¢,

o8 in [15], we call these subsetsgular.
n n L: = {Regular subsets of¢, of siz€h,n} (10)
It follows directly that
o el < s < () (1)

Thus, the invariant of the algorithm is that for each regular
subset ofh,,;, ports in Qc,, the coding vectors should be
Qpors in 0, linearly independent (a basis). As the algorithm proceeds,
ports may leave or ente@¢,. The list £; is then updated
accordingly, as described in the next sections. We note that
there is a single lis; at each instant for all the sinks in the
network, as the sinks are not even required to be known at the
time of the code construction. Likewise, there is only a kng
cutC; and a single sef, at each instant of the algorithm for
St = {Subsets oDc, of siz€hin} (9) all the sinks.

The number of subsets if; is upper bounded by/™*), IV. ALGORITHM DESCRIPTION
since in each subset there drg;, ports chosen from at oSt . 0o rithm starts from the input ports of the sousce

hm“.”” ports. Some (.)f the supsetsgﬁg.can be assomatgd with The upperh,,;, input ports of the source have as their coding
coding vectors which are linearly independent, while other

. . . ectors the standard basis of dimensibp;,. Trivially, at
subsets cannot have linearly independent coding vectors R A

. ~ Yhis stage, the invariant of the algorithm is maintainedriby
anylinear code), due to the topology of the network. Con3|det e algorithm, each time we proceed to the next port in the

for instance, the example in Figure 8. The coding vectors %pological order, we need to determine the following:

the output portgy, - - - y5 cannot be linearly independent for _ .
any code since the supernode has only a single input port. 1) The coding coefficients for the new port (and thus the
coding vectors)

2) The updated the lisf; according to the new cuf;.

We show how to perform these steps for the two types of
ports:

Fig. 7. Qc,

ports and output ports. For the current ¢yt we denote the
collection all subsets of sizk,,;, by S;.

X O O
: i' « Output ports
y ? « Input ports
3 . . .
oy, According to our convention, the topological order goes
oy, through the ports one layer after another. For each layereth
supernode are two stages. First, the coding for the input ports has to

be determined and then the coding for the output ports. We
start by coding for the output ports, assuming that the apdin
vectors at the input ports are given.

Fig. 8. Example of a Non-Regular Set of Ports

2The coding vectors at the edges incoming into each sink camane

The i . f | ithm i h h known to the sink by the source transmitting the unit maffikus, the sink
e Invariant ot our algorithm is to ensure that at eac StaQemformed of the matrix which it must invert for decodinghi¥ idea is

of the code construction, each subsetSinis associated with similar to the one used for network coding [14].



A. Coding for Output Ports wherev;,i = 1,---,p, are the contributions of the coding
Given the coding vectors of the input ports of the supernodéectors of the input port¢z . . ---,z;,} that are not iniv’.

we can choose for the coding vectors of the output ports ah{€ vi's are assumed to be fixed.

linear combination of the coding vectors of the input porfts o We know thatl¥" is in the list £, and therefore the set of

the same supernode. Recall that the input ports of supernd@6torsW = {xi, -, x;, Wpi1,---, wa,,,, } is a basis. We
r are given byl';y (r) = {7, -, 2" }. For the output ports need to determine under which conditions the sub&&tis
] yYn s ’

we assume, without loss of generality, that in the topolalgicalso a basis. W' is a basis, then the following equation

order, porty; precedeyyy, if j < k. The coding vector of an T T
output port of the supernode is given by 041(21: X Vi) et ap(; MipXi + Vp)

yj = Z My ;X (12) + prWprr ot Ay, Whyi, = 0 (16)
‘ has a single solutionr; = --- = a,,,,, = 0. We can express
wherem; ; are the coding coefficients chosen by the codg, in the basisw:
construction.
Consider a certain subset of ports in the l&t. Some Vi = B1iXi+ 4 BpiXp+ Bp+1,iWpt1 7+ + Bhpnin,iWhonin
of the ports can be input ports and some of them output 17)

ports, as is the case in Figure 7. This situation can occur ifSubstituting and rearranging the terms of (16) yields:
the topological order has already reached the output pdrts o [

several supernodes in the layer, while other output portiseat on(may o Bra) 4o+ aplmiy + ﬁl”’)]xl T
same layer have not yet been reached. The ports in a subset™ [a(mp1 + Bpa) + -+ ap(mpp + Bpp)lx,
of the list are given by: + (a1Bpt110+ -+ apfBpti,p + Qpp1)Wpy1 + -
W =A{w, -, wn,,, }- (13) + (i1 + o+ B p + Chi) Wi,
~ 0 (18)

and their coding vectors are given by:
W = {le"'vwhmm}' (14)

Assume that at time+ 1, the topological order has reached ar(miy + Bia) + -+ ap(miy +Prp) = 0
the first output port of supernode If the setWW contains :
p > 1 input ports fromT';x(r), then the subselV has to
be updated. After the coding of the output ports of supernode ar(1mp1 + Bp) + -+ ap(mpp +Gpp) = 0 (19)
r, the input ports inC';x(r) will not be in the next cut of This can be written in matrix form as:
the algorithmC;;. They will be replaced by of the output
ports of the supernode(which arel'oyr(r) = {y], -, y- }).

SinceW is a basis, it follows that

Without loss of generality, assume that theports in W mirt e miptfp ™ 0
that are also inl;x(r) are {wy, -, wy} = {zf,---,z}}. : : : =1 :
We choose a set of size from T'oyr(r) and denote the Mp1+Bp1 - Mpp+ Boyp ay 0
set by {w},---,wy}. There are(7) such possible sets. In (20)
the new list£;,,, we will have all the(Z) subsets of the _ _

form W’ = {w}, -+, w), wyi1,-- -, wp,,. +. In order for the We note thaty; = - - - = o, = 0 is the only solution of (16)

invariant of the code construction to be maintained, weirequi’ @nd only if the matrix is non-singular. For @x p matrix

. . . . 2
the resulting coding vectors of all of the§g) new subsets to Vel @ field of sizeg, the total number of matrices i .
be simultaneously linearly independent. P Using a combinatorial argument, the number of non-singular
Proposition 1 Consider a certain subs#t in the list £,. Matrices is:
If the alphabet sizey > 2, then there exists a set of coding

coefﬁcientSmi,j SV | g i<mn,l g j<mn, sgch that the (@~ 1) — )P —?) (¢ — Y (21)
coding vectors of a certain subdét’ in the new listZ; ., are ) 1 1 1
linearly independent. = ¢° (1 — —p> < — p_1> (1 — —)
Proof: 4 4 4
Consider a certain subs8t in the list £;, which contains > qP2(1 _ 1)10
p > 1 input ports fromI';y(r). Without loss of generality, q
assume{ws, - - -, w, } are input portz7, - - -z, }. The coding Equation (21) can be explained as follows. For the first colum
vectors of the subsdl/’ are in the following form of the matrix, we can choose any vector, except the zero vecto
p P There areg? — 1 ways to do that. For the second column, we
W = {Z mi1X; + Vi, -, Z M pX; + Vp, can choose any vectors, except any multiple of the first colum
i=1 i=1 (which includes the zero vector). Thus, there gite- ¢ ways

Wptt, s Whoin b (15) to do that. For theith column, we can choose any vector,



except any combination of the previous- 1 columns. There the code construction for network coding. From Lemma 2, it
areg¢? — ¢*~!' ways to do that. follows that we can choose the alphabet size at this stage to b
So far, we have shown the conditions faf = --- = ¢ = 2n(22‘::). It follows from the proof of Lemma 2 that the
ap = 0. If oy = --- = o = 0, then it follows directly probability of failure when the coding coefficients are atos
from (16) thata,11 = -+ = ap,,, = 0 also. This is randomly is upper bounded as
becausev,i1,: -, wy,,,, are inthe basi¥ and are therefore Bras 21 [
linearly independent. It follows that if the matrix in (209 i Py < (hmm) ;1 _ (hmm) _1 (24)
non-singular, then the vectors W’ are linearly independent. qr q 2
If ¢ > 2, then the number of non-singular matrices isherefore, the expected number of trials until the set ofarsc
positive, and we can choose the set of coding coefficieni§’ is a basis i2. A single layer has at mosY,. supernodes.
mij,1 <1 < n,1 < j < mn,such that the matrix is non- The total number of edges connecting the input ports and the
singular and therefore the coding vectorslf are linearly output ports of a certain supernoderis. It follows that the
independent. total number of edges at the layer is bounded¥yn2. In

The above proposition shows that we can find codingyr case, the equivalent to the number of siaki [13] is
coefficients such that the invariant is maintained for a lsingat most (). Therefore, as in [13], the complexity for a

h
) i , . P
setW’. The next proposition shows that we can find codm%yer isO

- JoTT STOWS TSt . (("me=) Nyn®hungn ). If the total number of layers is
coefficients such that invariant is maintained for all sBf: r, then the total complexity of the coding for output ports is

simultaneously. h 2

7" ) Nen® Ropin ) -
Proposition 2 If alphabet sizeg > n (/™) then there (i) Ne Bamin)
exists a set of coding coefficients; ; € F,,1 < ¢ < B. Coding for Input Ports

n,1 < j <mn, such that all the subsets i, have linearly  the coding of the input ports is performed jointly over
independent coding vectors simultaneously. . all supernodes in the same layer. Assume that the coding
Proof: The subsetV" in the list ; containsp > 1 input  qefficients of the output ports of layehave all already been
ports from [’y (r). From (21), it follows that for a specific \,nqated according to the construction in Section IV-A. Now
subsetiV” in L;,, the number of non-singular matrices is afye need to update the coding coefficients of the input ports of

least layer! + 1. According to our construction, the ligt, contains
ports from layerl only. We choose an arbitrary subset from

2 1\? 2 P the list
Pll—=) >¢" (1-2), 22
1 ( q) =1 ( q) ( ) W:{wlv"'vwhmm} (25)

where the last inequality follows from Bernoulli inequglit Consider the bipartite network that consists of the setsasp
which thIdS whenp < ¢ (which is trivially maintained if 11 and the input ports of layer+ 1, with all the edges from
q > n(ymer) sincep < n). Thus, the number of singularany port in W to any port in layerl + 1. We look for a

matrices Is at most matching in this bipartite graph. If there is a matching,nthe
2 2 D o1 n2_1 portw; is matched with an input port denoted byw;). The
¢ —q (1- q) P sng (23)  set of portsi(w;),j = 1, -+, huin, is denoted byiV’. Now,

consider the bipartite network that consists of the setsafsp

In the new listZ; 1, there are at mos{&:jz) subsets. For each W, W' and all the edges from any port i to any port iniv”.
subset, there are at most™ ! choices of a set of coding For this bipartite graph, if the incidence matdy - is full
coefficientsm; ;,1 < i < n,1 < j < n, such that the subset isrank, then we will show that we can find coding coefficients
linearly dependent. Therefore there are at n@%}:)nqﬁq such that the coding vectors of the portsWii are linearly
choices of sets of coding coefficients such that at least oimelependent.
of the subsets inC;.; can have dependent coding vectors. If we cannot find a set?’ such thatiW, W’ have a cor-
We would like to avoid this situation, since we want all theesponding bipartite graph with a full rank incidence matri
subsets to be linearly independent simultaneously. Tha tothen we removél from the list£, and do not replace it with
number of choices of coding coefficientSqigz. Therefore, if a new sefV”’ for the new list£; ;. We can removéV from
q> n(Z:jnf) then we will have at least a single set of codinghe list since any incidence matrix of the bipartite grapkhwi
coefficients such that all the subsets 4n,; have linearly W on one side and layér- 1 on the other side will have rank
independent coding vectors simultaneously. lower thanh,,;,,. In this case there is no regular $&t, since

We note that for this code construction, for each supernoadecording to the min-cut property in [1ho codewill be able
the coding vectors of the output ports can be viewed &sfind a seti?’ for the list that is linearly independent.
columns of a parity check matrix of a Maximum Distance In Figure 9, we see the seltE, W'. It can be verified that for
Separable (MDS) code with parametérs k = p), for each that exampleh,,;, = 3. The two sets have a perfect matching,
p defined above. but we can see that the rank of the incidence matrix is only

The complexity of this stage of the algorithm is computefl. In fact, the sefi?’’ is not regular since the upper and the
in the following, using arguments similar to those in [13] ofower ports inf¥’ always receive the same input, for any code.



Therefore, there is no subgét’ for which the invariant of the We can represent vectev; in the basisw:

algorithm can be maintained. -
g Wi = 0B1,iW1 4+ BhiniWhonin (33)

Combining with (32) yields:
(Y iakiwy) -
1S7Sh7n1n

+ ahnﬂin ( Z ¢j7hmin k7w7) =
1S7Sh7n1n
= [lafrig+ -+ Qi Br i W1 4+
— + (al/ghminyl ot Qp, /ghmin-,hmin )Whmin] (34)

Rearranging term yields:

O

@®Ports in W
e®Ports in W'

Fig. 9. Example of Non-Reguldi/’ (@111 + ot Qi B + Q101,261 + -

+ ahmin¢17hmin kl)wl (35)
Now, assume we have found a gét' with the required R
properties, then the coding vectors of the output port§in (01 Bhyin,t + -+ Uhyir Bhoinshomin + CLOhin 1 KR 0

are given by ahmin¢hminahminkhmin )Whmin =0

W = {Wl? T 7Wh7n1in} (26)

. . . . Since W is assumed to be a basis, the relation can be
The coding vectors in the input ports IV’ are given by

maintained only if the coefficients of the vectors are allozer

W ={wl,---,wj, } (27) and therefore:
The vectorw; is in the form g+ Fan,,. B, +aidr ik 4
wi= Y gukws Wi (28) + Mhpin P k1 =0
1<j<hmin

wherek; are the coding coefficients to be determined during 1B 14t an B e+ ardn. 1kn
this stage of the algorithm, ar; is the contribution of output e T T
ports of layerl that are not ini¥. The binary¢,; € {1,0} o Qi Phni i K = 0 (36)
is 1 if there is an edge from output pout; to input portv; Or in matrix notation,

and zero otherwise. Note thg; ; is in fact element(j, i) of Bii+ 1k Bin, .. + b1n,. ki
matrix Hyy, w7, and therefore the matrix can be written as: . .

ﬁhmmJ + ¢h7nin71kjhmin e ﬁhnlinvhmin + ¢h’minvh7n1ﬂn khmm
P11 DPLhin o 0
Hyw = | &+ - : (29) (. @)
¢hmm71 t ¢hmimhmin an 0

min

We need to find the conditions on the coefficiéntunder o _
which the ports i/’ have coding vectors which are linearly Denote the matrix in (37) byl. The zero vector is the only

independent. Consider the equation: solution to (37) if and only if the matri is full rank. The
determinant of the matrix is a polynomial in the parameters
aw) +-+ap,,wh =0 (30) {Bij. k), i1 < 0,5 < hpmin}. Denote the polynomial as

A(Bijs kjs biis 1 <0y < himin). When the parameters ; =

Combining with (28), it follows that 0, the matrixA is the same as matrikly, 1 in (29), except

aq( Z Gjkjw; +Wq) + - row ¢ is multiplied by ;. It follows that the polynomialA is
1<j<Pmin of the form:
g Z P hmin kj Wi + Wi ) = 0 (31) Aww (Bi gy ki, $igs 1 <4, < hunin)
1< <hmin .
Rearranging terms yields: =7 1<j1<_£ | ki +06(Bi, kij, by 1 < 4,5 < himi 38)
ar( Z Pjakjwi) 4 wherey # 0 is the determinant of matri&ly v (assumed to
1sjshmin be full rank) ands(-) is a polynomial such that the sum of the
+ ap,,( Z D hmin KiW ;) degrees of all the parametérs 1 < j < hy,n, is smaller than
1<j<hmin hmin. It follows that for constants; ;, ¢; ;,1 < 4,5 < hmin,
= —aqW1— " —Qp,; Why, (32) A is not the zero polynomial.



In [16], an algorithm is suggested for finding an assignment V. CONCLUSION

for the k;'s, such that the value of the polynomial does not \we have proposed an efficient linear code construction for
vanish to zero. The polynomial in (38) corresponds to thfe deterministic wireless multicast relay network modair

pair of subsets¥V,W'. We need to find the corresponding:ode construction does not require finding network flows or
polynomials for all possible pairs of subsel, V', that nowing the exact location of the sinks. When normalized by
satisfy the condition of a matching and full rank incidencgye number of sinks, our code construction has a complexity
matrix. We denote the set of all these paii¥, W’) asP:. \yhich is comparable to those of previous coding schemes for
Following the derivation in [16], in order for the code tois#t 3 single sink. A possible direction for future research is to
our invariant, we need to assign the coding coefficients sugBe our construction to find new coding schemes for practical

that the value of the following polynomial is not zero: multiuser networks with receiver noise.
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We can compare the complexity to previous schemes from
[7] and [9]. The complexity in [7] for a single sink is
O(|V||E|h®) whereas in [9] the complexity i©(r N log N,.).
For our scheme, in the case of a large number of sinks
d= O((ZZf:))’ the complexity per sink i€, (N, n2rhmin),
where the subscript denotes that the complexity is per sink.
It follows that the complexity of our algorithm per sink is
comparable to those of previous schemes.



