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Abstract—The capacity of multiuser networks has been a long-
standing problem in information theory. Recently, Avestimehr et
al. have proposed a deterministic network model to approximate
multiuser wireless networks. For wireless multicast relaynet-
works, they have shown that the capacity for the deterministic
model is equal to the minimal rank of the incidence matrix of
a certain cut between the source and any of the sinks. Their
proposed code construction, however, is not guaranteed to be
efficient and may potentially involve an infinite block length. We
propose an efficient linear code construction for the deterministic
wireless multicast relay network model. Unlike several previous
coding schemes, we do not attempt to find flows in the network.
Instead, for a layered network, we maintain an invariant where
it is required that at each stage of the code construction, certain
sets of codewords are linearly independent.

I. I NTRODUCTION

Establishing the capacity and finding codes for multiuser
networks have been long-standing problems in information
theory. Even relatively simple networks, such as the broadcast
channel and the relay channel, have not been fully charac-
terized. Multiuser channels generally have two sources of
disturbances. The first is noise at the receivers and the second
is interference among different users in the network. Recently,
a deterministic model which approximates Gaussian multi-user
wireless networks has been introduced in [1]. The determinis-
tic model in [1] takes into account the multi-user interference
but not the noise. The model is especially applicable for the
case of high SNR.

A deterministic model for wireless multicast relay networks
is analyzed in [2]. In multicast networks, there is a certain
source which wishes to transmit the same data to a certain
number of nodes in the network, called the sinks. It is
shown [2] that the capacity of the deterministic model for a
wireless multicast relay network is equal to the minimal rank
of an incidence matrix of a certain cut between the source and
any of the sinks. This can be viewed as the equivalent of the
min-cut criterion in network coding for wireline networks [3].

It has been shown that for several networks, the gap
between the capacity of the deterministic model and that of
the corresponding Gaussian network is bounded by a constant
number of bits, which does not depend on the specific channel
fading parameters. For the networks analyzed, the gap may
depend on the topology of the particular network or on the
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number of nodes. Specifically, in [1], the single relay channel
and the diamond network are considered. For these examples,
it is shown that the schemes which achieve the capacity for
the deterministic models lead to schemes for the corresponding
Gaussian networks. These schemes achieve a rate within 1 bit
and 2 bits, respectively, from the cut set bound, for all values
of channel gains.

In [4], the many-to-one and the one-to-many Gaussian inter-
ference networks are considered. These networks are special
cases of interference networks with multiple users, where the
interference are either experienced (many-to-one) or caused by
(one-to-many) a single user. It is shown that in these cases,the
gap between the capacity of the Gaussian interference channel
and the corresponding deterministic interference channelis
again bounded by a constant number of bits. The work in
[4] provides an alternative proof to [5] on the existence of a
scheme that can achieve a constant gap from capacity for all
values of channel parameters. The near optimality of the Han-
Kobayashi scheme is shown using the deterministic model.
The converse proof in [4] is simpler than that in [5] for
the Gaussian interference channel, since it avoids complicated
genie-aided arguments.

In [6], the half duplex butterfly network is considered. An
outer bound which is tighter than the cut-set bound is obtained
for the deterministic model of that specific network. For the
case of symmetric channels, the authors of [6] propose a
scheme that achieves the outer bound and characterizes the
capacity. They show that the deterministic model approximates
the symmetric Gaussian butterfly network to within a constant.

For the deterministic model of wireless multicast relay
networks, the achievability proof in [2] is not constructive
and involves information-theoretical arguments. Thus, the
code construction is not guaranteed to be efficient and may
potentially involve an infinite alphabet size (or equivalently
an infinite block length). An important problem is to find
an efficient code construction for the deterministic model of
wireless multicast relay networks.

A. Code Constructions for Unicast Communication

In the special case of unicast communication, a number of
previous code constructions have been proposed for wireless
relay networks. Amaudruz and Fragouli [7] propose an al-
gorithm which can be viewed as an application of the Ford
and Fulkerson flow construction to the deterministic model.
The complexity of the algorithm is shown to beO(|V ||E|h5),
where V is the set of nodes in the network,E is the set



of edges, andh is the rate of the code. It is shown that for
the unicast case, one-bit operations at the intermediate nodes
suffice to achieve the maximal rate. In [8], another algorithm
for finding the flow for unicast networks is developed. The
algorithm is based on an extension of the Rado-Hall transver-
sal theorem for matroids and on Edmonds’ theorem. The
transmission scheme in [8] extracts at each relay node a subset
of the input vectors and sets the outputs to the same values
as that subset. In [9], it is shown that the deterministic model
can be viewed as a special case of a more abstract flow model
based on linking systems and matroids. Using this approach,
the authors of [9] achieve a code complexityO(rN3

r log Nr),
wherer is the number of layers in the layered network, and
Nr is the maximal number of nodes in a layer. It is important
to observe that in the above code constructions for unicast
communication, routing or one-bit operations are sufficient for
achieving the capacity of the deterministic model.

B. Our Contribution

In this paper, we consider the problem of multicast commu-
nication in the deterministic model for wireless relay networks.
Unlike the unicast case, for which it has been shown that one
bit operations [7] or routing [8] suffice for achieving the ca-
pacity, coding over a larger field is in general necessary in the
case of multiple sinks. This can be shown by considering the
example in Figure 1, which is analogous to the example given
in [10],[11],[12] for network coding. From the analysis for
network coding, it follows that in the case of the deterministic
model, the maximal rate of2 can be achieved simultaneously
for all sinks only with an alphabet size which is at least3.
Since the channels are all binary in the deterministic model,
it follows that the minimal required alphabet size is4, and
therefore the minimal vector length islog2(4) = 2.

s

1t

2t

3t

5t

4t

6t

Fig. 1. Example Network for a Non-Binary Code

In contrast to previous schemes in [7],[8] and [9], we do not
attempt to find the flows in the network. Instead, we maintain
for the layered network an invariant where it is required that at
each stage of the code construction, certain sets of codewords
are linearly independent. We assume that any node in the
network can potentially be a sink. We design the code such
that if the capacity from the source to a certain node is at least
the required rate, then the node will be able to reconstruct the
data of the source using matrix inversion.

We find a code construction for the deterministic model of
a wireless multicast relay network. Our construction can be
viewed as a non-straightforward generalization of the algo-
rithm in [13] for the construction of linear codes for multicast
wireline networks. Since it is shown in [2] that linear codes
suffice for achieving the optimal rate, we restrict our attention
to linear codes. Each sink receives on its incoming edges a
linear transformation of the source. The generalization ofthe
code construction to the wireless case is not straightforward,
mainly due to the following two subtleties:

1) In the deterministic model for wireless networks, a
node transmits the same symbol to all of its neighbor-
ing nodes. In contrast, in network codes for wireline
networks, each transmitting node has more degrees of
freedom, and can transmit different symbols on each of
its outgoing edges. Even for the case when a node has
only a single input and the code is memoryless, the node
can choose to transmit on each of its outputs either the
incoming symbol, or the zero symbol. This ability to
choose to transmit the zero symbol in the wireline case
is crucial. The wireless case is therefore significantly
different.

2) In the deterministic model for wireless networks, a node
receives only the bit XOR of all the incoming bits. In
contrast, in wireline network coding, each node receives
several independent inputs. The node can transmit at its
outputs any linear combination of the input symbols it
receives.

II. N ETWORK MODEL

The deterministic model of wireless Gaussian relay net-
works [2] assumes that each channel in the network is a real
scalar point-to-point Gaussian channel. The transmit power
and noise power are both normalized to1 and the signal-to-
noise ratio (SNR) is captured by a fixed channel gain.

The wireless Gaussian relay network is modeled as a layered
graphG = (V, E) with |V | = N supernodes. The supernodes
of the deterministic model are the nodes of the original
wireless network. Each supernode containsn input ports and
n output ports, wheren = ⌈ 12 log max{i,j}∈E{SNRi,j}⌉, and
SNRi,j is the signal-to-noise ratio of link(i, j). See Figure
2. Denote the set of input ports of supernoder by

ΓIN(r) = {xr
1, · · · , x

r
n} (1)

and the output ports by

ΓOUT (r) = {yr
1, · · · , y

r
n} (2)
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Fig. 2. Supernode

The rate of the code ish. The network is assumed to have
λ layers, where all links are from layerl to layer l + 1,
l = 1, · · · , λ − 1. The source is at layer1. We consider
multicast communication with a general number of sinks. Each
supernode in the network can potentially be a sink. The code
is designed such that for each supernode, if the the capacity
between the source and that supernode is equal or larger than
h, then the supernode will be able to reconstruct the source.

To illustrate the links in the deterministic network model,
consider supernodeu in layer l and supernodev in layer l+1.
In the setΓOUT (u), assume that output portsyu

1 , · · · , yu
n−m+1

are connected to supernodev and portyu
n−m+2 is not con-

nected to supernodev. The output portyu
i is connected to input

port xv
m+i−1 of supernodev, for 1 ≤ i ≤ n. See Figure 3.
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Fig. 3. Supernodesu andv

Since the network is acyclic, we can arrange all the ports,
including input ports and output ports, in topological order.
Specifically, for each portx, all of the ports which have
edges from them tox precedex in the topological order.
For the deterministic model, this means that the input ports
of a certain supernode always precede the output ports of
the same supernode. In addition, our convention is that ports
of supernodes in layerl precede all the ports of supernodes
in layer l + 1, for each l = 1, · · · , λ − 1. We also make
the assumption that within a single layer, the supernodes are
ordered from top to bottom. This completely specifies the
topological order.

We define a cut of supernodesB = (Sc, Tc). The cut is
defined as a partition of the supernodes in the network into

two sets such thatSc ∩ Tc = φ andSc ∪ Tc = V . The setSc

contains the sources and the setTc contains a certain sink
tj . As in [2], we define for each cut(Sc, Tc) the incidence
matrix H(Sc,Tc). The matrix is associated with the bipartite
graph with the output ports of the supernodes inSc on the
left side and the input ports of the supernodes inTc on the
right side and with all the edges going fromSc to Tc.

For the multicast case, it is shown in [2] that for sinktj ,
the optimal achievable rate of the deterministic model is equal
to the rank of the incidence matrix of the cut that separatess

andtj . We denote this rank byhj . The optimal rate which can
be achieved simultaneously for all the sinks in the network,is
the minimum of the individual optimal rateshj for each sink.
We denote this optimal rate byhmin (since eachhj ≥ hmin).
The optimal ratehmin is also the rate achieved by our coding
scheme, as shown below. It is assumed thathmin is either
known or thathmin is larger or equal to the source rateh.

III. OVERVIEW OF CODING SCHEME

We now present an overview of our linear coding scheme.
We proceed through the ports in the topological order as
defined above, and for each port we reach, we choose the
coding coefficients from an algebraic fieldFq in a manner
described as follows. Similar to network coding, each port has
a coding vector associated with it. Denote the coding vectors
of the input ports of supernoder by

xr
IN (r) = {xr

1, · · · ,x
r
n}. (3)

wherexr
i ∈ F

hmin

q

It is shown in [2] that linear codes suffice for achieving the
capacity. We therefore restrict our attention to linear codes,
specifically scalar algebraic linear codes, where the coding
coefficients are taken fromFq. The coding vectoryr

j of an
output portyr

j of supernoder is determined from the coding
vectors of the incoming ports of the same supernoder. Since
the code is linear,

yr
j =

∑

i

mi,jx
r
i , 1 ≤ j ≤ n (4)

wheremi,j ∈ Fq are the coding coefficients to be determined
by the code construction. We refer to this step of the coding
process as “forward coding”. Once the coding vectoryr

j of
the output port is determined, we have the degree of freedom
to multiply it by the coding coefficientkj . We refer to this
part of the coding process as “virtual coding.” This “virtual
coding” can in fact be incorporated into the “forward coding”.
However, we separate the coding into two distinct phases for
purposes of presentation.

An input port xr
i of a supernoder at layer l may have

0 ≤ p ≤ Nr edges incoming into it, whereNr is the maximal
number of supernodes at a layer. These incoming edges emerge
from output ports of several supernodes in layerl − 1. We
denote this set ofp ports byP (xr

i ). If the coding vectors of
the output ports in the setP (xr

i ) are given byy1, · · · ,yp, then



the coding vector of the input portxr
i is given by:

xr
i =

p
∑

j=1

kjyj (5)

wherekj ∈ Fq are the coding coefficients to be determined by
the code construction. For a certain output portyj , there can
be several edges emerging from it and incoming into several
input ports of different supernodes in the next level. We denote
the set of these input ports byN(yj). The constraint on the
coding coefficientkj is that for all of the ports inN(yj),
we can choose during the “virtual coding” step only a single
coefficientkj . See illustration of the setsP (xi) andN(yj) in
Figure 4.
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Fig. 4. P (xi) andN(yj)

We now define acut of ports. For the coding process, let
the current cut of the algorithmCt, wheret is the time index
for the current step of the algorithm, be a separation of the
ports into the set̂Sc, for which the coding coefficients have

already been determined, and the setT̂c for the rest of the
ports. The coding coefficients of ports in̂Sc will not be further
updated by the coding process. An output port is inŜc if the
coding coefficientsmi,j of its supernode have already been
determined. An input portxr

i is in Ŝc if all of the virtual
coefficientskj of the output ports inP (xr

i ) have already been
determined. Figure 5 shows the ports inŜc and T̂c.
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Fig. 5. Ŝc and T̂c

We note that a cut of portsCt is not necessarily a cut
of supernodes. In a cut of ports, different ports of the same
supernode can be in two different parts of the cut. We do,
however, restrict ourselves to a specific type of cuts of ports.
In our discussion, all the input ports of a specific supernode
are on the same side of the cut, and all the output ports of a
specific supernode are on the same side of the cut.

We denote the boundary of the cutCt by DCt
. It is defined

as the union of two sets:

MCt
= {Ports in T̂c which are either

input ports with incoming edges from̂Sc

or output ports with inputs in̂Sc}

QCt
= {Ports in Ŝc which are either

input ports with outputs in̂Tc (6)

or output ports with edges outgoing tôTc}

That is,
DCt

=MCt
∪ QCt

(7)

The edges on the boundary are between ports on the boundary,
fromQCt

toMCt
. Figure 6 shows the ports inDCt

and Figure
7 shows the ports inQCt

.
By considering the cut that separates the ports of source

s and the other ports in the network, we havehmin ≤ n .
Since a single supernode contributesn ports to the boundary,
it follows that there are at leastn ports inQCt

. The maximal
number of ports inQCt

is finite and is denoted byhmax. It
follows that

hmin ≤ n ≤ |QCt
| ≤ hmax ≡ max

Ct

|QCt
|. (8)

The code construction considers each subset ofhmin ports
in QCt

. Such a subset can be a collection of both input
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ports and output ports. For the current cutCt, we denote the
collection all subsets of sizehmin by St.

St = {Subsets ofQCt
of sizehmin} (9)

The number of subsets inSt is upper bounded by
(

hmax

hmin

)

,
since in each subset there arehmin ports chosen from at most
hmax ports. Some of the subsets inSt can be associated with
coding vectors which are linearly independent, while other
subsets cannot have linearly independent coding vectors (for
any linear code), due to the topology of the network. Consider,
for instance, the example in Figure 8. The coding vectors of
the output portsy1, · · · y5 cannot be linearly independent for
any code since the supernode has only a single input port.
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Fig. 8. Example of a Non-Regular Set of Ports

The invariant of our algorithm is to ensure that at each stage
of the code construction, each subset inSt is associated with

linearly independent coding vectors, as long as the topology
allows for that. If that invariant is maintained throughoutthe
code construction, then the code is optimal in the sense that
if this construction fails to find linearly independent coding
vectors for a set of edges, then any other construction will
also fail. Subsets inSt which have linearly independent coding
vectors can be used by the sinks to reconstruct the data of the
source by matrix inversion2.

The algorithm maintains at each staget a list Lt of
subsets with sizehmin which according to the topology of the
network, can be associated with linearly independent coding
vectors. In other words, the listLt ⊂ St contains only the
subsets of ports inSt which can be linearly independent. As
in [15], we call these subsetsregular:

Lt = {Regular subsets ofQCt
of sizehmin} (10)

It follows directly that

|Lt| ≤ |St| ≤

(

hmax

hmin

)

(11)

Thus, the invariant of the algorithm is that for each regular
subset ofhmin ports inQCt

, the coding vectors should be
linearly independent (a basis). As the algorithm proceeds,
ports may leave or enterQCt

. The list Lt is then updated
accordingly, as described in the next sections. We note that
there is a single listLt at each instant for all the sinks in the
network, as the sinks are not even required to be known at the
time of the code construction. Likewise, there is only a single
cut Ct and a single setSt at each instant of the algorithm for
all the sinks.

IV. A LGORITHM DESCRIPTION

The algorithm starts from the input ports of the sources.
The upperhmin input ports of the source have as their coding
vectors the standard basis of dimensionhmin. Trivially, at
this stage, the invariant of the algorithm is maintained. During
the algorithm, each time we proceed to the next port in the
topological order, we need to determine the following:

1) The coding coefficients for the new port (and thus the
coding vectors)

2) The updated the listLt according to the new cutCt.

We show how to perform these steps for the two types of
ports:

• Output ports
• Input ports

According to our convention, the topological order goes
through the ports one layer after another. For each layer, there
are two stages. First, the coding for the input ports has to
be determined and then the coding for the output ports. We
start by coding for the output ports, assuming that the coding
vectors at the input ports are given.

2The coding vectors at the edges incoming into each sink can bemade
known to the sink by the source transmitting the unit matrix.Thus, the sink
is informed of the matrix which it must invert for decoding. This idea is
similar to the one used for network coding [14].



A. Coding for Output Ports

Given the coding vectors of the input ports of the supernode,
we can choose for the coding vectors of the output ports any
linear combination of the coding vectors of the input ports of
the same supernode. Recall that the input ports of supernode
r are given byΓIN (r) = {xr

1, · · · , x
r
n}. For the output ports,

we assume, without loss of generality, that in the topological
order, portyr

j precedesyr
k, if j ≤ k. The coding vector of an

output port of the supernode is given by

yr
j =

∑

i

mi,jx
r
i (12)

where mi,j are the coding coefficients chosen by the code
construction.

Consider a certain subset of ports in the listLt. Some
of the ports can be input ports and some of them output
ports, as is the case in Figure 7. This situation can occur if
the topological order has already reached the output ports of
several supernodes in the layer, while other output ports atthe
same layer have not yet been reached. The ports in a subset
of the list are given by:

W = {w1, · · · , whmin
}. (13)

and their coding vectors are given by:

W = {w1, · · · , whmin
}. (14)

Assume that at timet+1, the topological order has reached
the first output port of supernoder. If the set W contains
p ≥ 1 input ports fromΓIN (r), then the subsetW has to
be updated. After the coding of the output ports of supernode
r, the input ports inΓIN (r) will not be in the next cut of
the algorithmCt+1. They will be replaced byp of the output
ports of the supernoder (which areΓOUT (r) = {yr

1, · · · , y
r
n}).

Without loss of generality, assume that thep ports in W

that are also inΓIN (r) are {w1, · · · , wp} = {xr
1, · · · , x

r
p}.

We choose a set of sizep from ΓOUT (r) and denote the
set by {w′

1, · · · , w
′
p}. There are

(

n

p

)

such possible sets. In
the new listLt+1, we will have all the

(

n
p

)

subsets of the
form W ′ = {w′

1, · · · , w
′
p, wp+1, · · · , whmin

}. In order for the
invariant of the code construction to be maintained, we require
the resulting coding vectors of all of these

(

n

p

)

new subsets to
be simultaneously linearly independent.

Proposition 1: Consider a certain subsetW in the list Lt.
If the alphabet sizeq ≥ 2, then there exists a set of coding
coefficientsmi,j ∈ Fq, 1 ≤ i ≤ n, 1 ≤ j ≤ n, such that the
coding vectors of a certain subsetW ′ in the new listLt+1 are
linearly independent.

Proof:
Consider a certain subsetW in the listLt, which contains

p ≥ 1 input ports fromΓIN (r). Without loss of generality,
assume{w1, · · · , wp} are input ports{xr

1, · · ·x
r
p}. The coding

vectors of the subsetW ′ are in the following form

W′ = {

p
∑

i=1

mi,1x
r
i + v1, · · · ,

p
∑

i=1

mi,px
r
i + vp,

wp+1, · · · ,whmin
}, (15)

where vi, i = 1, · · · , p, are the contributions of the coding
vectors of the input ports{xr

p+1, · · · , x
r
n} that are not inW .

The vi’s are assumed to be fixed.
We know thatW is in the listLt and therefore the set of

vectorsW = {xr
1, · · · ,x

r
p,wp+1, · · · ,whmin

} is a basis. We
need to determine under which conditions the subsetW′ is
also a basis. IfW′ is a basis, then the following equation

α1(
∑

i

mi,1x
r
i + v1) + · · ·+ αp(

∑

i

mi,px
r
i + vp)

+ αp+1wp+1 + · · ·+ αhmin
whmin

= 0 (16)

has a single solutionα1 = · · · = αhmin
= 0. We can express

vi in the basisW:

vi = β1,ix
r
1+ · · ·+βp,ix

r
p +βp+1,iwp+1+ · · ·+βhmin,iwhmin

(17)
Substituting and rearranging the terms of (16) yields:

[α1(m1,1 + β1,1) + · · ·+ αp(m1,p + β1,p)]x
r
1 + · · ·

+ [α1(mp,1 + βp,1) + · · ·+ αp(mp,p + βp,p)]x
r
p

+ (α1βp+1,1 + · · ·+ αpβp+1,p + αp+1)wp+1 + · · ·

+ (α1βhmin,1 + · · ·+ αpβhmin,p + αhmin
)whmin

= 0 (18)

SinceW is a basis, it follows that

α1(m1,1 + β1,1) + · · ·+ αp(m1,p + β1,p) = 0

...

α1(mp,1 + βp,1) + · · ·+ αp(mp,p + βp,p) = 0 (19)

This can be written in matrix form as:







m1,1 + β1,1 · · · m1,p + β1,p

...
. . .

...
mp,1 + βp,1 · · · mp,p + βp,p













α1

...
αp






=







0
...
0







(20)

We note thatα1 = · · · = αp = 0 is the only solution of (16)
if and only if the matrix is non-singular. For ap × p matrix
over a field of sizeq, the total number of matrices isqp2

.
Using a combinatorial argument, the number of non-singular
matrices is:

(qp − 1)(qp − q)(qp − q2) · · · (qp − qp−1) (21)

= qp2

(

1−
1

qp

) (

1−
1

qp−1

)

· · ·

(

1−
1

q

)

≥ qp2

(1−
1

q
)p

Equation (21) can be explained as follows. For the first column
of the matrix, we can choose any vector, except the zero vector.
There areqp − 1 ways to do that. For the second column, we
can choose any vectors, except any multiple of the first column
(which includes the zero vector). Thus, there areqp − q ways
to do that. For theith column, we can choose any vector,



except any combination of the previousi− 1 columns. There
areqp − qi−1 ways to do that.

So far, we have shown the conditions forα1 = · · · =
αp = 0. If α1 = · · · = αp = 0, then it follows directly
from (16) that αp+1 = · · · = αhmin

= 0 also. This is
becausewp+1, · · · ,whmin

are in the basisW and are therefore
linearly independent. It follows that if the matrix in (20) is
non-singular, then the vectors inW′ are linearly independent.

If q ≥ 2, then the number of non-singular matrices is
positive, and we can choose the set of coding coefficients
mi,j , 1 ≤ i ≤ n, 1 ≤ j ≤ n, such that the matrix is non-
singular and therefore the coding vectors ofW ′ are linearly
independent.⋄

The above proposition shows that we can find coding
coefficients such that the invariant is maintained for a single
set W ′. The next proposition shows that we can find coding
coefficients such that invariant is maintained for all setsW ′

simultaneously.
Proposition 2: If alphabet sizeq > n

(

hmax

hmin

)

, then there
exists a set of coding coefficientsmi,j ∈ Fq, 1 ≤ i ≤
n, 1 ≤ j ≤ n, such that all the subsets inLt+1 have linearly
independent coding vectors simultaneously.

Proof: The subsetW in the list Lt containsp ≥ 1 input
ports fromΓIN (r). From (21), it follows that for a specific
subsetW ′ in Lt+1, the number of non-singular matrices is at
least

qp2

(

1−
1

q

)p

≥ qp2

(

1−
p

q

)

, (22)

where the last inequality follows from Bernoulli inequality
which holds whenp < q (which is trivially maintained if
q > n

(

hmax

hmin

)

since p ≤ n). Thus, the number of singular
matrices is at most

qp2

− qp2

(

1−
p

q

)

= pqp2−1 ≤ nqn2−1. (23)

In the new listLt+1, there are at most
(

hmax

hmin

)

subsets. For each

subset, there are at mostnqn2−1 choices of a set of coding
coefficientsmi,j , 1 ≤ i ≤ n, 1 ≤ j ≤ n, such that the subset is
linearly dependent. Therefore there are at most

(

hmax

hmin

)

nqn2−1

choices of sets of coding coefficients such that at least one
of the subsets inLt+1 can have dependent coding vectors.
We would like to avoid this situation, since we want all the
subsets to be linearly independent simultaneously. The total
number of choices of coding coefficients isqn2

. Therefore, if
q > n

(

hmax

hmin

)

, then we will have at least a single set of coding
coefficients such that all the subsets inLt+1 have linearly
independent coding vectors simultaneously.⋄

We note that for this code construction, for each supernode,
the coding vectors of the output ports can be viewed as
columns of a parity check matrix of a Maximum Distance
Separable (MDS) code with parameters(n, k = p), for each
p defined above.

The complexity of this stage of the algorithm is computed
in the following, using arguments similar to those in [13] on

the code construction for network coding. From Lemma 2, it
follows that we can choose the alphabet size at this stage to be
q = 2n

(

hmax

hmin

)

. It follows from the proof of Lemma 2 that the
probability of failure when the coding coefficients are chosen
randomly is upper bounded as

Pf ≤

(

hmax

hmin

)

nqn2−1

qn2
=

(

hmax

hmin

)

n

q
=

1

2
(24)

Therefore, the expected number of trials until the set of vectors
W′ is a basis is2. A single layer has at mostNr supernodes.
The total number of edges connecting the input ports and the
output ports of a certain supernode isn2. It follows that the
total number of edges at the layer is bounded byNrn

2. In
our case, the equivalent to the number of sinksd in [13] is
at most

(

hmax

hmin

)

. Therefore, as in [13], the complexity for a
layer isO(

(

hmax

hmin

)

Nrn
2hmin). If the total number of layers is

r, then the total complexity of the coding for output ports is
O(

(

hmax

hmin

)

Nrn
2hminr).

B. Coding for Input Ports

The coding of the input ports is performed jointly over
all supernodes in the same layer. Assume that the coding
coefficients of the output ports of layerl have all already been
updated according to the construction in Section IV-A. Now
we need to update the coding coefficients of the input ports of
layer l+1. According to our construction, the listLt contains
ports from layerl only. We choose an arbitrary subset from
the list

W = {w1, · · · , whmin
} (25)

Consider the bipartite network that consists of the sets of ports
W and the input ports of layerl + 1, with all the edges from
any port in W to any port in layerl + 1. We look for a
matching in this bipartite graph. If there is a matching, then
port wj is matched with an input port denoted byl(wj). The
set of portsl(wj), j = 1, · · · , hmin, is denoted byW ′. Now,
consider the bipartite network that consists of the sets of ports
W, W ′ and all the edges from any port inW to any port inW ′.
For this bipartite graph, if the incidence matrixHW,W ′ is full
rank, then we will show that we can find coding coefficients
such that the coding vectors of the ports inW ′ are linearly
independent.

If we cannot find a setW ′ such thatW, W ′ have a cor-
responding bipartite graph with a full rank incidence matrix,
then we removeW from the listLt and do not replace it with
a new setW ′ for the new listLt+1. We can removeW from
the list since any incidence matrix of the bipartite graph with
W on one side and layerl+1 on the other side will have rank
lower thanhmin. In this case there is no regular setW ′, since
according to the min-cut property in [1],no codewill be able
to find a setW ′ for the list that is linearly independent.

In Figure 9, we see the setsW, W ′. It can be verified that for
that example,hmin = 3. The two sets have a perfect matching,
but we can see that the rank of the incidence matrix is only
2. In fact, the setW ′ is not regular since the upper and the
lower ports inW ′ always receive the same input, for any code.



Therefore, there is no subsetW ′ for which the invariant of the
algorithm can be maintained.

s t

Win Ports

'in Ports W

Fig. 9. Example of Non-RegularW ′

Now, assume we have found a setW ′ with the required
properties, then the coding vectors of the output ports inW

are given by
W = {w1, · · · ,whmin

} (26)

The coding vectors in the input ports inW ′ are given by

W′ = {w′
1, · · · ,w

′
hmin
} (27)

The vectorwi is in the form

w′
i =

∑

1≤j≤hmin

φj,ikjwj + w̃i (28)

wherekj are the coding coefficients to be determined during
this stage of the algorithm, and̃wi is the contribution of output
ports of layerl that are not inW . The binaryφj,i ∈ {1, 0}
is 1 if there is an edge from output portwj to input portvi

and zero otherwise. Note theφj,i is in fact element(j, i) of
matrix HW,W ′ , and therefore the matrix can be written as:

HW,W ′ =







φ1,1 · · · φ1,hmin

...
. . .

...
φhmin,1 · · · φhmin,hmin






(29)

We need to find the conditions on the coefficientkj under
which the ports inW ′ have coding vectors which are linearly
independent. Consider the equation:

α1w
′
1 + · · ·+ αhmin

w′
hmin

= 0 (30)

Combining with (28), it follows that

α1(
∑

1≤j≤hmin

φj,1kjwj + w̃1) + · · ·

+ αhmin
(

∑

1≤j≤hmin

φj,hmin
kjwj + w̃hmin

) = 0 (31)

Rearranging terms yields:

α1(
∑

1≤j≤hmin

φj,1kjwj) + · · ·

+ αhmin
(

∑

1≤j≤hmin

φj,hmin
kjwj)

= −α1w̃1 − · · · − αhmin
w̃hmin

(32)

We can represent vector̃wi in the basisW:

w̃i = β1,iw1 + · · ·+ βhmin,iwhmin
(33)

Combining with (32) yields:

α1(
∑

1≤j≤hmin

φj,1kjwj) + · · ·

+ αhmin
(

∑

1≤j≤hmin

φj,hmin
kjwj) =

− [(α1β1,1 + · · ·+ αhmin
β1,hmin

)w1 + · · ·

+ (α1βhmin,1 + · · ·+ αhmin
βhmin,hmin

)whmin
] (34)

Rearranging term yields:

(α1β1,1 + · · ·+ αhmin
β1,hmin

+ α1φ1,1k1 + · · ·

+ αhmin
φ1,hmin

k1)w1 (35)

+ · · ·+

(α1βhmin,1 + · · ·+ αhmin
βhmin,hmin

+ α1φhmin,1khmin
+ · · ·

+ αhmin
φhmin,hmin

khmin
)whmin

= 0

Since W is assumed to be a basis, the relation can be
maintained only if the coefficients of the vectors are all zero
and therefore:

α1β1,1 + · · ·+ αhmin
β1,hmin

+ α1φ1,1k1 + · · ·

+ αhmin
φ1,hmin

k1 = 0

· · ·

α1βhmin,1 + · · ·+ αhmin
βhmin,hmin

+ α1φhmin,1khmin

+ · · ·+ αhmin
φhmin,hmin

khmin
= 0 (36)

or in matrix notation,




β1,1 + φ1,1k1 · · · β1,hmin
+ φ1,hmin

k1

...
. . .

...
βhmin,1 + φhmin,1khmin

· · · βhmin,hmin
+ φhmin,hmin

khmin









α1

...
αhmin



 =





0

...
0



 (37)

Denote the matrix in (37) byA. The zero vector is the only
solution to (37) if and only if the matrixA is full rank. The
determinant of the matrixA is a polynomial in the parameters
{βi,j, kj , φi,j , 1 ≤ i, j ≤ hmin}. Denote the polynomial as
∆(βi,j , kj , φi,j , 1 ≤ i, j ≤ hmin). When the parametersβi,j =
0, the matrixA is the same as matrixHW,W ′ in (29), except
row i is multiplied byki. It follows that the polynomial∆ is
of the form:

∆W,W ′ (βi,j , ki,j , φi,j , 1 ≤ i, j ≤ hmin)

= γ
∏

1≤j≤hmin

kj + δ(βi,j , ki,j , φi,j , 1 ≤ i, j ≤ hmin)(38)

whereγ 6= 0 is the determinant of matrixHW,W ′ (assumed to
be full rank) andδ(·) is a polynomial such that the sum of the
degrees of all the parameterskj , 1 ≤ j ≤ hmin, is smaller than
hmin. It follows that for constantβi,j , φi,j , 1 ≤ i, j ≤ hmin,
∆ is not the zero polynomial.



In [16], an algorithm is suggested for finding an assignment
for the kj ’s, such that the value of the polynomial does not
vanish to zero. The polynomial in (38) corresponds to the
pair of subsetsW, W ′. We need to find the corresponding
polynomials for all possible pairs of subsetsW, W ′, that
satisfy the condition of a matching and full rank incidence
matrix. We denote the set of all these pairs(W, W ′) asPt.
Following the derivation in [16], in order for the code to satisfy
our invariant, we need to assign the coding coefficients such
that the value of the following polynomial is not zero:

P =
∏

(W,W ′)∈Pt

∆W,W ′ . (39)

The polynomialP is not the zero polynomial, since it is a
product of nonzero polynomials.

For completeness, we repeat the description of the algorithm
from [16]. An algorithm to find a vectora such thatF(a) 6= 0
for a polynomialF :

Input: A polynomial F in indeterminatesξ1, ξ2, · · · , ξn,
integersi = 1, t = 1

Iteration:

1) Find the maximal degreeǫ of F in any variableξi and
let i be the smallest number such that2i > ǫ.

2) Find an elementat in F2i such thatF(ξ)|ξt=at
6= 0 and

let F ← F (ξ)|ξt=at
6= 0.

3) If t = n then halt, elset← t + 1, goto 2)

Output:(a1, a2, · · · , an).
In our scenario, the maximal degree of each variable in

∆W,W ′ is 1, because of the form of the matrix. It follows
that the maximal degree of each variable inP is at most
(

hmax

hmin

)

. Therefore,ǫ =
(

hmax

hmin

)

and we can always choose
i = ⌈log

(

hmax

hmin

)

⌉. It follows that an alphabet larger than

2
⌈log (hmax

hmin
)⌉ will ensure that we could find coding coefficients

such that all the subsets in the new listLt+1 are also
independent simultaneously. For each variable ofP , which
corresponds to a certain iteration of the algorithm, at most

2
⌈log (hmax

hmin
)⌉ assignments are required to be verified. There

are at mostNr supernodes at each layer. Therefore, the
maximal number of output ports, which is also the number
of variableskj , is Nrn. It follows that the complexity of the
coding for input ports for a single layer isO(

(

hmax

hmin

)

Nrn).
Therefore, for all layers, the complexity for the coding for
the input ports isO(

(

hmax

hmin

)

Nrnr). It follows that the total
complexity of the algorithm, for both input and output ports,
is O(

(

hmax

hmin

)

Nrn
2rhmin).

We can compare the complexity to previous schemes from
[7] and [9]. The complexity in [7] for a single sink is
O(|V ||E|h5) whereas in [9] the complexity isO(rN3

r log Nr).
For our scheme, in the case of a large number of sinks
d = O(

(

hmax

hmin

)

), the complexity per sink isOt(Nrn
2rhmin),

where the subscriptt denotes that the complexity is per sink.
It follows that the complexity of our algorithm per sink is
comparable to those of previous schemes.

V. CONCLUSION

We have proposed an efficient linear code construction for
the deterministic wireless multicast relay network model.Our
code construction does not require finding network flows or
knowing the exact location of the sinks. When normalized by
the number of sinks, our code construction has a complexity
which is comparable to those of previous coding schemes for
a single sink. A possible direction for future research is to
use our construction to find new coding schemes for practical
multiuser networks with receiver noise.
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