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Abstract—We provide a summary of Boolean network models
for budding yeast cell-cycle including the Irons’ model. The
model has 18 nodes and involves some auxiliary nodes which
allow variability in time delays in the activation and degradation
expression level of nodes. We also introduce a Boolean network
exhibiting the cell-cycle behavior based on a family of cyclic
codes, Projective Geometry codes, which encode the cell mass
into the expression level of 7 genes. Both networks have a single
cycle attractor and show high robustness against perturbations.
A comparison between these networks reveals that using the
same concepts and assumptions can capture the fundamental
and desirable features in the construction of Boolean cell-cycle
gene regulatory networks.

I. INTRODUCTION

In eukaryotics, the cell-cycle, which is the process in which
a single cell divides into two daughter cells, consists of four
phases: G1 in which the cell grows, S (Synthesis) in which
DNA is replicated, G2 during which the cell continues to grow
and prepares for division, and M (Mitosis) in which the cell
is divided into two cells. During the cell-cycle, there are a
number of checkpoints that monitor certain parameters such
as the cell size, shape, and DNA damage and therefore control
the cell-cycle integrity.

Thanks to the great deal of available data and information
on budding yeast Saccharomyces cerevisiae (S. cerevisiae),
numerous mathematical models have been proposed for the
gene regulatory network (GRN) controlling the cell-cycle.
The most common models are ordinary differential equations
(ODEs) and Boolean networks (BNs).

Chen et al. [1], [2] proposed several versions of the ODE
model which are consistent with a wide range of wild type and
mutant data. Subsequently more sophisticated ODE models
were developed that focus on specific parts of the cell-cycle
such as transition from G1 to S phase [3] and exit from M
phase [4], [5].

Despite the sophisticated molecular-interaction details, ODE
models are difficult to analyze, particularly for networks with
large number of genes. In contrast, Boolean networks are
the simplest models and yet rich enough to describe the
connection of underlying biological processes with the large-
scale behavior of the GRN. Li et al. [6] proposed a Boolean
network with 11 genes which plays a crucial role in ensuring
stability of the cell-cycle in S. cerevisiae. However, this model
has a single point attractor and does not explicitly show

mitotic exit. Furthermore, it is inconsistent with a number
of mutant phenotypes. The attractor basins of the BN were
studied by Willadsen and Wiles [7]. The model was further
extended by Trepode et al. [8] by introducing Markovian type
of randomness in gene activations. This model demonstrated
robustness to variations in gene activation probability. Lee
and Huang [9] considered a similar extension in which the
expression levels are given by the same deterministic function
introduced in [6] but is randomly flipped with some fixed
probability. Recently, Irons [10] introduced a more accurate
BN by adding auxiliary nodes that can capture activation or
degradation delay in gene expression levels. Irons’ model has
only one cycle attractor and is consistent with a wide range
of mutations.

In the context of construction of gene regulatory networks,
the most important theoretical questions that arise, are related
to the optimality of the BN cell-cycle network topology.
For instance, if we have the capability to build a synthetic
cell-cycle network from a set of given standard logic gates,
how would one choose the gene interactions to achieve the
highest robustness? What is the smallest number of genes
that guarantees stability, and what is the least amount of logic
computations required to maintain it? In order to answer these
questions, we introduce a Boolean gene regulatory network
exhibiting the cell-cycle behavior with 7 genes that emulates
the cell-cycle, while guaranteeing resilience to cellular noise
which are modeled as random flips in gene expression levels.
Unlike the cell-cycle models which consider the specific
genes/proteins participating in the cell-cycle process, this
network provides a method to capture the two fundamental
characteristics of the cell-cycle (cyclicity and error correcting)
with minimal number of genes and with a high robustness.
The mathematical tool enabling us to achieve these features
is a class of cyclic codes, Projective Geometry codes. The
complete analysis is given in a journal version of this paper
[11].

We note that despite differences between Irons’ approach
and ours, both networks have the same properties and use
similar methods to capture the fundamental features of cell-
cycle. First, both BNs are redundant; in Irons’ BN, adding
some auxiliary nodes (redundant nodes) leads to time delay
in activation and degradation level of nodes. Similarly, there
exists gene redundancy in our GRN which ensures self error-



correcting ability in the network. As we will show later, redun-
dancy results in highly robust networks. Also, in both BNs,
nodes (genes) are updated synchronously. Another common
feature is the noise modeling in these networks. One of the
methods Irons used to test the robustness of his model is
artificially changing the state of a node from 0 to 1 and
vice versa. In our GRN, perturbations or cellular noises are
also modeled as random flips in gene expression levels which
are the codewords of the Projective Geometry code. However,
the difference is that in order to study mutant attractors and
checkpoint attractors, Irons fixes the value of nodes (stuck-on
assumption) and models permanent failures, while we use Von
Neumann error model (transient failure).

The rest of the paper is organized as follows. We begin
Section II by introducing the Irons’ model which includes
time delays in activation and degradation of genes/proteins.
In Section III, the robustness of the model is studied for both
wild type and mutant phenotypes, and the attractors associated
to the wild type, mutants and checkpoints are presented. In
Section IV, we present a Boolean network model in which
the effects of external factors and cellular noise have been
included. In Section V, we construct the GRN based on the
cyclic Projective Geometry codes and show the attractor basins
corresponding to this BN . Section VI, summarizes our results.

II. BOOLEAN NETWORKS AND TIME DELAYS

A. Boolean Networks

A Boolean network (BN) is a system of n nodes V =
{v0, v1, · · · , vn−1} each of which takes a Boolean value
vi ∈ {0, 1} (0 and 1 represent an inactive and active node,
respectively). The expression level of a node vi at time t+1,
v
(t+1)
i , is a function of expression levels of its regulators

at time t, denoted by N
(t)
i ⊆ V . So, v(t+1)

i = fi(v
(t)
Ni

)

where fi converts v
(t)
Ni

into a Boolean value 0 or 1. For
simplicity, whenever it is clear from the context, we shall
denote N

(t)
i as simply Ni. Updating node expression lev-

els can be done either synchronously or asynchronously. In
synchronous updating, all nodes are updated at each time
step t. Then, with time progression, the state of the network
v(t) = {v(t)0 , v

(t)
1 , · · · , v(t)n−1} stays in a stable state called an

attractor A = {p0,p1, · · · ,pq−1}. This means that there is
a time point t′ for which for all t ≥ t′, v(t) = pi, where
i = t − t′ (mod q). Attractors can be cyclic (q > 1) or fixed
point (q = 1). In contrast, in asynchronous updating, at most
one node is updated at each time [10], [12]. Asynchronous
updating is more realistic but is difficult to analyze and is
currently used for theoretical analysis of very small networks.

B. Time-delayed Boolean Networks

In order to allow variability in time delays in the activa-
tion or degradation expression level of nodes, the technique
of adding “auxiliary” nodes was introduced in [10] and is
explained here briefly. Suppose Nv = {v1, v2, · · · , vk} be a
set of neighbors of v which can activate node v provided
that v1, v2, · · · , vk satisfy logical condition Cin. Now, in

Fig. 1. An example of a Boolean network. (A) A Boolean network without
time delays, (B) The Boolean network with time delays (τA = 3 and τD =
4). A1, A2 and A3 are auxiliary nodes and Cout is an extra node which is
added to the model with the Boolean functions described in Table II.

order to hold the record of Cin over ‘τ ’ time steps, a node
corresponding to the value of Cin together with ‘τ ’ auxiliary
nodes are added to the network. They create a “delay line”
between Nv and v. To show how to choose ‘τ ’ for a specific
node v, Irons defined “activation delay” and “degradation
delay” as described bellow.

Let us suppose the activation delay of node v is τA. This
means that this node will become active provided the set of
nodes Nv satisfy Cin for τA continuous time steps. If the
degradation delay of the active node v is τD, this means that
v will become inactive after τD continuous time steps if the
logical condition Cin is not satisfied for τD continuous time
steps, while v maintains its activity in τD−1 continuous time
steps. Now, by adding τ = max{τA − 1, τD − 1} auxiliary
nodes to Cin, both types of delays are included in the model.
Fig. 1(A) shows a simple example of a Boolean network
without time delays, while Fig. 1(B) shows that network with
time delays τA = 3 and τD = 4. Iv is a set of nodes
which are not involved in time-delaying interactions and in this
example inhibits the node v. Boolean functions corresponding
to these networks are given in Tables I and II, respectively.
The dynamics corresponding to the activation and degradation
delay of Fig. 1(B) is shown in Fig. 2(A) and (B).

C. Time-delayed Boolean Network Model for the Budding
Yeast Cell-cycle

Now, time delays are applied to the S. cerevisiae cell-cycle
GRN. The S. cerevisiae is an oval single cell that divides by



TABLE I
EXAMPLE OF BOOLEAN FUNCTION FOR THE NETWORK IN FIG. 1(A).

Node Boolean rules which ensure the node v takes state 1

v Iv = 0 AND Nv = 1

TABLE II
BOOLEAN FUNCTIONS CORRESPONDING TO THE TIME-DELAYED

NETWORK IN FIG. 1(B).

Node Boolean rules which ensure the node v takes state 1

A1 Cin

A2 A1 = 1

A3 A2 = 1

initial activation conditions:
Cout Cin AND A1 = 1 AND A2 = 1

maintenance activation conditions:
Cout = 1 AND (Cin OR A1 = 1 OR A2 = 1 OR A3 = 1)

initial activation conditions:
v Iv = 0 AND Cin AND A1 = 1 AND A2 = 1

maintenance activation conditions:
Iv = 0 AND Cout = 1 AND (Cin OR A1 = 1 OR A2 = 1 OR A3 = 1)

forming a bud. It has G1 and S phases but does not have
a normal G2 phase. Irons’ network has 18 nodes, 14 nodes
of which represent groups of genes and proteins and the
remaining 4 nodes (named B, S, M and D) represent Bud
growth, DNA synthesis, entry to mitosis and cell division,
respectively. Time delays and Boolean functions associated
with each node are given in Table III. More details about the
interactions and transitions in Irons’ Boolean network model
can be found in [10].

III. ROBUSTNESS OF THE MODEL

In this section, we summarize the robustness analysis of
Irons’ network for both wild type and mutant phenotypes,
and the attractors corresponding to the wild type, mutants,
and checkpoints are presented.

A. Wild type attractors [10]

The time delays in the wild type model is described in
Table III and the only attractor corresponding to this type is
shown in Fig. 3(A). This shows that the model is significantly
robust to both perturbations in gene activity and variations
in reaction times. Any perturbation to any node which is
done by putting a node in active or inactive mode (1 or 0,
respectively), does not lead the system into a different stable
attractor. Also, changing the way of updating nodes and the
timing of individual interactions, will not change the stable
dynamics. This can be seen in Fig. 3(B) which shows the
wild type attractor without additional time delays.

Fig. 2. Dynamics corresponding to the Boolean network in Fig. 1(B) and
Boolean functions in Table II. Fig 2(A), shows the activation delay of node v
with τA = 3 and Fig. 2(B) shows degradation delay of node v with τD = 4.

B. Mutant attractors [10]

The robustness of the model is also analyzed for a number of
mutant phenotypes given in Table IV. The mutant phenotype
corresponding to the protein x is shown by x̃. For each mutant,
the main attractor has been shown in Fig. 4.

C. Checkpoint attractors [10]

As mentioned in the introduction, there are a number of
checkpoints in the cell which ensure the cell-cycle safety. For
the wild type model, the main attractor corresponding to each
of the six different checkpoints is shown in Fig. 5.

The first checkpoint is start checkpoint which controls
transition from G1 to S by checking the cell size. The response
to this checkpoint is done by fixing Cln3 to 0 and the attractor
for this checkpoint is shown in Fig. 5(A).

The second checkpoint, morphogenesis checkpoint is also a
size checkpoint which controls the transition into mitosis. The
response to this checkpoint is done by fixing node B to 0 and
can be seen in Fig. 5(B).



TABLE III
TIME-DELAYS AND BOOLEAN FUNCTIONS IN THE BUDDING YEAST

CELL-CYCLE MODEL (FROM [10]). THE NOTATION {condition} 〈τA, τD〉
INDICATES THE ACTIVATION DELAY τA AND DEGRADATION DELAY τD .

Node Conditions that ensure the node takes state 1

Cln3 {Yhp1=0}〈2, 1〉

S/MBF Clb2=0 AND (Cln3=1 OR Cln2=1 OR S/MBF=1)

Cln2 {S/MBF=1}〈2, 1〉

Clb5 Cdc20=0 and {S/MBF=1}〈4, 1〉
Cdc20=0 and CKI=0 AND {S/MBF=1}〈2, 3〉

Yhp1 {S/MBF=1}〈2, 6〉

Clb2 CKI=0 AND Cdh1=0 AND B=1
CKI=0 AND Cdc20=0 AND B=1
CKI=0 AND Cdh1=0 AND Clb2=1 AND SFF=1
CKI=0 AND Cdc20=0 AND Clb2=1 AND SFF=1

SFF CKI=0 AND Cdh1=0 AND B=1
CKI=0 AND Cdc20=0 AND B=1
Clb2=1 AND SFF=1

Cdc20 M=1 AND Clb2=1 AND {SFF=1}〈2, 1〉

FEAR Cdc20=1

MEN FEAR=1 AND Clb2=1

Cdc14 FEAR=1 AND MEN=1

Swi5 Clb2=0 AND {SFF=1}〈2, 3〉
Cdc14=1 AND {SFF=1}〈2, 3〉

CKI {Cdc14=1 AND Swi5=1}〈2, 1〉
Cln2=0 AND Clb5=0 AND Clb2=0 AND {Swi5=1}〈2, 1〉
Cln2=0 AND Clb5=0 AND Clb2=0 AND CKI=1

Cdh1 Cdc14=1
Cln2=0 AND Clb5=0 AND Clb2=0

S D=0 AND S=1
D=0 AND {(Clb5=1 OR Clb2=1)}〈2, 1〉

B D=0 AND B=1
D=0 AND {(Cln2=1 OR Clb5=1)}〈6, 1〉

M D=0 AND M=1
D=0 AND {S=1 AND Clb2=1}〈2, 1〉

D D=0 AND {M=1 AND FEAR=1 AND Cdc14=1}〈2, 1〉

During mitosis, two spindle checkpoints prevent anaphase
and mitotic exit until the chromosomes and mitotic spindle
are correctly aligned. The response to the first one is done by
fixing Cdc20 to 0 (Fig. 5(C)) and the response to the second
one is done by fixing MEN to 0 (Fig. 5(D)).

The two remaining checkpoints are DNA damage check-
points that can delay both S phase and mitotic exit. The
response to these checkpoints can be seen in Figs. 5(E) and
(F) by fixing S/MBF to 0 and fixing both FEAR and MEN to
0, respectively.

IV. SYNTHETIC BOOLEAN NETWORK MODEL FOR THE
GENE REGULATORY NETWORKS OF CELL-CYCLE

Having studied the Irons’ model for the budding yeast
S. cerevisiae, we now design a synthetic network exhibiting

TABLE IV
MUTANTS ASSOCIATED WITH EACH NODE (FROM [10]).

Node Mutant

Cln3 ˜Cln3, ˜Bck2

S/MBF ˜Swi4, ˜Swi6
˜Swi4, ˜Mbp1

Cln2 ˜Cln1, ˜Cln2

Cdc20 ˜Cdc20

FEAR ˜Esp1

Swi5 ˜Swi5

CKI ˜Sic1, ˜Cdc6

cyclic and robust behavior. Designing such networks provides
a valuable tool in understanding the essential characteristics
of one of the most important networks– the cell-cycle gene
regulator network. As we mentioned, in this context, the goal
is to find the smallest network with these properties. In this
section, we introduce a class of finite-systems models of gene
regulatory networks exhibiting the cell-cycle behavior and with
high robustness. First, we show how the cellular noise is
modeled in our Boolean network.

A. Boolean network model in the presence of cellular noise

Consider a Boolean network with a set of n genes V =
{v0, v1, · · · , vn−1} in which the expression level of gene vi
at time t+1 is a function of its regulators at time t, v(t+1)

i =

fi(v
(t)
Ni

) where N (t)
i is the regulators of vi at time t.

In eukaryotic cells, as we mentioned before, the cell-cycle
may be influenced by some checkpoints (control factors)
which are included as external factors that are external to the
cell such as the cell size but can be either inside or outside
the cell. A change in an external factor level may change
the expression level of genes in the GRN. Thus, the external
factors are also encoded into the gene expression profile. So,
if U = {u0, u1, · · · , uk−1} be the set of checkpoints, then

v
(t+1)
i = fi(v

(t)
Ni
, u

(t)
Ei
)

where Ei ⊆ U is the set of external factors affecting the gene i.
Without loss of generality, we can assume that external factors
take binary values. That is uj ∈ {0, 1} for j ∈ {0, 1, · · · , k−
1}.

Cellular noises may cause changes in gene expression levels
which are modeled by random flipping of the output of
Boolean functions, i.e., by changing 0 to 1 and vice-versa.
In this paper, we assume that the bit flips are independent of
each other and independent of time. Such errors are called
Von Neumann type of errors [13]. So, the expression level of
the gene vi at time t+ 1 is

v
(t+1)
i = fi(v

(t)
Ni
, u

(t)
Ei
) + e

(t+1)
i ,

where e(t+1)
i ∈ {0, 1} is the flip (error) of the level of gene

vi at time t + 1, and the operator “+” which models the bit
flip, denotes the modulo-2 sum or Boolean XOR. Therefore,



Fig. 3. Wild type attractors associated with the Boolean network model described in Table III. (A) Wild type attractor with time delays. (B) Wild type
attractor without additional time delays. The sequence of 18 binary bits represents the activity corresponding to the 18 nodes: Cln3, S/MBF, Cln2, Clb5,
Yhp1, Clb2, SFF, Cdc20, FEAR, MEN, Cdc14, Swi5, CKI, Cdh1, S, B, M, D, resp.

Fig. 4. Attractors corresponding to each mutant phenotypes. The sequence of 18 binary bits represents the activity corresponding to the 18 nodes: Cln3,
S/MBF, Cln2, Clb5, Yhp1, Clb2, SFF, Cdc20, FEAR, MEN, Cdc14, Swi5, CKI, Cdh1, S, B, M, D, resp.

Fig. 5. Attractors corresponding to the activation of checkpoints. The single point attractors in (A)-(F) show the response to the six checkpoints discussed in
text, resp. The sequence of 18 binary bits represents the activity corresponding to the 18 nodes: Cln3, S/MBF, Cln2, Clb5, Yhp1, Clb2, SFF, Cdc20, FEAR,
MEN, Cdc14, Swi5, CKI, Cdh1, S, B, M, D, resp.



for the vector v(t+1) of gene activity levels at time t+ 1 and
for a given vector of external factors u(t),

v(t+1) = f(v(t),u(t)) + e(t+1) (1)

where e(t) = (e
(t)
0 , e

(t)
1 , . . . , e

(t)
n−1) is the error vector at time

t.
If the states w and v at times t + 1 and t, respectively

satisfy w = f(v,u), then v is referred to as the predecessor
of w (equivalently, w is the successor of v). If all successors
of the elements of a set of states V are also in V, then
V is called a basin of attraction. In the absence of errors
(e = 0), the sequence of states v(t) is deterministic and these
states are valid states. In the presence of errors, some bits are
altered, and the resulting state may not be valid. Such states
are referred to erroneous states.

To ensure self error-correcting, we assume that the number
of genes (n) is greater than the number of external factors
(k). If n = k and if external factors are independent, then it
is not possible to determine whether a given state is a result
of a change of the corresponding external factor or due to an
internal error.

B. Encoding the cell mass

For simplicity, we assume that the cell mass takes values
0, 1, · · · , 2k−1 which can be represented by a binary vector u
of length k. Encoding the vector u is done by the linear map
v =uG, where G is the generator matrix of some linear code
C. The 2k binary vectors (codewords) generated by this linear
map are shown by Cm, m ∈ {0, 1, · · · , 2k − 1}. We call the
all-zero codeword C0 as the dead state, since we assume that
no gene can be expressed once all n genes in the network are
inhibited. With this assumption, we define a correspondence
relation between the cell mass and gene expression levels,
which exhibits the behavior of the cell-cycle. Without any
restrictions, the gene expressions would follow the changes
in the cell mass, i.e., v(t) = Cm if u(t) = um. But the natural
behavior of the BN should be as follows. When the sensed cell
mass increases from m to m+ 1, the BN should move from
the state Cm to the state Cm+1. When the cell mass reaches the
value 2k − 1, its maximal value, the cell-cycle is completed,
and the cell divides. The cell mass of the new cell becomes 1,
the BN moves to the state C1, and the new cell-cycle begins.
If the cell mass decreases or does not increase by more than
the normal amount (this amount is 1), the progression of cell-
cycle should be blocked, and BN should move to the dead
state 0.

Thus, if BN is in the state v(t) = Cm, there is only one input,
namely, um+1, which causes transition to the state Cm+1. A
closed mathematical representation to show this behavior can
be given in the following formula.

f(Cm,ui) =

 Cm if i = m,
Cm+1 if i = m+ 1,
C0 otherwise.

The operations on indices 1, 2, ..., 2k − 1 are “modulo 2k−
1”. That is, for indices i, j and k we write k = i+j to denote

Fig. 6. Cycling through codewords as a response to the increasing cell mass.
Black arrows denote transitions in the presence of wrong cell mass leading to
the dead state 0 (in the center), while dashed arrows correspond to the cases
when the cell mass remains the same (loops), or increases by 1 (straight lines).

k−1 = (i−1)+(j−1)mod 2k−1. This means that the state
C2k is equivalent to C1.

V. GRN BASED ON A CYCLIC PROJECTIVE GEOMETRY
CODE

To show the cyclic behavior of the network, we use a
cyclic code to encode the cell mass into the gene expression
levels. The cyclic code we use to encode the cell mass is the
cyclic Projective Geometry code (PG(2,2)) of length 7 with
the generator matrix G as follows.

G =

 1 0 0 1 1 1 0
0 1 0 0 1 1 1
0 0 1 1 1 0 1

 .

By the formula v = uG, we have v0 = u0, v1 = u1, v2 = u2,
v3 = u0 + u2, v4 = u0 + u1 + u2, v5 = u0 + u1 and v6 =
u1 + u2. Thus, the first three genes encode the cell mass and
the remaining genes are redundant. This code has 8 codewords
C = {00000000, 0111010, 0011101, 1001110, 0100111,
1010011, 1101001, 1110100}.

The seven nonzero codewords C1, C2, . . . , C7 encode the
binary representation of the cell mass m. The codeword Cm
corresponds to the mass m and the change from Cm to Cm+1

requires only a cyclic shift of the codeword Cm.
One notices that the codeword Cm is equal to Cm−1 cycli-

cally shifted to the right (all index operations are modulo-7,
the number of genes). This is a crucial property of C leading to
a single cycle attractor in a BN as we demonstrate in a moment
(Remark: In reality, there are two attractors, namely, {C0} and
{Ci : i = 1, . . . , 2k − 1}. However, we do not consider the
former since it corresponds to the dead state). Also, it is easy
to see that our network is the smallest nontrivial network with
cyclic behavior and error-correcting ability as the cell-cycle.

Cycling through the codewords is shown in Fig. 6. Both Fig.
3(A) and Fig. 6 show the only cyclic attractors corresponding
to these two BNs.

In addition to cycle progression and division, the model
includes the effect of errors and checkpoints. At the cell-cycle
checkpoints, the GRN verifies that all the errors are corrected



and that the combination of gene expressions is such that the
next phase can start.

At the checkpoints, the satisfaction of all the parity checks
is verified by calculating the syndrome. If there is at least one
unsatisfied check, the error correction mechanism is activated.
the error correction mode terminates when all parity checks
are satisfied, which is signaled by a control variable s. Then
each bit vi takes its corrected value vcorri . It is only then
that the cell-cycle can move forward. In other words, at each
checkpoint, the error correction syndrome s of length m is
calculated, and checked if s = 0. The result is an internal
control variable s defined as s =

∏m−1
j=0 (sj+1). In the absence

of errors, s is equal to 1.
To formulate the error correction mechanism, we need a

parity check matrix H of PG(2,2) code which is given as
follows.

H =



1 0 0 0 1 0 1
1 1 0 0 0 1 0
0 1 1 0 0 0 1
1 0 1 1 0 0 0
0 1 0 1 1 0 0
0 0 1 0 1 1 0
0 0 0 1 0 1 1


.

PG codes can be decoded by one-step majority
logic [14]. For the parity check matrix of PG(2,2),
updating the variable nodes is identical. For instance,
v
(t+1)
0 = v

(t)
0 + MAJ(〈c0〉, 〈c1〉, 〈c3〉) where,

〈c0〉 = v
(t)
0 + v

(t)
4 + v

(t)
6 , 〈c1〉 = v

(t)
0 + v

(t)
1 + v

(t)
5 ,

〈c3〉 = v
(t)
0 + v

(t)
2 + v

(t)
3 and MAJ denotes a majority function

which outputs the value of the majority of its arguments.
In our algorithm, we use a binary control argument c
which toggles the system between “correction mode” to
“shifting mode”. c = 1 turns on the correction mode, while
c = 0 enables the system to move to the next state or stay in
the same state. Now, we describe our cell-cycle like algorithm:

Algorithm: Update Rule [11]

a) Initialization
Let c = 0, t = 0, u(t) = (0, 1, 1), v(t) = u(t)G =
(0, 1, 1, 1, 0, 1, 0) = C1.
b) Correction mode

Let t = t+ 1 and c = c+ 1. Thus, c equals 1 for odd t, and
0 for even t. Next, compute

s =

6∏
i=0

(1 + 〈ci〉)

where 〈ci〉 = v
(t)
i +v

(t)
i+4+v

(t)
i+6. Then for all i ∈ {0, 1, · · · , 6},

let vcorri denote the result of one-step majority logic decoding.
Compute v(t+1)

i as:

v
(t+1)
i = MUX(v

(t)
i ,MUX(vcorri , v

(t)
i , s), c) (2)

where MUX function is defined as follows.

MUX(a, b, c) =

{
a if c = 0,
b if c = 1.

c) Routing-control variable update
The time counter is incremented by 1. So, t = t + 1 and
c = c + 1. Then, recompute s. s = 1 implies correction to a
valid gene expression vector, while s = 0 implies decoding
failure. Such a state automatically drives the BN to bring the
cell to the dead state. Now, the BN checks if the elements of
the external factor vector corresponding to the cell mass have
the right values, the values encoded in the genes in the indices
set M = {0, 1, 2} or the cyclically shifted (to the left) gene
expression values corresponding to the genes in M in the next
state. Now, compute

cstay =
∏
i∈M

(1 + v
(t)
i + u

(t)
i ),

cmove =
∏
i∈M

(1 + v
(t)
i−1 + u

(t)
i ),

and
cdead = (1 + cstay)(1 + cmove).

d) Gene expression updates
Finally, the gene expression v(t+1)

i is updated as follows.

v
(t+1)
i = MUX(MUX(v

(t)
i , v

(t)
i−1, cmove), 0, cdead) (3)

e) Go to Step b)

The BN has eight attractor basins which are all the eight
codewords of PG(2,2). The attractor basin of the state Ci is
the set of vectors {v : v ∈ E0 ∪ E1 ∪ E6 ∪ E7} where Ei

for i = 0, 1, 6, 7, is the set of all error patterns of weight
i. According to the properties of PG(2,2) code, the 16 error
patterns in E0 ∪ E1 ∪ E6 ∪ E7 are correctable. The attractor
basins are shown in Fig. 7. Specifically, the attractor basin
corresponding to the all-zero codeword has been shown in Fig.
8. It is notable that the majority logic decoding algorithm never
produces an invalid word. It always converges to a codeword.
Thus the decoding failure never happens. The algorithm may
produce a wrong state which results in a transition to the dead
state.

VI. CONCLUSION

We have given a summary of Irons’ Boolean network model
for the budding yeast S. cerevisiae which has a single cycle
attractor and is robust enough to a wide range of perturbations.
We have also presented an information theoretic method for
constructing Boolean networks exhibiting properties of the
cell-cycle. The method is based on algorithms in coding theory
and results in a network robust to noisy perturbations. A
comparison between these networks with different structures
and approaches, shows how using common concepts leads to
construction of highly robust BNs with a single cycle attractor.
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Fig. 7. Attractor basins of a Boolean network based on a PG code of length
n = 7. • denotes erroneous states corresponding to the all 16 correctable
error patterns, and ◦ denotes the codewords: 0, and Ci, i = 1, 2, . . . , 7.
Black arrows denote the transitions in the presence of errors, while dashed
arrows are error free transitions.

Fig. 8. Attractor basin corresponding to the all-zero codeword.
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