
On LT Codes with Decreasing Ripple Size
Jesper H. Sørensen∗, Petar Popovski∗, Jan Østergaard∗,

∗Aalborg University, Department of Electronic Systems, E-mail: {jhs, petarp, jo}@es.aau.dk

Abstract—In the orignal work on LT codes by Luby, the ripple size
during decoding was designed to be approximately constant. In fact,
the Ideal Soliton and the Robust Soliton distributions were designed to
yield an approximately unit ripple size and a fixed ripple size greater
than one, respectively. In this work, the redundancy within an LT code
is characterized, and it is found that a decreasing ripple size during
decoding is beneficial. Furthermore, a new design of LT codes with
decreasig ripple size is proposed, and it is shown that this design
significantly decreases the average amount of redundancy in comparison
to existing designs.

I. INTRODUCTION

Rateless codes are capacity achieving erasure correcting codes.
Common for all rateless codes is the ability to generate a potentially
infinite amount of encoded symbols from k input symbols. Decoding
is possible when (1+α)k encoded symbols have been received, where
α is close to zero. LT codes were developed by Luby and were the
first practical capacity achieving rateless code [1]. A key part of LT
codes is the degree distribution. Initially Luby presented the ISD,
which achieves optimal behavior by keeping a parameter called the
ripple size constantly equal to one throughout the decoding process.
A ripple size above one introduces overhead, while decoding fails if
the ripple size decreases to zero. For this reason, the ISD is optimal
in theory, however, it lacks robustness against variance in the ripple
size, which makes it inapplicable in practice. On the other hand, the
performance of the RSD, which aims at ensuring a constant ripple
size greater than one, is significantly better than that of the ISD, and
it is the de facto standard for LT codes.

In this work, we investigate the trade-off between the robustness
against variance in the ripple size and the required overhead. That is,
the amount of encoded symbols, in excess of k, necessary in order to
successfully decode, i.e. αk. We argue that the optimal robust degree
distribution for LT codes does not seek a constant ripple size. Rather
a degree distribution should ensure a ripple size which decreases
during the decoding process. We support this claim by presenting
a new degree distribution that outperforms both the RSD and the
distribution recently presented in [2].

II. BACKGROUND ON LT CODES

Assume we wish to transmit a data file. This data is divided into k
input symbols. From these input symbols a potentially infinite amount
of encoded symbols, also called output symbols, are generated. Output
symbols are XOR combinations of input symbols. The number of
input symbols used in the XOR is referred to as the degree of the
output symbol, and all input symbols contained in an output symbol
are called neighbors of the output symbol. The output symbols of
an encoder follow a certain degree distribution, π(i), which is a key
element in the design of good LT codes. The encoding process of an
LT code can be broken down into three steps, which are repeated as
many times as needed:

1) Randomly choose a degree i by sampling π(i).
2) Choose uniformly at random i of the k possible input symbols.
3) Bitwise XOR the i input symbols to obtain the output symbol.
Decoding of an LT code is based on performing the reverse XOR

operations. Initially all degree one output symbols are identified and

moved to a storage referred to as the ripple. Symbols in the ripple are
processed one by one, which means that they are removed as content
from all buffered symbols through XOR operations. Once a symbol
has been processed, it is removed from the ripple and considered
decoded. The processing of symbols in the ripple will potentially
reduce some of the buffered symbols to degree one, in which case
they are moved to the ripple. This is called a symbol release. This
makes it possible for the decoder to process symbols continuously in
an iterative fashion. The decoder alternates between two steps:

1) Identify and add all degree one symbols to the ripple.
2) Process a symbol from the ripple and remove it afterwards.
Decoding is successful when all input symbols are recovered.

III. RESULTS

To assess the evolution of the ripple size of LT codes, we provide
the following lemmas, where the proofs can be found in [3].

Lemma 1. (Release and Ripple Add Probability): The probability
that a symbol of original degree i is released and added to the ripple,
when L out of k input symbols remain unprocessed, given that the
ripple size is R at the point of release, is:

q(i, L,R) =
i(i− 1)(L−R+ 1)

∏i−3
j=0 (k − (L+ 1)− j)∏i−1

j=0 (k − j)

for i = 2, ..., k −R+ 1,

L = R, ..., k − i+ 1,

R = 1, ..., k − 1.

Lemma 2. (Redundancy Probability): Assuming a constant ripple
size R, the probability r(i, R) that a symbol of original degree i is
redundant is (under similar assumptions as in Lemma 1):

r(i, R) = 1−
k−i+1∑
L=R

q(i, L,R)

for i = 2, ..., k −R+ 1,

R = 1, ..., k − 1.

Lemma 3. (Ripple Evolution): The evolution of the ripple size, given
expected behavior in the encoding and decoding processes, can be
evaluated with the following set of equations:

Πk(i) = (1 + α)kπ(i),

for i = 1, 2, ..., k,

ΠL−1(1) = ΠL(1)− 1 +
2(L−ΠL(1))

L(L− 1)
ΠL(2),

ΠL−1(i) = ΠL(i)− i

L
ΠL(i) +

i+ 1

L
ΠL(i+ 1),

for i = 2, 3, ..., L− 1,

ΠL−1(L) = 0,

where ΠL(i) is the amount of degree i symbols left in the decoding
process, for an LT code with any degree distribution, π(i), when L
input symbols remain unprocessed.

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

Degree

R
ip

pl
e

S
iz

e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 1. The probability that an encoded symbol is redundant as a function
of its degree and the ripple size at the point of release.

The redundancy r(i, R) within an LT code with a fixed ripple size
of R, as given by Lemma 2, is shown in Fig. 1, for the case of k =
100 input symbols. Note that r(i, 1) = 0, ∀i, i.e., a released symbol
has zero probability of already being in the ripple. This implies that
a unit ripple size is optimal and the ISD should therefore be optimal.
However, we must have a more robust ripple size, to avoid that the
decoding fails, and even at R slightly greater than one, high degree
symbols are very likely to be redundant.

A. Decreasing Ripple Size

At this point, we present a new degree distribution with decreasing
ripple size. The details regarding the construction of this distribution
can be found in [3]. The main argument for a decreasing ripple size
is the fact that r(i, R) is increasing much faster as a function of
R at high i compared to at low i. Moreover, high degree symbols
are released late in the decoding process. Thus, the price, in terms
of redundancy, of having a robust ripple size increases significantly
during the decoding process. For this reason, a decreasing ripple size
will provide a better trade-off between robustness and overhead.

Definition 1. (Decreasing Ripple Degree Distribution):

θ(1) =
R

n

θ(2) =
k(k − 1)

2n(k −R)

θ(i) =
i− 2

i
θ(i− 1) for i < ⌊k/3⌉

θ(i) = θ(i− 1) for ⌊k/3⌉ ≤ i < ⌊2k/3⌉

θ(i) =
k − i+ 1

k − i
θ(i− 1) for ⌊2k/3⌉ ≤ i ≤ k −R+ 1

where n is chosen such that
∑k

i=1 θ(i) = 1.

Fig. 2 shows the ripple evolution of θ(i) at k = 1000 and R = 20.
As desired, the ripple size decreases during the decoding process,
and is quite low, yet still larger than one, near the end. It is worth
noticing that this ripple evolution is achieved already at α = 0.05. In
the same figure, the ripple evolution of the RSD is plotted at the same
α value. It is clear that the ripple of θ(i) experiences a significantly
more robust evolution than that of the RSD.

In Fig. 3, the performance of θ(i) is simulated and compared
to the RSD and the distribution proposed in [2], denoted β(i).

0 200 400 600 800 1000
−20

−15

−10

−5

0

5

10

15

20

25

Decoding Step (k−L)

R
ip

pl
e

S
iz

e

θ(i) (α = 0.05)
RSD (α = 0.05)

Fig. 2. The ripple evolution of θ(i) at k = 1000 and R = 20 compared to
the RSD at same α value.

400 600 800 1000 1200 1400 1600 1800 2000
1.08

1.1

1.12

1.14

1.16

1.18

1.2

1.22

1.24

k

A
vg

 O
ve

rh
ea

d
F

ac
to

r
(1

+α
)

RSD
β(i)
θ(i)

Fig. 3. Simulation results for the RSD, θ(i) and β(i).

The performance metric is average overhead required for successful
decoding of all k input symbols. The distributions are simulated at
k = 256, 512, 1024, and 2048. For θ(i), we used Monte Carlo sim-
ulations to obtain a good value for R at each k, i.e, R = 15, 17, 21,
and 25. The RSD is simulated with parameters c = 0.1 and δ = 1,
since these have been found to provide the smallest average overhead
in [4]. The parameters for β(i) are δ = 0.01 and R = 2 + 4

√
k, as

suggested in [2]. The results are the average of 5000 simulations
and reveal that θ(i) significantly outperforms the other distributions
at all simulated k values. The gain compared to the RSD seems
constant in absolute values for increasing k, while the gain compared
to β(i) is increasing. For example at k = 2048, θ(i) decreases α by
roughly 0.04 compared to the other distributions, which translates
into a decrease of roughly 30% in the average overhead.

REFERENCES

[1] Michael Luby, “LT Codes,” in Proc. of the 43rd Annual IEEE Symposium
on Foundations of Computer Science., pp. 271–280, Nov. 2002.

[2] Hongpeng Zhu, Gengxin Zhang and Guangxia Li, “A Novel Degree Dis-
tribution Algorithm of LT Codes,” in 11th IEEE International Conference
on Communication Technology., pp. 221–224, 2008.

[3] Jesper H. Sørensen, Petar Popovski and Jan Østergaard, “Design and
analysis of LT codes with decreasing ripple size,” IEEE Transactions
on Communications., 2010. Submitted.

[4] Frank Uyeda, Huaxia Xia and Andrew A. Chien, “Evaluation of a High
Performance Erasure Code Implementation,” Technical Report, University
of California, San Diego, 2004.

