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Abstract. In this paper, we introduce a simple but efficient greedy algorithm,
called SINCO, for the Sparse INverse COvariance selection problem, which is
equivalent to learning a sparse Gaussian Markov Network, and empirically inves-
tigate the structure-recovery properties of the algorithm. Our approach is based on
a coordinate ascent method which naturally preserves the sparsity of the network
structure. We show that SINCO is often comparable to, and, in various cases,
outperforms commonly used approaches such as glasso [7] and COVSEL [1],
in terms of both structure-reconstruction error (particularly, false positive error)
and computational time. Moreover, our method has the advantage of being easily
parallelizable. Finally, we show that SINCO’s greedy nature allows reproduction
of the regularization path behavior by applying the method to one (sufficiently
small) instance of the regularization parameter λ only; thus, SINCO can obtain a
desired number of network links directly, without having to tune the λ parameter.
We evaluate our method empirically on various simulated networks and real-life
data from biological and neuroimaging applications.

1 Introduction

In many practical applications of statistical learning the objective is not simply to
construct an accurate predictive model but rather to discover meaningful interactions
among the variables. For example, in applications such as reverse-engineering of gene
networks, discovery of functional brain connectivity patterns, or analysis of social inter-
actions, the main focus is on reconstructing the network structure representing depen-
dencies among multiple variables, such as genes, brain areas, or individuals. Probabilis-
tic graphical models, such as Markov networks, provide a statistical tool that captures
such variable interactions explicitly in a form of a graph.

Herein, we focus on learning sparse Markov Networks over Gaussian random vari-
ables (also called Gaussian Markov Random Fields, or GMRFs), which is equivalent to
reconstructing the inverse covariance (concentration, or precision) matrix C, assuming
the data are centered to have zero mean. Following the parsimony principle, our objec-
tive is to choose the simplest model, i.e. the sparsest network (matrix) that adequately
explains the data. This sparsity requirement not only improves the interpretability of the
model, but also serves as a regularizer that helps to avoid overfitting.

The sparse inverse covariance selection problem, first introduced in [4], is to find
the maximum-likelihood model with a constraint on the number of parameters (i.e.,



small l0-norm of C). In general, this is an intractable combinatorial problem. Early
approaches used greedy forward or backward search that required O(p2) maximum-
likelihood-estimation (MLE) fits for different models in order to add (delete) an edge
[8], where p is the number of variables. This approach does not scale well with the
number of variables3; moreover, the existence of MLE for C is not even guaranteed
when the number of variables exceeds the number of observations [3].

Recently, however, an alternative approximation approach to the above problem
was suggested in [21, 1] that replaces the intractable l0 constraint with its l1-relaxation,
known to enforce sparsity, and yields a convex optimization problem that can be solved
efficiently. A variety of algorithms for solving this problem were proposed in the past
few years [21, 1, 7, 14, 5, 15, 9]4.

In this paper, we introduce a very simple algorithm for solving the above l1-regularized
maximum-likelihood problem, and provide a convergence proof. Our algorithm, called
SINCO (for Sparse INverse COvariance), solves the primal problem, unlike most of its
predecessors that focus on the dual (e.g. COVSEL [1], glasso [7], as well as [5]). SINCO
uses coordinate ascent, in a greedy manner, optimizing one diagonal or two symmetric
off-diagonal elements of C at each step, unlike, for example, COVSEL or glasso which
optimize one row (column) of the dual matrix. Thus, SINCO naturally preserves the
sparsity of the solution and tends to avoid introducing unnecessary (small) nonzero el-
ements, which appears to be beneficial when the “ground-truth” structure is sufficiently
sparse.

Note that, although the current state-of-art algorithms for the above problem are
converging to the same optimal solution in the limit, the near-optimal solutions ob-
tained after any fixed number of iterations can be different structure-wise, even though
they reach similar precision in the objective function reconstruction. Indeed, it is well-
known that similar likelihoods can be obtained by two distributions with quite different
structures due to multiple (sufficiently) weak links. As to the l1-norm regularization,
although it often tends to enforce solution sparsity, it is still only an approximation to l0
(i.e. a sparse solution may have same l1-norm as a much denser one). Adding l1-norm
penalty is only guaranteed to recover the “ground-truth” model under certain condition
on the data (that are not always satisfied in practice) and for certain asymptotic growth
regimes of the regularization parameter, with growing number of samples n and dimen-
sions p (with unknown constant). So the optimal solution, as well as near-solutions at
given precision, could possibly include false positives, and one optimization method
can potentially choose sparser near-solutions (at same precision) than another method.

Thus, especially in case of sufficiently sparse ground-truth models, a method such
as SINCO may be preferable, since it is more “cautious” about adding nonzero elements
than its competitors (i.e., it adds at most two nonzero elements at a time, which are also
providing the maximum improvement in the objective function - i.e., the method selects,
in a sense, the “most important” edges first). Indeed, as demonstrated by our empirical
results, SINCO has a better capability of reducing the false-positive error rate (while

3 E.g., [11] reported difficulties running ”the forward selection MLE for more than thirty nodes
in the graph”.

4 Moreover, recent extensions of this approach impose additional structure on the graph, allow-
ing, for example, to learn blockwise-sparse models [5, 15, 10].



maintaining a similar true positive rate) when compared to glasso, a commonly used
method that we choose as a baseline here (together with the similar but less efficient
COVSEL method), since it is the only other method that maintains the initial sparsity of
solution in a controlled manner.

Another property of SINCO is that evaluating each candidate edge can be performed
very efficiently, in constant time, by solving a quadratic equation. In terms of the overall
computational time, while glasso is comparable to, or faster than SINCO for a relatively
small number of variables p, SINCO appears to have much better scaling when p in-
creases (e.g., gets closer to 1000 variables), and can significantly outperform glasso
(and, of course, COVSEL). Moreover, SINCO has the advantage of being easily paral-
lelizable due to the nature of its greedy steps. While we are not claiming SINCO’s com-
putational superiority to all state-of-art methods in the sequential setting (it is known
that the recently proposed projected gradient [5] and smooth optimization [9] methods
outperform glasso which is comparable to SINCO), we must underscore that straight-
forward massive parallelization appears to be SINCO’s unique property, as none of its
competitors seem to be parallelizable, at least not in such an easy way. In particular,
glasso solves a sequence of Lasso problems, each of which is solved using sequen-
tial coordinate descent, which does not gain from parallelization. The gradient-based
methods of [5] and [9] require an eigenvalue factorization or a matrix inverse. These
operations, while parallelizable, do not scale as efficiently as simple arithmetic opera-
tions involved in SINCO’s computations.

Next, we investigate empirically the “path-building” property of SINCO. Note that
the structure reconstruction accuracy is known to be quite sensitive to the choice of
the regularization parameter λ, and the problem of selecting the “best” value of this
parameter in practical settings remains open. (As mentioned before, recent theoretical
work has focused mainly on asymptotic consistency results [11, 21, 1, 18, 13].) Thus,
we explore SINCO vs glasso behavior in several regimes of λ. What we observe is
that SINCO’s greedy approach introduces “important” nonzero elements in a manner
similar to the path-construction process based on sequentially reducing the value of
λ. SINCO can reproduce the regularization path behavior without actually varying the
value of the regularization parameter, following instead the “greedy solution path”, i.e.
sequentially introducing non-zero elements. We observe such behavior on both syn-
thetic problems and real-life biological networks, such as E.coli transcriptional network
from the DREAM-07 challenge [16]. This behavior is somewhat similar to LARS [6]
for Lasso, however, unlike LARS, SINCO updates the coordinates which provide the
best optimal function value improvement, rather than the largest gradient component.

Finally, experiments on real-life brain imaging (fMRI) data demonstrate that SINCO
reconstructs Markov Networks that achieve the same or better classification accuracy
than its competitors while using much smaller fraction of edges (non-zero entries of the
inverse-covariance matrix). In summary, the advantages of SINCO include (1) simplic-
ity, (2) natural tendency to preserve sparsity (beneficial on sufficiently sparse problems),
(3) efficiency and a relatively straightforward massive parallelization, as well as (4) an
interesting property associated with its solution path.



2 Problem Formulation
We consider a multivariate Gaussian probability density function over a set of p ran-
dom variables X = {X1, ..., Xp} with the covariance matrix Σ and zero mean. A
Markov network (also called a Markov Random Field, or MRF) represents the condi-
tional independence structure of a joint distribution, where a missing edge (i, j) im-
plies conditional independence between Xi and Xj given all remaining variables [8].
In Gaussian MRFs, missing edges correspond to zero entries in the inverse covariance
(concentration) matrix C = Σ−1, and vice versa [8]. Thus, learning the structure of a
Gaussian MRF is equivalent to recovering the zero-pattern of the corresponding inverse-
covariance matrix. Note that the straightforward approach of just taking the inverse
of the empirical covariance matrix A = 1

n

∑n
i=1 x

T
i xi, where xi is the i-th sample,

i = 1, ..., n (i.e., the inverse of the maximum-likelihood estimate of the covariance ma-
trix Σ), does not produce the desired result. Indeed, even if the inverse exists (which is
not necessarily the case when p >> n), it does not typically contain any elements that
are exactly zero. Therefore, an explicit sparsity-enforcing constraint needs to be added
to the maximum-likelihood formulation.

A common approach to enforcing sparsity of C is to include as a penalty the (vector)
l1-norm of C, which is equivalent to imposing Laplace priors on the elements of C in
the maximum-likelihood framework [21, 7, 1, 5, 15] (see [21] for the derivation details).
The standard approach assumes that all entries of C follow the same Laplace distribu-
tion with a common parameter λ, i.e. p(Cij) =

λij

2 e−λij |Cij |, yielding the following
penalized log-likelihood maximization problem [21, 1, 7].

max
C≻0

n

2
[ln det(C)− tr(AC)]− λ||C||1. (1)

Herein, we make a more general assumption about p(C), allowing different elements
of C to have different parameters λij (as, for example, in [5]). Hence we consider the
following formulation

max
C≻0

n

2
[ln det(C)− tr(AC)]− ∥C∥S . (2)

Here by ∥C∥S we denote the sum of absolute values of the elements of the matrix S ·C,
where · denotes the element-wise product. For example, if S is a product of ρ = n

2λ
and the matrix of all ones, then the problem reduces to the standard problem in the eq.
1. The dual of this problem is

max
W≻0

{n
2
ln det(W )− np/2 : s.t. − S ≤ n

2
(W −A) ≤ S}, (3)

where the inequalities involving matrices W , A and S are element-wise. The optimality
conditions for this pair of primal and dual problems imply that W = C−1 and that
(n/2)Wij −Aij = Sij if Cij > 0 and (n/2)Wij −Aij = −Sij if Cij < 0.

3 The SINCO Method
3.1 Relation to Prior Art
Problem (2) is a special case of a semidefinite programming problem (SDP) [20], which
can be solved in polynomial time by interior point methods (IPM). However, each it-
eration requires O(p6) time and O(p4) space, which is very costly. Another reason



why using IPMs is less desirable for the structure recovery problem is that the spar-
sity pattern is recovered only in the limit, i.e., the solution does not typically include
exact zeros, and thus numerical inaccuracy can potentially interfere with the structure
recovery.

As an alternative to IPMs, several more efficient approaches were developed re-
cently for problem (2). Most of those approaches are primarily focused on solving the
dual problem in (3). For example, [1] and [7] apply the block-coordinate descent method
to the dual formulation, [9] uses a first-order optimal gradient ascent approach, and [5]
uses a projected gradient approach.

Herein, we propose a novel algorithm, called SINCO, for Sparse INverse COvari-
ance problem. SINCO solves the primal problem directly and uses coordinate ascent,
which naturally preserves the sparsity of the solution. Unlike, for example, COVSEL
and glasso that optimize one row (and the corresponding symmetric column) of the
dual matrix is at each step, SINCO only optimizes one diagonal or two (symmetric)
off-diagonal entries of the matrix C at each step. The advantage of our approach is
that the solution to each subproblem is available in closed form as a root of a quadratic
equation. Computation at each step requires a constant number of arithmetic operations,
independent of p. Hence, in O(p2) operations a potential step can be computed for all
pairs of symmetric elements (i.e., for all pairs (i, j)). Then the step which provides
the best function value improvement can be chosen, which is the essence of the greedy
nature of our approach. Once the step is taken, the update of the gradient information
requires O(p2) operations. Hence, overall, each iteration takes O(p2) operations. As we
will see later, each step is also suitable for massive parallelization.

In comparison, glasso and COVSEL require solving a quadratic programming prob-
lem when updating a row (column)5, and its theoretical and empirical complexity varies
depending on the method used, but always exceeds O(p2): it is O(p4) for COVSEL and
O(p3) for glasso. Also, the methods of [14] and [5] iterate through the columns and
require O(p4) and O(p3) time per iteration, respectively (see [5] for detailed discus-
sion). Note, however, that the overall number of iterations can be potentially lower than
in the case of SINCO, since the above methods update each row (column) at once. We
will mainly focus on comparing our method with glasso as a representative state-of-the
art technique, particularly since it is the only other method that maintains the initial
sparsity of the solution in a controlled manner. (In some cases, when we only compare
the accuracy of the solution (Section 4.4), we perform experiments with COVSEL, a
similar but less efficient implementation of the same approach as glasso).

As we will show in our numerical experiments, SINCO, in a serial mode, is com-
parable to or faster than glasso, which is orders of magnitude faster than COVSEL
[7]. Also, SINCO often reaches lower false-positive error than glasso since it intro-
duces nonzero elements greedily. Perhaps the most interesting consequence of SINCO’s
greedy nature is that it reproduces the regularization path behavior while using only one
value of the regularization parameter λ (see Section 4.1). Another important feature of
SINCO is the ability to efficiently utilize warm starts in various modes. For instance, it

5 COVSEL solves the subproblems via an interior point approach (as second order cone
quadratic problems (SOCP)), while glasso poses the subproblem as a dual of the Lasso prob-
lem [17], which is solved by coordinate descent method.



is easy to compute a range of solutions for various values of λ, which defines matrix S.

3.2 Algorithm Description

The main idea of the method is the following: at each iteration, the matrix C is updated
by changing one element on the diagonal or two symmetric off-diagonal elements. This
implies that the updated C can be written at C + θ(eie

T

j + eje
T

i ), where i and j are the
indices corresponding to the elements that are being changed. We can therefore rewrite
the objective function of the problem (2) as a function of θ (denoted f(θ) below). The
key observation is that, given the matrix W = C−1, the exact line search that optimizes
f(θ) along the direction eie

T

j + eje
T

i reduces to a solution of a quadratic equation.
Hence each such line search takes a constant number of operations. Moreover, given
the starting objective value, the new function value on each step can be computed in
a constant number of steps. This means that we can perform such line search for all
(i, j) pairs in O(p2) time, which is linear in the number of unknown variables Cij . We
then can choose the step that gives the best improvement in the value of the objective
function. After the step is chosen, the dual matrix W = C−1 and, hence, the objective
function gradient, are updated in O(p2) operations6.

We now present the method. First, we can reformulate the problem (2) as:

max
C′,C′′

n

2
[ln det(C ′ − C ′′)− tr(A(C ′ − C ′′))]− ||C ′ − C ′′||S ,

s. t. C ′ ≥ 0, C ′′ ≥ 0, C ′ − C ′′ ≻ 0

Note that ||C ′ −C ′′||S = tr(S(C ′ +C ′′)) if C ′ and C ′′ have non-overlapping nonzero
structure.

For a fixed pair (i, j), we consider the update of C ′ given by C ′(θ) = C ′+θ(eie
T

j +

eje
T

i ), such that C ′ ≥ 0. Then we can write the objective as the function of θ:

f ′(θ) =
n

2
(ln det(C + θeie

T

j + θeje
T

i )− tr(A(C + θeie
T

j + θeje
T

i ))− ||C + θeie
T

j + θeje
T

i ||S

Similarly, if we consider the update of the form C ′′(θ) = C ′′ + θ(eie
T

j + eje
T

i ) such
that C ′′ > 0, the objective function becomes

f ′′(θ) =
n

2
(ln det(C − θeie

T

j − θeje
T

i )− tr(A(C − θeie
T

j − θeje
T

i ))− ||C − θeie
T

j − θeje
T

i ||S

The method we propose works as follows:

6 Note that there is no need to enforce the posdef constraint explicitly, as ln det(C) goes to
negative infinity when C approaches singularity. At each step, we maximize the objective
along the direction of increase until the local maximum is reached. Hence, it is impossible for
the method to move past the point where the objective is negative infinity.



Algorithm 1

0. Initialize C′ = I, C′′ = 0, W = I

1. Form the gradient G′ =
n

2
(W −A)− S and G′′ = −S − n

2
(W +A)

2. For each pair (i, j) such that

(i)G′
ij > 0, C′′

ij = 0, compute the maximum off ′(θ) for θ > 0.

(ii)G′
ij < 0, C′

ij > 0, compute the maximum off ′(θ) for θ < 0 subject to C′ ≥ 0.

(iii)G′′
ij > 0, C′

ij = 0, compute the maximum off ′′(θ) for θ > 0.

(iv)G′′
ij < 0, C′′

ij > 0, compute the maximum of f ′′(θ) for θ < 0 subject to C′′ ≥ 0.

3. Choose the step which provides the maximum function improvement.

If relative function improvement is below tolerance, then Exit.

4. UpdateW−1 and the function value and repeat.

The inverse W , then, is updated, according to the Sherman-Morrison-Woodbury for-
mula (X+ab

T

)−1 = X−1−X−1a(1+ b
T

X−1a)−1b
T

X−1 in O(p2) operations. The
following theorem is the result of the analysis presented in Appendix.

Theorem 1. The steps of SINCO algorithm are well-defined (that is, the quadratic
equation always yields the maximum of f(C) along the chosen direction). The algo-
rithm converges to the unique optimal solution of (2).

Note that the algorithm lends itself readily to massive parallelization. Indeed, at each
iteration of the algorithm the step computation for each (i, j) pair can be parallelized
and the procedure that updates W involves simply adding to each element of W a
function that involves only two rows of W (see Appendix for details). Hence the updates
can be also done in parallel and in very large scale cases the matrix W can also be stored
in a distributed manner. The same is true for the storage of matrices A and S (assuming
that S needs to be stored, that is not all elements of S are the same), while the best way
to store C ′ and C ′′ matrices may be in sparse form.

4 Empirical Evaluation

In order to test structure-reconstruction accuracy, we first performed experiments on
several types of synthetic problems. Note that, unlike prediction of an observed vari-
able, structure reconstruction accuracy is harder to test on “real” data since (1) the “true”
structure may not be available and (2) known links in “real” networks (e.g., known gene
networks) may not necessarily correspond to links in the underlying Markov net. We
generated uniform-random, as well as semi-realistic, structured “scale-free” networks,
that follow a power-law degree distribution; such networks are known to model well var-
ious biological, ecological, social, and other real-life networks [2]. The scale-free (SF)
networks were generated using the preferential attachment (Barabasi-Albert) model [2]
7

7 We used the open-source Matlab code available at
small http://www.mathworks.com/matlabcentral/fileexchange/11947.



We generated networks with various density, measured by the % of non-zero off-
diagonal entries. For each density level, we generated the networks over p variables, that
defined the structure of the “ground-truth” inverse covariance matrix, and for each of
them, we generate matrices with random covariances corresponding to the non-diagonal
non-zero entries (while maintaining positive definiteness of the resulting covariance
matrix). We then sampled n instances, with the value of n depending on the experiment,
from the corresponding multivariate Gaussian distribution over p variables.

We also experimented with several real-life datasets, including (a) microarray data
for the genome-scale transcriptional network of E.coli (a DREAM-2007 challenge [16]),
and (b) the brain activity data from a set of fMRI experiments described in [12]8.

We used ϵ = 10−6 threshold on the improvement in the objective function as a
stopping criterion.

4.1 Regularization Path

One of the main challenges in sparse inverse covariance selection is the proper choice of
the weight matrix S in (2). Typically the matrix S is chosen to be a multiple of the matrix
of all ones. The multiplying coefficient is denoted by λ and is called the “regularization
parameter”. Hence the norm ∥C∥S in (2) reduces to λ∥C∥1 (in the vector-norm sense)
as in ([1]). Clearly, for large values of λ as λ → ∞ the solution to (2) is likely to be very
sparse and eventually diagonal, which means that no structure recovery is achieved.
On the other hand, if λ is small as λ → 0, the solution C is likely to be dense and
eventually approach A−1, and, again, no structure recovery occurs. Hence exploration
of a regularization path is an integral part of the sparse inverse covariance selection.

The SINCO method is very well-suited for the efficient regularization path compu-
tation, since it directly exploits warm starts. When λ is relatively large, a very sparse
solution can be obtained quickly. This solution can be used as a warm start to the prob-
lem with a smaller value of λ and, if the new value of λ is not much smaller than the
previous value, then the new solution is typically obtained in just a few iterations, be-
cause the new solution has only a few extra nonzero elements. Warm starts can also be
used to initiate different subproblems for the leave-one-out validation approach, where
the structure learning is performed on n subsets of the data (one sample being left out
each time), so that the stability of the solution can be evaluated. Since each leave-one-
out subproblem differs from another one by a rank-two update of matrix A, and since
the resulting nonzero pattern is expected to be not very different, the solution to one
subproblem can be an efficient warm start for another subproblem.

Typically the output of the regularization path is evaluated via the ROC curves
showing the trade-off between the number of true positive (TP) element recovered and
the number of false positive (FP) elements. Producing better curves (where the number
of TPs rises fast relative to FPs) is usually an objective of any method that does not focus
on specific λ selection. An interesting property of SINCO is that it introduces nonzero
entries to the matrix C as it progresses. Hence, if we use looser tolerance and stop the
algorithm early, then we will observe fewer nonzero entries, hence a sparse solution
for any specific value of λ. What we observe, as seen in Figure 1, is that if we apply

8 For more details, see the StarPlus website http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-81/www/.
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Fig. 1. Scale-free networks: SINCO and glasso paths when varying tolerance (tolerance path -
blue ’o’) and λ (lambda, or regularization, path - red ’x’). (a) and (b) show SINCO paths, on
problems with (a) p = 100, n = 5000 and (b) p = 100, n = 500, respectively; (c) and (d) show
glasso paths on the same problems.

SINCO to problem (2) with ever tighter tolerance (equivalent to observing the path of
intermediate solutions) then the ROC curves obtained from the tolerance solution path
match the ROC curves obtained from the regularization path. Here we show examples
of the matching ROC curves for various networks with which we experimented. We use
a randomly generated structured (scale-free) network that is 21% dense and a randomly
generated unstructured network, 3% dense (due to space restriction, we only show the
results for scale-free networks; random unstructured networks produce very similar re-
sults). We use p = 100 and two instances: n = 500 and n = 5000. We applied SINCO
to one instance of problem (2) with λ = 0.01 (very small regularization) with a range
of stopping tolerances from 10−4 to 10−7. The ROC curve of that path is presented by
a line with “o”s. We also applied SINCO with fixed tolerance of 10−6 to a range of
λ values from 300 to 0.01. The corresponding ROC curves are denoted by lines with
“x”s. We can see that the ROC curve of the regularization path for the given range of
values of λ is somewhat less steep than that of the tolerance path, but the curves are still
very close in the area where they overlap. For baseline we also present the ROC curve
of the regularization path computed by glasso, which is very similar to the SINCO’s
ROC curves. Note that changing tolerance does not have the same effect on glasso as it
does on SINCO. The number of TP and FP does not change noticeably with increasing
tolerance. This is due to the fact that the algorithm in glasso updates a whole row and a
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Fig. 2. SINCO’s tolerance path vs regularization path: (a) two path for the E.coli subnetwork; (b)
comparing positives on scale-free networks.

column of C at each iteration while it cycles through the rows and columns, rather than
selecting the updates in a greedy manner.

Figure 2a shows a very similar behavior when comparing the two paths for the
DREAM-07 challenge problem of E.coli transcriptional network reconstruction, for
n = 300 microarray samples and a subset of p = 133 transcription factors that form a
connected component in the graph.

Note, however, that it is not always the case that SINCO’s solution path (tolerance
path) is actually the same as the regularization path. In Figure 2b, the lower curve shows
the percentage of the positives (nonzero entries in C) in solutions from SINCO’s toler-
ance path which are not present in the solution on the regularization path. The higher
curve represents the percentage of true positives; the x axis of the figure represent the
points along the tolerance and regularization paths, which are matched to each other.
We observe that the SINCO and the regularization paths largely coincide until the TP
reach its maximum and further nonzeros are in the FP category and hence, in a way, are
random noise.

Our observations imply that SINCO can be used to greedily select the elements of
graphical model until the desired trade-off between FPs and TPs or the desired number
of nonzero elements is achieved or the allocated CPU time is exhausted. In the limit
SINCO solves the same problem as glasso and hence the limit number of the true and
false positives is dictated by the choice of λ. But since the real goal is to recover the
true nonzero structure of the covariance matrix, it is not necessary to solve problem (2)
accurately. For the purpose of recovering a good TP/FP ratio one can apply the SINCO
method, without the adjustments to λ.

We should note that computing the regularization path presented in our experiments
is typically more efficient in terms of CPU time than computing the tolerance path; the
largest computational cost lies in computing the tail of the path for smaller tolerances.
On the other hand, the tolerance path appears to be more precise and exhaustive, in
terms of possible FP/TP tradeoffs. It is also important to note that the entire tolerance
path is automatically produced as a sequence of iterates produced by SINCO, while the
regularization path can only be computed as a sequence of solutions for a given set of
values of λ.
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Fig. 3. CPU time: SINCO vs glasso on (a) random networks (n = 500, fixed range of λ) and
(b) scale-free networks (density 21%, n and λ scaled by the same factor with p, n = 500 for
p = 100). ROC curves: SINCO vs glasso on (c) random networks (p = 100, n = 500, fixed
range of λ) and (d) scale-free networks (p = 300, n = 1500, density 21%, n and λ scaled by the
same factor with p, starting with n = 500 for p = 100).

4.2 Empirical Complexity

Here we will discuss the empirical dependence of the runtime of the SINCO algorithm
on the choice of stopping tolerance and the problem size p. We also investigate the effect
increasing p has on the results produced by SINCO and glasso. Both methods were
executed on Intel Core 2Duo T7700 processor (2.40GHz); note, however, that glasso is
based on well-tuned Fortran code with an R interface, while SINCO a straight-forward
C++ implementation of the algorithm in Section 3 with Matlab interface.

We consider the situation when p increases. If together with p the number of nonze-
ros in the true inverse covariance also increases, then to obtain a comparable problem
we need to increase n accordingly. Increasing n, in turn, affects the contribution of λ,
since the problem scaling changes. Here we chose to consider the following two simple
settings, where we can account for these effects. In the first setting, we increase p while
keeping the number of the off-diagonal nonzero elements in the randomly generated
unstructured network constant (around 300). We do not, therefore, increase n or λ. The
CPU time necessary to compute the entire path for λ ranging from 300 to 0.01 is plotted
for p = 100, 200, 300, 500, 800 and 1000 in Figure 3a. In the second case, we generated
block-diagonal matrices of sizes p = 100, 200, 300, 500, 800, 1000, with 100 × 100
diagonal blocks, each of which equals the inverse covariance matrix of a 21%-dense
structured (scale-free) network from the previous section. Since the number of nonzero
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Fig. 4. SINCO and glasso accuracy with growing n: (a) and (b) show the results averaged over
20 random networks (p = 100, density 3%), (c) and (d) show similar results averaged over 25
scale-free networks (p = 100, density 21%).

elements grows linearly with p, we increased n and the appropriate range of λ linearly
as well. The CPU time for this case is shown in the last plot of Figure 3b.

The first two plots in Figure 3 shows that the CPU time (in seconds) for SINCO
scales up more slowly than that of glasso, with increasing number of variables, p. The
reason for the difference in scaling rates is evident in the ROC curves shown in Figures
3c and 3d, which demonstrate that, for similarly high true-positive rate, glasso tends to
have much higher false-positive rate than SINCO, thus producing a less sparse solution,
overall.

4.3 Asymptotic behavior with increasing λ

Finally, we investigate the behavior of SINCO for a fixed value of p as n grows. In this
setting, we expect to obtain larger TP values and smaller FP error with increasing n.
The consistency result in [21] suggests that for our formulation, to obtain an accurate
asymptotic structure recovery, we should pick λ that grows with n, but so that its growth
is slower than

√
n.

Here we use λ = log10(n). We again apply our algorithm and glasso to the 21%-
dense scale-free networks with p = 100. In Figure 4 we show the how the value of
TP and FP returned by the two algorithms changes with growing n (note that λ is kept
fixed for each value of n). We observe that SINCO achieves in the limit nearly 0%
false-positive error and nearly 100% true-positive rate, while glasso’s FP error grows
with increasing n. This result is, again, a consequence of the greedy approach utilized
by SINCO.
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Fig. 5. SINCO vs. COVSEL on fMRI data.

4.4 Application to fMRI analysis

Here we describe the results of applying SINCO to a real-life data, where the “ground
truth” network structure was not available; thus, we could not measure the structure
reconstruction accuracy, and instead evaluated the prediction accuracy of the resulting
Markov networks. In this section, we compare SINCO with COVSEL [1] rather than
glasso, since COVSEL is the other available Matlab implementation solving the same
dual problem as glasso (as opposed to SINCO solving the primal one), and, although
SINCO was shown to be slower than glasso[7], the objective here was rather to compare
the prediction accuracy of the two approaches and the density of solutions.

We used fMRI data for the mind-state prediction problem described in [12]9. The
data consists of a series of trials in which the subject is being shown either a picture
(+1) or a sentence (−1). Our dataset consists of 1700 to 2200 features, dependent on a
particular subject, and 40 samples, where half of the samples correspond to the picture
stimulus (+1) and the remaining half correspond to sentence stimulus (-1). (One sample
corresponds to the averaged fMRI image over 6 scans sequentially taken while a subject
is presented with a particular stimulus). We used leave-one-out cross-validation, and
report average results over 40 cross-validation folds, each corresponding to one sample
left out for testing, and the remaining 39 used for training.

For each class Y = {−1, 1}, we learn a sparse Markov Net model that provides
us with an estimate of the Gaussian conditional density p(x|y), where x is the feature
(voxel) vector; on the test data, we choose the most-likely class label argmaxy p(x|y)P (y)
for each unlabeled test sample x.

Figure 5 show the results of comparing SINCO versus COVSEL for one of the
subjects in the above study (similar results were obtained for two more subjects). We
observe that SINCO produces classifiers that are equally (or more) accurate that those
produced by COVSEL (Figure 5c), but is much faster (Figure 5b) and uses much sparser
Markov Net models (Figure 5a), which suggests that COVSEL (and hence glasso, since
they are different implementations of the same approach) learns many links that are not
essential for the discriminative ability of the classifier10.

9 For more details, see the StarPlus website http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-81/www/.
10 It is also interesting to note that both Markov Net classifiers are competitive with, and often

more accurate than the (linear) SVM classifier (Figure 5c). Herein, we used the SVM code by
A. Schwaighofer available at http://ida.first.fraunhofer.de/˜anton/software.html.



5 Discussion

We proposes a novel approach, called SINCO, for solving the sparse inverse-covariance
selection problem, which is equivalent to learning the structure (and parameters) of a
Gaussian MRF. Our method is very simple; it uses greedy coordinate ascent, efficiently
performing each evaluation step in a constant time, by solving a quadratic equation.
We also provide a convergence proof. The method we present has two major advan-
tages: (1) natural tendency to preserve the sparsity of solution, leading to better true-
positive vs. false-positive error rate trade-off, especially on sparse problems, and (2)
potential for a straightforward massive parallelization that could provide a significant
O(p2) speedup at each iteration. Also, our method has interesting (and useful) property
of replicating the regularization path behavior (although not necessarily replicating the
actual regularization path) by applying the method to one (sufficiently small) instance
of the regularization parameter λ only. Thus, a desired number of network links can be
obtained directly from the greedy solution path, without having to tune the λ param-
eter. SINCO properties are evaluated on a range of randomly generated problems, as
well as on two real-life applications including gene-network reconstruction and neu-
roimaging. A important direction for future work is a more detailed investigation of the
near-solution space of the sparse inverse covariance problem considered herein, and a
better characterization of the relation between the objective function near its optimum
and the variance in the structure of potential solutions.

Appendix
Herein we present the derivation of the SINCO algorithm.

As mentioned in Section 3.2, the maximum of the one-dimensional function in Step 3 of SINCO is available in closed

form. Indeed, consider the step C̄′ = C′ +θ(eie
T

j +eje
T

i ). Let us assume that θ > 0 and that C′′
ij = 0, which implies

that we can write the step as C̄ = C + θ(eie
T

j + eje
T

i ), since the (i, j) and (j, i) elements do not become zero for any
such step.

The inverse W , then, is updated, according to the Sherman-Morrison-Woodbury formula (X + ab
T
)−1 = X−1 −

X−1a(1 + b
T
X−1a)−1b

T
X−1, as follows:

W̄ = W − θ(κ1WiW
T

j + κ2WiW
T

i + κ3WjW
T

j + κ1WjW
T

i ),

κ1 = −(1 + θWij)/κ, κ2 = θWjj/κ, κ3 = θWii/κ,

κ = θ2(Wii ∗ Wjj − W 2
ij) − 1 − 2θWij .

Let us now compute the objective function as the function of θ:

f(θ) = n
2 (ln det(C + θeie

T

j + θeje
T

i ) − tr(A(C + θeie
T

j + θeje
T

i )) − ||C + θeie
T

j + θeje
T

i ||S .

We use the following property of the determinant:

det(X + ab
T
) = det(X)(1 + b

T
X−1a)

and the Scherman-Morisson-Woodbury formula. We have

det(C + θeie
T

j + θeje
T

i ) = det(C + θeje
T

i )(1 + θe
T

j (C + θeje
T

i )−1ei) =

det(C)(1 + θe
T

i C−1ej)(1 + θe
T

j C−1ei − θ2e
T

j C−1ej(1 + θe
T

i C−1ej)
−1e

T

i C−1ei) =

det(C)(1 + 2θe
T

i C−1ej + (θe
T

j C−1ei)
2 − θ2e

T

i C−1eie
T

j C−1ej).

Given the dual solution W = C−1, and recalling that W and A are symmetric, but S is not necessarily so, we can



write the above as

det(C + θeie
T

j + θeje
T

i ) = det(C)(1 + 2θWij + θ2(W 2
ij − WiiWjj)).

Then the change in the objective function is

f(θ) − f = n
2 (ln(1 + 2θWij + θ2(W 2

ij − WiiWjj)) − 2Aijθ) − Sijθ − Sjiθ,

the last term being derived from the fact that Cij + θ and Cji + θ remain positive. Let us now consider the deriva-
tive of the objective function with respect to θ

df(θ)
dθ =

nWij+nθ(W2
ij−WiiWjj)

θ2(W2
ij

−WiiWjj)+1+2θWij
− nAij − Sij − Sji.

To find the maximum of f(θ) we need to find θ > 0 for which df(θ)
dθ = 0. Letting a denote WiiWjj − W 2

ij , this
condition can be written as:

nWij − nAij − Sij − Sji − (na + 2Wij(nAij + Sij + Sji)θ + a(nAij + Sij + Sji)θ
2 = 0.

To find the value of θ for which the derivative of the objective function equals zero we need to solve the above quadratic
equation

abθ
2 − (na + 2Wijb)θ + nWij − b = 0, (4)

where a = WiiWjj − W 2
ij and b = nAij + Sij + Sji. Notice that a is always nonnegative, because matrix W is

positive definite, and it equals zero only when i = j. We know that at θ = 0
df(θ)
dθ > 0. Let us investigate what happens

when θ grows. The discriminant of the quadratic equation is

D = (na + 2Wijb)
2 − 4ab(nWij − b) = (na)2 + 4nWijab + 4W 2

ijb
2 − 4abnWij + 4ab2

= (na)2 + 4b2WiiWjj > 0,

hence the quadratic equation always has a solution. At θ = 0 the quadratic function equals

nWij − nAij − Sij − Sji = G′
ij + G′

ji > 0.

Now let us again consider the derivative df(θ)
dθ . At θ = 0 we know that the derivative is positive. We also know that

the denominator

θ2(W 2
ij − WiiWjj) + 1 + 2θWij = (1 + θWij)

2 − θ2WiiWjj

is positive when θ = 0 and is equal to zero when θ = θmax = 1/(
√

WiiWjj − Wij) > 0. The function f(θ)

approaches negative infinity when θ → θmax, hence so does df(θ)
dθ . This implies that df(θ)

dθ has to reach the value zero
for some θ ∈ (0, θmax). Hence the quadratic equation (4) has one positive solution in this interval. This solution gives us

the maximum of f(θ) and hence the length of the step along the direction eie
T

j + eje
T

i .
The objective function value is easy to update using the formula

det(C′ − C′′ + θ(eie
T

j + eje
T

i )) = det(C′ − C′′)(1 + 2θWij − θ2a)).

Let us consider the negative step along the direction eie
T

j + eje
T

i when C′
ij > 0. The derivations are exactly as above,

except for we are now looking for solution θ < 0. As discussed above, the term under the logarithm

θ2(W 2
ij − WiiWjj) + 1 + 2θWij = (1 + θWij)

2 − θ2WiiWjj

is positive when θ = 0 and is also equal to zero when θ = θmin = −1/(
√

WiiWjj + Wij) < 0. The deriva-
tive of f(θ) at θ = 0 is negative, this time (which is why we are considering a negative step, in the first place), which means
that there exists a θ ∈ (θmin, 0) for which this derivative is zero, hence the quadratic equation (4) has a negative solution.

This negative solution θ− < 0 determines the length of the step in the direction −eie
T

j − eje
T

i . It is important to note
that the length of the step cannot exceed the value C′

ij , hence the final step length is computed as max(θ−,−C′
ij).

The other two possible steps listed in Step 3 can be analyzed analogously, the main difference being the sign before the
terms nAij , Sij and Sji in the case of the step that updates C′′.

Each step can be computed by a constant number of arithmetic operations, hence to find the step that provides the largest
function value improvement it takes O(p2) operations - the same amount of work (up to a constant) that it takes to update
W and the gradient after one iteration. Hence the overall per-iteration complexity is O(p2). Moreover, this algorithms lends
itself readily to massive parallelization, as discussed earlier in Section 3.2.

The convergence of the method follows from the convergence of a block-coordinate descent method on a strictly convex
objective function. The only constraints are box constraints (nonnegativity) and they do not hinder the convergence. In fact



we can view our method as a special case of the row by row (RBR) method for SDP described in [19]. In the case of SINCO
we extensively use the fact that each coordinate descent step is cheap and, unlike the RBR algorithm, we select the next step
based on the best function value improvement. On the other hand, we maintain the inverse matrix W , which RBR method
does not. However, none of these differences prevent the convergence result for RBR in [19] to apply to our method. Hence
the convergence to the optimal solution holds for SINCO.
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