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Abstract—Charging different prices for Internet access at
different times induces users to spread out their capacity,or
bandwidth,g consumption across times of the day. Is it feasible
and how much benefit can it bring? We design an architecture
for time-dependent broadband pricing. We develop an efficient
way to compute the cost-minimizing time-dependent prices for an
Internet service provider (ISP), using both a static session-level
model and a dynamic session model with stochastic arrivals.Our
formulations of the optimization problem remain computationally
tractable on a large scale. We show simulations illustrating the
use and limitations of time-dependent pricing, and discussnext
steps in implementing and deploying the theory in the TUBE
Project.

I. I NTRODUCTION

A. Motivation and Related Work

Internet service providers (ISPs) practicing flat rate pricing
face a dilemma: unlike its cost, an ISP’s revenue does not scale
with users’ demand for more bandwidth. Usage-based pricing
has been adopted by ISPs outside the United States and entered
the U.S. wireless market last year (e.g. [1], [2]), driven by
the tremendous growth of both wireline and wireless network
traffic. This growth is out-pacing the increase of capacity
and turning ISPs’ attention to pricing as the ultimate tool to
regulate demand. Yet pricing based just on monthly bandwidth
usage leaves a timescale mismatch: monthly usage drives an
ISP’s revenue, but peak-hour congestion dominates its cost
structure. Ideally, ISPs would like bandwidth consumptionto
be spread evenly over all the hours of the day.

Time-dependent usage pricing(TDP) charges a user based
on both “how much” bandwidth is consumed and “when” it
is consumed, as opposed totime-independent usage pricing
(TIP), which only considers monthly consumption amounts.
TDP has the potential to even out time-of-the-day fluctuations
in bandwidth consumption [3]. Since it does not differentiate
based on traffic type, protocol, or user class, TDP also sits
lower on the “radar screen” of network neutrality scrutiny.In
fact, wireless operators have long used a simple, 2 period TDP
scheme, and small ISPs in the U.S. have begun experimenting
with TDP. However, in their current implementation, users do
not react to the time-dependent prices, and the prices are not
optimized accordingly.

An effective TDP system must leverage different demo-
graphics’ and applications’ time-sensitivities into setting the
right prices, which in turn shifts part of the demand across
times of the day. A TDP system requires the integration of
traffic measurement, optimal price determination, and user

Fig. 1. Overall schematic of time-dependent pricing systems. We first
discuss price determination and later explore user profiling, measurement,
user interface and system integration.

interface design in a real-time system. This paper addresses
these questions with TUBE (Time-dependent Usage-based
Broadband-price Engineering), an end-to-end TDP system for
ISPs. Figure 1 summarizes TUBE as a control loop.

The electricity industry has explored TDP over the years,
e.g. [4]–[19]. There are several key differences from our pric-
ing study. We extend these economic analyses to broadband
pricing by incorporating a control-loop model that allows ISPs
to adapt prices to user reactions in real time.1 We also model
TDP as users deferring part of their Internet usage, rather than
the electricity market’s model of users choosing the periodin
which to demand a resource. Previous broadband TDP models
use “representative demand functions” to estimate peak and
off-peak resource demands, while our models directly incorpo-
rate sessions’ time-sensitivity and uncertainty in user behavior.
We usen (e.g. n = 48 for half hour granularity) periods
instead of 2; the multiple peaks and valleys in bandwidth
usage over one day make 2 period TDP inadequate, although
n periods complicate the model design.

This paper’s formulation and methodology apply to both
wireline and wireless pricing. In the U.S., wireless TDP will
likely take off first, given its $10/GB usage price today, which
is about 10 times wireline usage pricing.

B. Overview of Models and Summary of Results

When determining optimal prices, an ISP tries to balance the
cost of demand exceeding capacity (e.g. the capital expenditure
of capacity expansion) with the cost of offering reduced prices
to users willing to move some of their sessions to later times.
A user is a set of application sessions, each with a waiting

1Many prior works on TDP for electricity do not model real-time user
reaction due to the lack of a convenient graphic user interface (GUI) and
the relatively low elasticity of electricity usage. In contrast, broadband TDP
can readily position GUIs on Internet access devices, and the elasticity of
bandwidth consumption tends to be high for a good range of applications.



TABLE I
A SUMMARY OF THE MAIN NOTATION .

Symbol
Meaning

Static Model Dynamic Model

pi Reward for deferring to
period i

Same

xi Usage in periodi Same

A Maximum capacity n/a

f(x) Cost function, floored at
0

Same

Xi Periodi usage with TIP Same

w(p, t) Waiting function Same

vj Volume of sessionj n/a

j ∈ i Sessionsj originally in
period i

n/a

i − k i − k mod n Same

wβ(p, t) The function p

(t+1)β n/a

function giving the probability or willingness to defer that
session for some amount of time and some pricing incentive.
Waiting functions may also represent an aggregate of users’
willingnesses to wait over concurrent sessions. Pictorially, an
ISP uses TDP to even out the peaks and valleys in bandwidth
consumption over the day. The ISP’s problem is to set its
prices to balance these two types of costs, given its estimates
of users’ willingness to defer sessions at different prices.

The ISP’s decision can equivalently be formulated in terms
of rewards, as in our formulation. The ISP rewards users for
deferring by the difference between TIP and optimal TDP
prices. Without loss of generality, rewards are positive; their
values reflect movement of the baseline usage price.

Section II develops the static model, which does not include
stochastic arrival of new sessions. We prove that under certain
reasonable conditions, price determination is computationally
tractable. Section III extends to dynamic models with stochas-
tic arrivals, which reduces to the static model for a single
bottleneck network and demand under TIP equal to the amount
of traffic arriving in each period.

While the waiting functions depend on the amount of time
deferred, in our design all sessions in a given period are
charged the same price. The ISP uses waiting function estima-
tion to statistically model users’ deferral behavior. Section IV
shows sample waiting functions, illustrating the variation in
time-sensitivities, and presents a waiting function estimation
algorithm using aggregate TIP and TDP usage data.

Throughout this paper, we assume that ISPs are monopolies,
facing an estimated distribution of users’ waiting functions.
Each session takes up a fixed amount of ISP capacity, e.g.,
the average over its short time-scale fluctuations, and TDP
does not cause application sessions to disappear.

II. STATIC SESSIONMODEL AND FORMULATION

The ISP’s objective is to minimize the weighted sum of the
cost of exceeding capacity and of offering reduced prices (i.e.,
rewards). The optimization variables are these rewards, which

give users incentives to defer bandwidth consumption. LetXi

denote periodi demand under TIP. The phrase “originally in
periodi” means that with TIP, this session occurs in periodi.

Suppose that the ISP divides the day inton periods, and that
its network has a single bottleneck link of capacityA. This link
is often the aggregation link out of the access network, which
has limited bandwidth compared to aggregate demand and is
often oversubscribed by a factor of five or more. The cost of
exceeding capacity in each periodi, capturing both customer
complaints and expenses for capacity expansion, is denotedby
f(xi −A), wherexi is usage in periodi. Capital expenditure
cost is incurred over a large timescale; thef cost function
represents the fraction due to daily capacity exhaustion.

Each periodi runs from timei − 1 to i. A typical period
lasts a half hour. Sessions begin at the start of the period, an
assumption readily modified to a distribution of starting times.
The time between periodsi andk is given byi− k, which is
the numberb ∈ [1, n], b ≡ i−k (modn). If k > i, i−k is the
time between periodk on one day and periodi on the next.

For each sessionj originally in periodi, define thewaiting
function wj(p, t) : R

2 → R, which measures the user’s
willingness to waitt amount of time, given rewardp. Each
sessionj has bandwidth requirementvj , so vjwj(p, t) is the
amount of sessionj deferred by timet with reward p. To
ensure thatwj ∈ [0, 1] and that the calculated usage deferred
out of a period is not greater than demand under TIP, we
normalize thewj , dividing by the sum over possible times
deferredt of wj(P, t). HereP is the maximum possible reward
offered, or maximum marginal cost of exceeding capacity.

Proposition 1: The ISP’s optimization problem for time-
varying rewards can be formulated as

min

n
∑

i=1

pi





n
∑

k=1,k 6=i

∑

j∈k

vjwj(pi, i − k)



 + f(xi − Ai)

(1)

s. t. xi = Xi −
∑

j∈i

vj

n
∑

k=1,k 6=i

wj(pk, k − i) +

n
∑

k=1,k 6=i

∑

j∈k

vjwj(pi, i − k), (2)

var. pi; i = 1, . . . , n.

Proof: See [20]. The key step uses the waiting function
normalization to track aggregate usage deferred from and into
each period.

In usage-based pricing, whether TDP or TIP, the ISP may
charge a flat rate until users reach a certain cap, and after that
charge a usage-based rate. Explicitly modeling this cap in TDP
considerably complicates problem tractability, so we instead
vary available capacity with time. In each period, the ISP
subtracts from the network capacity usage from those users
not reaching the cap, as well as an extra cushion of excess
capacity against irrational users. The optimization problem
then only involves sessions above the cap. SinceAi, the



available capacity in periodi, is independent of price, the
model is essentially unchanged.

For efficient price determination in TDP, the optimization
problem must have a scalable solution algorithm. The most
useful criterion for this property is convexity: minimizing a
convex function over a convex constraint set. We find mild
conditions on thewj(p, t) that make the problem (1-2) convex
and accommodate different price- and time-sensitivities.

Proposition 2: If the w(p, t) are increasing and concave in
p, and f is piecewise-linear with bounded slope, the ISP’s
optimization problem is convex.

Proof: See [20]. The key step is finding the cost function’s
Hessian matrix and observing that ISPs will not offer rewards
greater than the marginal benefit of reduced capacity cost.

The conditions in Prop. 2 are readily satisfied: following
the principle of diminishing marginal utility,wj should be
increasing and concave inp and decrease int. Users prefer to
defer for shorter times. ISP cost can also be readily represented
with piecewise-linear functions of bounded slope.

III. D YNAMIC SESSIONMODELS AND FORMULATIONS

A. Offline Model

The dynamic model has offline and online versions. The
offline model uses historical demand statistics, and for a single
bottleneck network is proven equivalent to the static model.

We assume that sessions arrive according to a Poisson ran-
dom process, with exponential file size distribution, and leave
as a function of the amount of bandwidth allocated to each
session. This stochastic model is similar to that in congestion
control literature (e.g., see the extensive bibliography in [21]).
Each session has a fixed size, e.g. file downloads, and stays
in the network until completely processed. As with the static
models, we assume a single bottleneck link. We usex to
denote the number of sessions arriving on this link andΛ(x)
to denote the bandwidth allocated to the link by the ISP.

We assume that users defer only once. Consider one time
period i, with start time i − 1 and end timei, and define
N(t) as the number of active sessions at timet ∈ [0, n]. Since
sessions may be partially processed,N(t) can be non-integral.
We assume Poisson session arrival within the period with
parameterλi. Let Πi(t) denote the number of sessions arriving
between timei − 1 and timet. Session sizes are assumed to
be exponentially distributed with meanb. Session arrival times
are assumed to be uniformly distributed. Letµ(N(t)) denote
the bandwidth allocation in sessions per second.

Proposition 3: The ISP’s optimization problem in the of-
fline dynamic model can be formulated as

min

n
∑

i=1



pi

n
∑

k=1,k 6=i

Mk,i−k(k) + f(bN(i))



 (3)

s. t. N(t) = N(i − 1) −

n−1
∑

k=1

Mi,k(t) +

n
∑

k=1,k 6=i

Mk,i−k(k) +

Πi(t) −

∫ t

i−1

µ(N(s)) ds, t ∈ [i − 1, i] (4)

Mi,k(t) =

∫

B

∫ t

i−1

Πi(t)gi(β) ×

wβ(pi+k, i − 1 + k − s)

t − (i − 1)
ds dβ (5)

var. pi(k), i = 1, 2, . . . , n and k = 1, 2, . . . , n − 1,

whereMi,k(t) denotes the number of sessions deferring from
period i to periodi + k between timei − 1 and timet, gi is
the probability density function of the waiting functionswβ

parametrized as in the next section byβ, andB is the range
of possibleβ.

Proof: See [20]. It is similar to that for Prop. 1, but we
must keep track of the number of sessions that have arrived
and the number still in the network at timet.

For a single bottleneck network,µ(N) is just the access
link’s fixed capacity. This allows for a closed-form solution
for N(t), giving the following proposition:

Proposition 4: For a single bottleneck network, the dy-
namic model is equivalent to the static model with uniformly
distributed arrival times and leftover sessions from one period
carrying over into the next period.

Proof: See [20]. The key step compares Props. 1 and 3
using a closed-form solution forN(t). The dynamic model
thus retains the static model’s computational tractability.

B. Online Model

Dynamic programming provides a way to solve the general
problem in (3-5) with an online algorithm.

This system’s state variabless consist of the rewards and the
number of sessions remaining at the end of each period.2 The
ISP chooses these rewards to minimize the functionCn(s),
whereCi is the incurred cost up to periodi. The rewardpn

in periodn is determined first, thenpn−1, etc.
We develop a low-complexity dynamic programming so-

lution to the ISP’s optimization problem and provide an
online algorithm for determining rewards. While sub-optimal,
this algorithm is easy to implement and avoids the high
dimensionality of a full dynamic programming solution.

ONLINE PRICE DETERMINATION ALGORITHM.

1: Start with a set of rewards for the nextn periods, deter-
mined with the static model or offline dynamic model.

2: After the first period, use the static or offline dynamic
model to compute the optimal reward for thenth period
after this first period, given the othern − 1 rewards.

3: After each subsequent period, compute the optimal reward
for the nth period after the current one.

This algorithm’s calculated rewards may not minimize the
cost over several future periods. Section V’s simulations show
how much it can still improve the ISP’s cost from that with
TIP.

2The initial state comes from using some set of initial rewards, for instance
determined by solving the problem in the static model.



IV. WAITING FUNCTION ESTIMATION

In addition to price optimization as in the previous sections,
a TDP system requires a user profiling module which estimates
waiting functions and the size of their corresponding sessions.
This section briefly describes a practical approach that requires
only aggregate TIP and TDP usage data. These may be
obtained during initial market trials before rolling out TDP.

The ISP chooses a parametrized family of waiting functions
and then estimates each period’s parameter distribution. From
Prop. 2, these functions should be concave and increasing in
p and decreasing int. One reasonable choice iswβ(t, p) =
Cβ

p

(t+1)β , where the normalization constantCβ depends on
the cost of exceeding capacity, number of periods, andβ.
The parameterβ ≥ 0 is a “patience index,” with larger β

indicating lower patience. In practice, since the ISP only sees
aggregated sessions at any given time, there will be oneβ per
type of application in each access network.

The ISP estimates waiting functions by observing the dif-
ference between demand under TIP and demand under TDP.
Let Ti denote this difference in periodi. Suppose there arem
types of sessions. The parametersβji

then parametrize waiting
functions for typej sessions in periodi. The proportion of
traffic taken up by each session type in periodi is denoted by
αji

. The patience indices and proportions can vary in different
periods; in each period, there arem of the βji

and m of
the αji

, for a total of2mn parameters. The amount of traffic
deferred from periodi to periodk 6= i is then

Qik = Xi





m
∑

j=1

αji
C

pk

(k − i + 1)βji



 , (6)

whereC is the appropriate normalization constant. EachTi is
thus a linear function of theQik, yieldingn linear equations in
the n(n−1)

2 variablesQik. One equation is redundant, since we
assume the sum of theTi is zero (sessions never disappear).
The ISP can estimate the parametersαji

andβji
as follows:

WAITING FUNCTION ESTIMATION ALGORITHM .

1: Compute the differencesTi between traffic under TIP and
TDP, to obtainn linear equations for theQik.

2: Solve for n − 2 of the Qik, making sure that for each
periodj, at least one of theQik is not solved for.

3: Plug these expressions back into the original equations for
Ti, so that only one equation, linear in theQik, remains.

4: This remaining equation then becomes a function of the
offered rewards and the parametersαji

andβji
.

5: Use the TIP and TDP data for this function to estimate
(e.g. with nonlinear least-squares) all theαji

and βji

parameters involved in this one equation.
6: The parameter estimates give us the waiting functions.

Table II shows the parameter values estimated by nonlinear
least squares for a 3 period example with 2 session types.
The percent difference between actual and estimated waiting
functions for each period remains under 12 percent.

TABLE II
ACTUAL AND ESTIMATED PARAMETER VALUES IN SIMULATION OF

WAITING FUNCTION ESTIMATION.

Period
Actual Values Estimated Values Maximum

β1i
β2i

α1i
β1i

β2i
α1i

Percent Error

1 1 2 0.17 1.03 2.48 0.46 11.8

2 1 2.33 0.5 1.02 2.49 0.45 9.0

3 1 2.67 0.83 0.90 2.15 0.71 0.5

This estimation algorithm uses a baseline measure of ag-
gregate demand under TIP for each period. To account for
changes in the baseline over time, we iterate our algorithm.
The ISP uses TDP data from a relatively long period of time,
e.g. one week, to estimate the waiting functions. It can then
take these estimated parameters as given and solve for the
demand under TIP,Xi, in each periodi. Due to noise in the
data, different sets of rewards may give differentXi; the ISP
can take an average to determine the baselineXi.

Since demand under TIP statistics are also used in the
price determination, updated TIP estimates directly impact the
optimal rewards. Estimation of waiting functions is not perfect
no matter what statistical techniques are used, so the extended
simulations in [20] stress-test by assuming incorrect waiting
functions used by the ISP in its price optimization.

V. SIMULATION AND PERFORMANCEEVALUATION

In this section, aggregate traffic data over times of the day
(the blue dotted line in Fig. 3) comes from one week of
empirical traces by a large ISP. User patience data is much
harder to obtain from existing data sets, so we sweep the
waiting function distribution over a range of typical values
to quantify TDP’s impact.

We first set the number of periods, each period’s demand
under TIP, sessions’ waiting functions, and the ISP’s cost
function for exceeding capacity, and then set up the offline
dynamic model’s optimization problem in a standard convex
optimization solver. Simulations of the dynamic models may
be found in the technical report [20].

We parametrize session waiting functions as in Section IV:

wβ(p, t) = Cβ

p

(t + 1)β
, (7)

whereβ = 0.5, 1, 1.5, . . . , 5. For simplicity, thesew have a
linear price- or reward-sensitivity. We assume the following
simple cost function for exceeding capacity:

f(xi − Ai) = 3 max [xi − Ai, 0].

For illustrative purposes, we use monetary units of $0.10.
We use 48 half hour periods, starting at 12am. Sessions

are divided into the 10 waiting function types above; [20]
gives the demand under TIP and waiting function distributions
in each period. We set the single bottleneck link’s capacity
to a constant 180 Megabytes/second (MBps). The physical
capacity of the bottleneck link may be larger, but ISPs often
target the usage to be no more than 80% of the actual capacity,
and we use that target as the value ofA.



Fig. 2. Optimal rewards, static session model. Rewards havean upper bound
of $0.15, and larger rewards roughly correlate with higher traffic.

Fig. 3. Traffic profile, static session model. Traffic in over-capacity periods
is deferred to under-capacity periods, even-ing out the overall profile.

The optimization yields an average daily cost per user of
$3.26 with TDP and $4.26 with TIP (a 24% savings). Figures
2 and 3 respectively show the optimal rewards and traffic
profile. Using Section II’s propositions, these rewards areboth
globally optimal and efficiently computed. The optimization
ran in under 10 seconds on a standard laptop, so it is easily
scalable to a large number of periods and many different
session models when run on powerful servers by an ISP. A
discussion of the optimal rewards can be found in [20].

From Fig. 3, TDP for the 48 period model decreases the
spread between the maximum and minimum usage from 200
to 119 MBps. Overused periods closer to underused ones
have the greatest traffic reduction; users more easily defer
for shorter times. However, some periods are still over and
others still under capacity. TDP cannot effectively even out
bandwidth usage fluctuations over a day if users are too impa-
tient, sessions are too time-sensitive, or the cost of exceeding
capacity is too low. To measure the even-ing out of traffic
over time, we defineresidue spreadas the area between a
given traffic profile and one with the same total usage but
with usage constant across periods. Figure 3 yields a residue
spread of 472.5 GB with TDP and 923.4 GB with TIP. The
area between the two profiles is 450.9 GB, so 24% of traffic
is redistributed over a day.

VI. N EXT STEPS

Based on the theory and algorithms presented thus far, we
have implemented a test-bed at the Princeton EDGE Lab for
time-dependent pricing. Additional features are being incorpo-
rated, such as an “auto-pilot” mode in which users do not need
to actively decide when to consume bandwidth, congestion-
dependent pricing with fast timescale price adaptation, and a
scavenger class of wireless data users. Currently a complete
system of TUBE is being prototyped for a customer trial at
Princeton. Further details of the models, proofs, emulation and
implementation can be found in [20].
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