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Abstract—This paper1 addresses coding for power transfer,
modulation, and error control for the reader-to-tag channel in
near-field passive radio frequency identification (RFID) systems
using inductive coupling as a power transfer mechanism. Dif-
ferent assumptions on channel noise (including two different
models for bit-shifts, insertions and deletions, and additive white
Gaussian noise) are discussed. In particular, we propose a
discretized Gaussian shift channel for the reader-to-tag channel
in passive RFID systems, and design some new simple codes for
error avoidance on this channel model. Finally, some simulation
results are presented to compare the proposed codes to the
Manchester code and two previously proposed codes for the bit-
shift channel model.

I. INTRODUCTION

Inductive coupling is a technique by which energy from one
circuit is transferred to another without wires. Simultaneously,
the energy transfer can be used as a vehicle for information
transmission. This is a fundamental technology for near-field
passive radio frequency identification (RFID) applications as
well as lightweight sensor applications.

In the passive RFID application, a reader, containing or
attached to a power source, controls and powers a communi-
cation session with a tag; a device without a separate power
source. The purpose of the communication session may be, for
examples, object identification, access control, or acquisition
of sensor data.

Several standards exist that specify lower layer coding
for RFID protocols. However, it seems that most standards
employ codes that have been shown to be useful in general-
purpose communication settings. Although this is justifiable
from a pragmatic point of view, we observe that a thorough
information-theoretic approach may reveal alternate coding
schemes that, in general, can provide benefits in terms of
reliability, efficiency, synchronization, simplicity, or security.

Operating range of a reader-tag pair is determined by
communications requirements as well as power transfer re-
quirements. To meet the communications requirements, the
reader-to-tag and the tag-to-reader communication channels
satisfy specified demands on communication transfer rate
and reliability. To meet the power transfer requirements, the

1This work was supported by NFR through the ICC:RASC project, and by
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received power at the tag must be sufficiently large as to
provide operating power at the tag.

According to [1, 2], with present day technology it is the
power transfer requirements that present the bottleneck with
respect to operating range for a two-way reader-tag commu-
nication session. Nevertheless, there is a value in determining
the information-theoretic aspects, such as tradeoffs between
reliability and transmission rate, of this communication: First,
because future technologies may shift the relation between
communication and power transfer requirements, and second,
because present cheap tag technologies impose challenges
on communication which are not directly related merely to
received signal power.

In this paper, we address issues related to lower layer coding
of information on inductively coupled channels, with emphasis
on coding for error control for the reader-to-tag channel. The
remainder of the paper is organized as follows. In Section II,
we describe the characteristics of the reader-to-tag channel and
discuss power issues and processing capabilities. Different rel-
evant channel models are described in Section III. The section
focuses on an idealized channel where the noise-free received
signal replicates the transmitted signal, but where additive
noise and timing inaccuracies may affect system performance.
In particular, we propose a discretized Gaussian shift channel
as a model for the reader-to-tag channel for passive near-
field RFID. In Section IV, we present several new and very
simple codes for the discretized Gaussian shift channel, as well
as their encoding/decoding techniques. Simulation results are
presented in Section V, and we draw some conclusions and
present a discussion of future work in Section VI.

II. CHARACTERISTICS OF THE READER-TO-TAG CHANNEL

In this paper, we will be concerned with data transfer
from a reader to a tag. An information source generates an
information frame of k bits u = (u1, . . . , uk). The information
frame is passed through an encoder to produce an encoded
frame c = (c1, . . . , cn). The encoded frame is interpreted as a
waveform that modulates a carrier wave, as shown in Fig. 1,
[3, 4].

Please observe that the concept of a frame in this context
refers to a collection of bits that belong together, for some
semantic reason related to the application layer. The actual



encoder may work at a different length. Due to the strictly
limited computing power of the tag, the actual encoder may
work on a bit-by-bit basis, as in most of the examples later
in this paper. The encoded frame length n may be fixed,
depending only on k, or variable, depending on k and also
on the information frame, but in general n ≥ k.
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Fig. 1. A simplified view of the reader-to-tag channel.

Meanwhile, back at Fig. 1, the demodulator in the tag
samples the physical waveform at time intervals determined
by the tag’s timing device, and converts it into an estimate
ĉ = (ĉ1, . . . , ĉn′) of the transmitted frame, where in general
n′ 6= n. Ideally, ĉ should be identical to c, but additive noise,
interference, timing inaccuracies, and waveform degradation
due to limited bandwidth may contribute to corrupt the re-
ceived frame ĉ. We will discuss some of these signal corrup-
tions later in this paper. A decoder at the tag subsequently
attempts to recover an information frame û = (û1, . . . , ûk)
from ĉ. Correct decoding is achieved if û = u.

A. Power Issues

The tag in Fig. 1 has no internal power source. Rather,
it collects the power derived from the carrier. After some
initial transient delay, the tag’s power circuitry will be charged
sufficiently to provide operating power for the tag. Commonly,
amplitude modulation, or more precisely on-off keying (OOK)
is employed. In OOK, a ”1” (resp. ”0”) is transmitted by
the presence (resp. absence, or alternatively a low amplitude)
of the carrier for the duration specified for transmitting that
particular bit.

The transmitted power is limited by regulation [2]. However,
the amount of transferred power can still be influenced by the
encoding scheme used. Although the tag has no traditional
battery or other means of accumulating energy over an ex-
tended period, it is possible to ”ephemerally” store energy
over a short time (say, a few bit periods) in the power circuitry.
Thus, it makes sense to impose constraints on power content
in the transmitted signal [5–7], for example, by demanding

that mP out of every nP consecutive transmitted bits are 1’s.
Thus, a high power content (i.e., the ratio mP /nP is large)
is an advantage. The precise manifestation of this advantage
depends on technology and is difficult to measure. Therefore,
we will consider different measures of power (to be defined
below) as a figure of merit for a given coding scheme.

Formally, we will define the power content of a binary
vector a ∈ GF(2)n, denoted by P (a), as the rational number
w(a)/n, where w(·) denotes the Hamming weight of its binary
argument.

Let C denote a block code or a variable-length code, i.e.,
a collection or set of codewords. Furthermore, let C[N ] be
the set of sequences of length N ≥ 1 over C, i.e., the set
of N consecutive codewords. The average power of C is
defined as the average power content of the sequences in
C[N ] as N → ∞. For block codes, this average does not
depend on N , and the average power of a block code C
is Pavg(C) = 1

|C|
∑

a∈C P (a). However, for variable-length
codes, the average depends on N , and we need to consider
the limit as N →∞. In general, the average power of a code
C can be computed from [5]

Pavg(C) =

∑|C|
j=1 wj∑|C|
j=1 nj

where wj and nj denote the Hamming weight and length of
the jth codeword in C, respectively.

The minimum sustainable power of a block or variable-
length code C is defined as Pmin(C) = mina∈C P (a). We
remark that for codes defined by a state diagram, the various
notions of power can refer to any cycle in the state diagram.
Thus, Pmin refers to the minimum average cycle weight of a
cycle in the state diagram and can, for instance, be computed
using Karp’s algorithm [8]. The average power content Pavg

can be computed from the stationary probabilities of the states
in the state diagram.

As a final figure of merit, we will consider the local
minimum power of a code C as the minimum positive value
of the ratio mP /nP over all possible sequences in C[N ], for
any finite value of N , where nP ≥ mP are arbitrary positive
integers.

B. Processing Capability

Due to the limited tag power, processing capability is
severely limited in a tag. This applies to any processing
involved in whatever service the tag is supposed to provide,
but also signal processing involved in receiving information.

1) Error Avoidance Versus Error Correction: For many
communication channels studied in the literature, approaching
channel capacity (or even achieving a significant coding gain
over naive implementations) relies on error correction codes.
However, although classes of codes are known for which
the decoder can be efficiently encoded, the decoding process
may still require a significant amount of processing. We will
argue below that for channels for which the error probabilities
depend on the transmitted data, reliability can be increased



by using a code enforcing an appropriate set of modulation
constraints. Such error avoiding codes can typically be de-
coded by a simple table, mapping received sequences into
information estimates.

C. Applications of Murphy’s Law: What Could Possibly Go
Wrong?

For the information theorist, it is at this point interesting to
consider whether the information transmitted from the reader
to the tag is received correctly. (In fact, for the information
theorist the channel is more interesting if, at first, it is not
received correctly.) The received signal may be corrupted by
additive noise or by incorrect timing. We will study these
issues below, after some initial general remarks.

The frame error rate (FER), i.e., the probability of a frame
error (FE), is given by

P (FE) =
∑
∀u

P (u)P (FE|u) (1)

where P (FE|u) is the conditional probability of a frame error
given that the information vector u has been transmitted. Now,
we will use the general term error pattern to represent any
random corruption of the transmitted frame. For convenience,
we assume that there is a finite number of error patterns.
The conditional probability P (FE|u) can be expressed as a
summation over error patterns e as follows

P (FE|u) =
∑
∀e

P (e|u)P (FE|e,u)

=
∑
∀e

P (e|c)P (FE|e, c)
(2)

where P (e|c) is the conditional probability of a given error
pattern e given a transmitted frame c. The probability P (e|c)
depends only on the channel, but it determines which types
of error we should be concerned about in the code design
process. If c is transmitted and then corrupted by e so that
ĉ is received, the decoder will make a frame error unless
the decoder produces c when ĉ is the decoder input. Frame
errors occur because there may exist different frames c, c′ and
different error patterns e, e′ so that c corrupted by e and c′

corrupted by e′ both yield the same received vector ĉ.
Thus, the probability P (FE|e, c) = P (FE|ĉ) for some re-

ceived vector ĉ represents the probability of frame error when
vector ĉ is received. This quantity is a decoder property. The
goal of the code design is to minimize the FER, given prior
knowledge of the nature and behavior of signal corruptions.
In Section III below, we will discuss some of these signal
corruptions in greater detail.

III. CHANNEL MODELS

In this section, we will discuss different channel models for
the reader-to-tag channel.

A. The Additive White Gaussian Noise (AWGN) Channel

A common assumption in communication engineering is
that the channel is affected by AWGN. It is well-known that
in this case the channel capacity is given by

C = 1/2 log(1 + SNR)

where SNR is the signal-to-noise ratio. We observe that on the
reader-to-tag channel, the SNR is usually high, since readers
need to pass a fair amount of power through the inductive
channel in order to provide operating power for the tag.

Connecting the AWGN channel (resp. binary symmetric
channel (BSC)) to the general error description in (1)-(2), it is
well-known that the “likely error patterns” e will not depend
on u and represent additive errors of low Euclidean weight or
low Hamming weight. For the BSC, (2) simplifies to

P (FE|u) ≈ Awpw (3)

for p small, where p is the BSC crossover probability, w is
the minimum Hamming weight of an additive error pattern
that will cause a frame error, and Aw is the number of
such minimum-weight error patterns. Assuming an optimum
decoder, Aw and w are parameters associated with the specific
code.

B. The Traditional Bit-Shift Channel

In [5, 6], we considered a bit-shift channel with binary input
x = (x1, . . . , xL), where by assumption the value of x1 is
known to the receiver, and binary output y = (y1, . . . , yL′),
where L′ is equal to L − 1, L, or L + 1, and L ≥ 2 is a
positive integer.

The binary input sequence x is parsed into a sequence
of phrases, where each phrase is a consecutive sequence of
equal bits. Please observe that this parsing of x is done
by the channel (and not by an encoder). Then, the integer
sequence of phrase lengths x̃ is transmitted over a channel.
For instance, x = (0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1) is transformed
into the integer sequence x̃ = (2, 3, 3, 4) of phrase lengths.
The bit-shift channel is described by the model

ỹi = x̃i + ωi − ωi−1 (4)

where i ≥ 1 and (ω0, ω1, . . . ) is a data-dependent Markov
chain with transition probabilities to be discussed below. Note
that a positive (negative) value of ωi corresponds to a right
(left) bit-shift in the transition from time i to time i+1, i ≥ 1.
The value of ω0 is always zero and acts like an initialization
value.

In the setting of magnetic recording, the bit-shift channel
has, for convenience, been used with (d, k)-constrained input
sequences with d ≥ 2, precoded with an accumulator [9, 10],
which implies that the received sequence ỹ will only contain
positive integer values. In [5, 6], this traditional model was
modified to accommodate the cases of length-1 and length-2



runlengths. Thus,

P (ωi = ω|x̃i = x̃, ωi−1 = ω′)

=



ε, if ω = −1 and (x̃ 6= 1 or ω′ 6= 1)
1− 2ε, if ω = 0 and (x̃ 6= 1 or ω′ 6= 1)
ε, if ω = 1 and (x̃ 6= 1 or ω′ 6= 1)
1−2ε
1−ε , if ω = 0, x̃ = 1, and ω′ = 1
ε

1−ε , if ω = 1, x̃ = 1, and ω′ = 1

0, otherwise

where ε is the bit-shift probability, 0 ≤ ε ≤ 1/2.
Finally, if the received integer sequence ỹ does contain

a zero at position i, i.e., ỹi = 0, then this coordinate is
removed and ỹi−1 and ỹi+1 are added. The resulting sequence
is denoted by ŷ. For instance, if x̃ = (1, 3, 2, 1, 1, 1, 2, 1) and
ω = (0,−1, 0, 1, 1, 0, 0, 1, 0), then ỹ = (0, 4, 3, 1, 0, 1, 3, 0)
and ŷ = (4, 3, 2, 3). Thus, the received integer sequence ŷ
contains only positive integer values. The received integer
sequence from the channel ŷ can be uniquely transformed
back into a binary sequence y of phrases if the value x1 is
known, which it is by assumption.

C. The Discretized Gaussian Shift Channel

If the receiver resynchronizes its internal clock each time a
bit is detected, the model in Section III-B needs to be modified.
We will first introduce the Gaussian shift channel.

Suppose the reader transmits a run of x̃ consecutive equal
symbols. This corresponds to an amplitude modulated signal
of duration x̃. At the tag, we will assume that this is detected
(according to the tag’s internal clock) as having duration

ỹ = x̃ ·K (5)

where K is a random variable with, in general, a Gaussian dis-
tribution N(α, ε2) with mean α and variance ε2. Consecutive
samplings of K are assumed to be independent. If α 6= 1, it
means that the tag has a systematic drift, which may affect the
tag’s ability to function at all. Thus, we will focus on the case
α = 1. With this definition, the input to the demodulator will
be a sequence of alternating runs of high and low amplitude
values; the detected duration ỹ of each run being a real-valued
number.

We might attempt decoding directly at the Gaussian shift
channel, but the computationally complexity will probably be
high for the tag receiver. As a simplification, and to deal
with the fact that ỹ may become negative (K has a normal
distribution), which of course does not have any physical
interpretation, we propose to discretize the timing and truncate
K. The optimal choice for the quantization thresholds, i.e., the
thresholds when mapping the real-valued numbers ỹ to positive
integers, will depend on the code under consideration. For
instance, suppose a and b are the only two possible runlengths,
where b > a. Then, there is a single threshold and its optimum
value from a local perspective2 to determine if a or b was

2We can do better with a maximum-likelihood detector which considers the
whole transmitted sequence.

transmitted is

t = t(a, b) =
2ab

a+ b
.

The corresponding decision error with one such decision is

Q

(
t− a
aε

)
= Q

(
b− a

(a+ b)ε

)
> Q

(
1

ε

)

where Q(x) is the probability that a sample of the standard
normal distribution has value larger than x, i.e.,

Q(x) =

∫ ∞
x

1√
2π
e−y

2/2dy

or

Q(x) ≈ e−x
2/2

x
√

2π

for large x, and where the inequality follows from the fact
that (b − a)/(a + b) is smaller than 1. Furthermore, when
a = b−1, t = 2ab/(a+b) = 2b(b−1)/(2b−1) will approach
(a+ b)/2 = b− 1/2 as b goes to infinity.

We remark that we do not allow the mapping of a real-
valued number (from the output of the Gaussian shift channel)
to zero (or a negative integer), which means that the channel
can not make a runlength disappear. This appears to be con-
sistent with properties practical inductively coupled channels.

In general, let Q(A, T ) denote a quantization scheme with
quantization values A = {a1, . . . , a|A|}, where 1 ≤ a1 <
· · · < a|A| ≤ L, and L is some positive integer, and quantiza-
tion thresholds T = {t2, . . . , t|A|}, where al < tl+1 < al+1,
l = 1, . . . , |A|− 1. The quantization scheme works in the fol-
lowing way. Map a received real-valued number to an integer
in A using quantization thresholds in T , i.e., if the received
real-valued number is in the range [tl, tl+1), l = 2, . . . , |A|−1,
map it to al, if it is in the range [t|A|,∞), map it to a|A|, and,
otherwise, map it to a1.

Now, we define the discretized Gaussian shift channel with
quantization scheme Q(A, T ) as the cascade of the Gaussian
shift channel and the quantization scheme Q(A, T ), where
the quantization scheme Q(A, T ) is applied to the real-valued
sequence at the output of the Gaussian shift channel.

As an example, we can define a discretized Gaussian shift
channel, where the quantization thresholds are chosen such
that the integer sequence is obtained from the real-valued
sequence by rounding its values to the nearest positive integer
value. This particular quantization scheme will be denoted
by Qrounding. As a further modification, we may introduce
a parameter Γ into the quantization scheme Qrounding, and
in this way get a family of discretized Gaussian shift channel.
The resulting quantization scheme works in the following way.
If the reader has transmitted a run of L symbols, the tag will



detect it as having length

L− l, if K ∈
[
− 2l+1

2L ,− 2l−1
2L

)
and

l = 1, . . . ,Γ′ − 1

L− Γ′, if K ∈
(
−∞,− 2Γ′−1

2L

)
L, if K ∈

[
− 1

2L ,
1

2L

)
L+ l, if K ∈

[
2l−1
2L , 2l+1

2L

)
and

l = 1, . . . ,Γ− 1

L+ Γ, if K ∈
[

2Γ−1
2L ,∞

)
where Γ ≥ 1 is a truncation integer parameter and Γ′ =
min(Γ, L − 1). With Γ = 1, we denote the channel as the
discretized Gaussian single-shift channel. With Γ = 2, the
channel is called the discretized Gaussian double-shift channel,
and so on. Now, if we want to express the discretized Gaussian
single-shift channel in terms of runlengths with additive error
terms ω (as in (4)), (4) is modified by (5) and discretization
to

ỹi = x̃i + ωi

where

P (ωi = ω|x̃i = x̃) =



p(x̃), if ω = −1 and x̃ > 1

0, if ω = −1 and x̃ = 1

1− 2p(x̃), if ω = 0 and x̃ > 1

1− p(x̃), if ω = 0 and x̃ = 1

p(x̃), if ω = 1 and x̃ ≥ 1

0, otherwise

and p(L) = Q
(

1
2Lε

)
.

As another example, we can define a quantization scheme
Q(A) = Q(A, T ), where the quantization threshold tl =
2al−1al/(al−1 + al), l = 2, . . . , |A|. As will become clear
later, this quantization scheme outperforms the general round-
ing scheme defined above. However, note that when a|A|−1 =
a|A| − 1 and a|A| is large, the performance approaches the
performance of the discretized Gaussian shift channel with
quantization scheme Qrounding for low values of ε.

We can make the following remarks in connection with the
Gaussian shift channel.

(i) As can be seen from Fig. 2, when considering the “likely
error patterns” e in (2), we need to be concerned mainly
about the longest runs of equal symbols. The exception
to this pragmatic rule occurs when, for some codes, it is
possible to correct all shifts (up to some order, where a
single shift is a shift of order one, a double shift is a shift
of order two, and so on) corresponding to maximum-
length runs.

(ii) In analogy with (3), we can in principle simplify (1) for
many simple codes used on the discretized Gaussian shift
channel to, respectively,

P (FE) ≈ SL · p(L)

and
P (FE) ≈ SL · p(L− 1/2)

with quantization schemes Qrounding and Q(A), where
A = {a1, . . . , a|A|−2, L−1, L}, and SL is some constant
depending on L, assuming that the most likely error event
when using the code is connected with the confusion of
runlengths of length L with some other run of length
L−1. We omit the details, but will show examples later.

(iii) Error avoidance versus error control: Suppose we can
design an error correction encoder that admits runlengths
of length at most 2; that has a decoder that can correct
all error events involving a single shift of a single run
of length 2, but that will make a mistake if two or more
such event occurs. Such a decoder should have a FER on
the order of p(2)2 (with quantization scheme Qrounding)
for small ε. Observe from Fig. 2 that p(2)2 > p(1). Can
we design a code with a simple decoder that behaves as
p(1)? Yes, we can; see Sections IV-G, IV-H, and IV-J.

(iv) Observe that the discretized Gaussian single-shift chan-
nel is a special form of an insertion-deletion channel,
which randomly may extend or shorten the runs of
transmitted identical symbols, but where the statistics
of this random process depend on the length of the
runs. Codes for insertion-deletion channels have been
studied, but to a moderate extent, and some of the best
known codes, such as the Varshamov-Tenengolz codes
[11] and the codes in [12], are apparently too complex
for the application in question and also do not possess
the appropriate modulation constraints, to be discussed
below.

(v) An intelligent receiver tag should realize that any re-
ceived run longer than the maximum run must be the
result of an insertion. Thus, such insertions can trivially
be corrected. In consequence, for some codes, the dis-
cretized Gaussian shift channel is approximately simply
a special deletion channel that applies only to runs of

Fig. 2. Comparison of shift probabilities (with quantization scheme
Qrounding) versus ε for runlengths 1, 2, 3, and 4.



maximum length.
(vi) In general, for any code and channel, a receiver may use a

forward error correction scheme (FEC), or an automatic-
repeat-request (ARQ) scheme asking for retransmissions
if an error is detected. Obviously, error detection is
computationally simpler than error correction. Indeed,
ARQ is typically used in standard protocols for passive
RFID, utilizing a standard embedded cyclic redundancy
check code.
For the BSC it is further well-known that the FER
associated with FEC is typically much higher than the
probability of undetected error corresponding to ARQ.
Counter-intuitively, this property does not necessarily
apply with the discretized Gaussian shift channel.

IV. CODING SCHEMES FOR THE READER-TO-TAG
CHANNEL

Among the encoding schemes in use in communication
standards for RFID applications, one can find several codes
that are popular in general communication protocols, such
as NRZ, Manchester, Unipolar RZ, and Miller coding [2].
Here we will study the effect of some new encoding schemes
for the reader-to-tag channel, considering power constraints
(see Section II-A) and the communication channel described
in Section III-C, i.e., the Gaussian shift channel. As a ref-
erence, we will provide the Manchester code (described in
Section IV-B), and two variable-length codes presented in [5]
(and described in Sections IV-C and IV-D, respectively) and
designed for the bit-shift channel in Section III-B.

Before describing the specific code constructions, we will
briefly explain the concept of constrained coding.

A. Runlength Limitations and Other Coding Constraints

We may desire and enforce that an encoded sequence
satisfies certain constraints specified by a constraint graph
[13–15]. These constraints may, for example, be the power
constraints described in Section II-A, or runlength limitations,
or a combination of these constraints. For the purpose of this
paper, we shall denote a particular binary runlength limitation
as RLL(L0,L1), where Lb is the set of admissible runlengths
of binary symbol b. We can prove the following theorems.

Theorem 1: If a code satisfying the RLL([1, L], [1, L]) limi-
tation, where [1, L] = {1, 2, . . . , L}, is used on the discretized
Gaussian shift channel with quantization scheme Qrounding

and with a maximum-likelihood decoder, then the FER be-
haves as O(p(L)) for small ε.

Theorem 2: If a code satisfying the RLL([1, L], [1, L]) lim-
itation is used on the discretized Gaussian shift channel with
quantization schemeQ([1, L]) and with a maximum-likelihood
decoder, then the FER behaves as O(p(L− 1/2)) for small ε.

The maximum rate of a constrained code is determined by
the capacity of the constraint, which can readily be calculated
from the constraint graph [13–15]. There exist several tech-
niques [13–15] for designing an encoder (of code rate upper-
bounded by the capacity), and we refer the interested reader
to these works for further details.

B. The Manchester Code

The Manchester code is a very simple block code that
maps 0 into 01, and 1 into 10. The code is popular in many
communication protocols, but can observe that it also satisfies
several of the criteria we can derive for a coding scheme to
be used on a reader-to-tag discretized Gaussian shift channel:
The maximum runlength is two; the average power is 1/2;
the minimum sustainable power is 1/2; the local minimum
power is 1/4; the minimum Hamming distance is two, and
the code is simple to decode. The performance of this code
on the discretized Gaussian shift channel will be presented in
Section V.

C. The Code {10, 011} [5, 6]

The variable-length code {10, 011} is single bit-shift error
correcting, i.e., it corrects any single bit-shift on the traditional
bit-shift channel from Section III-B, and has minimum sustain-
able power 1/2, local minimum power 1/3, and average power
3/5. The rate of the code is 2/5, the minimum runlength is 1,
and the maximum runlength is 3. The performance of this code
on the discretized Gaussian shift channel will be presented in
Section V.

D. The Code {101, 01101} [5]

The variable-length code {101, 01101} is single bit-shift
error detecting, i.e., it detects any single bit-shift on the tradi-
tional bit-shift channel from Section III-B, and has minimum
sustainable power 3/5, local minimum power 1/3, and average
power 5/8. The rate of the code is 1/4, the minimum runlength
is 1, and the maximum runlength is 2. The performance of
this code on the discretized Gaussian shift channel will be
presented in Section V.

E. RLL({1, 2}, {1, 2})-Limited Codes

The capacity of the constraint RLL({1, 2}, {1, 2}) is 0.694.
Furthermore, it follows from Theorems 1 and 2 that, similar to
the Manchester code, any code with this runlength limitation
has a FER on the order of O(p(2)) and O(p(3/2)), for small
ε, on the discretized Gaussian shift channel with quantization
scheme Qrounding and Q([1, 2]), respectively.

Example 1: A two-state, rate-2/3 encoder for a
RLL({1}, {1, . . . ,∞})-constrained code is given in [14]. The
encoder can be transformed into a four-state encoder for a
RLL({1, 2}, {1, 2})-constrained code by a simple differential
mapping. The encoder is shown in Fig. 3, while a very
simple decoder/demapper is provided in Table I. The code
has minimum sustainable power 1/3, local minimum power
1/5, and average power 1/2.

Example 2: A code with a very simple encoding and decod-
ing can be obtained by using bit-stuffing. The resulting code
is a variable-length code. The encoder keeps the information
symbols ut, t = 1, . . . , k, unmodified, but inserts an extra
inverted symbol 1 − ut if ut ≡ t (mod 2). The decoder
destuffs the extra inserted symbols in a similar way. The
encoder has rate 2/3, minimum sustainable power 1/3, local



TABLE I
LOOK-UP TABLE DECODING OF THE RLL({1, 2}, {1, 2})-CONSTRAINED

CODE FROM EXAMPLE 1 AND WITH THE ENCODER GIVEN IN FIG. 3.
BEFORE DECODING, IF A RUN OF AT LEAST THREE ZEROS OR ONES IS
OBSERVED, CHANGE IT TO TWO, SINCE IT MOST LIKELY COMES FROM

INSERTIONS.

Current word Next bits Decode to

000 Not possible Detect insertion

001 010, 001 00
1, 011 01

010 0, 100 11
110, 101 10

011 0 00
(1 means insertion)

100 1 01
(0 means insertion)

101 010, 001 11
1, 011 10

110 0, 100 00
110, 101 01

111 Not possible Detect insertion

minimum power 1/5, average power 1/2, and maximum
runlength 2.

F. RLL({1}, {1, 2})-Limited Codes

The capacity of the constraint RLL({1}, {1, 2}) is 0.406.
Thus, a practical rate is no higher than 2/5. However, the
FER on the discretized Gaussian shift channel behaves (for
small ε) as O(p(2)) and O(p(3/2)) with quantization scheme
Qrounding and Q([1, 2]), respectively. The only advantage over
the RLL({1, 2}, {1, 2}) limitation is a higher power content.

G. RLL({1, 3}, {1, 3})-Limited Codes

The capacity of the constraint RLL({1, 3}, {1, 3}) is 0.552.
Theorem 3: The FER on the discretized Gaussian

shift channel with quantization scheme Qrounding for
RLL({1, 3}, {1, 3})-constrained codes is on the order of
O(p(1)) for small ε.

Proof: The decoder works in the following way. Every
received run of length 1 (on the discretized Gaussian shift
channel with quantization scheme Qrounding) is kept as is,
and every received run of length ≥ 2 is assumed to be a run

D

C

B

A

D

C

B

A
11/010

10/010,01/100

11/
010

00/011

10/101

11/101,00/011
00/001

01/100

01/110

00/110

11/101

10/101

10/0
10

01/001

Fig. 3. An encoder for a RLL({1, 2}, {1, 2})-constrained code.

TABLE II
LOOK-UP TABLE DECODING OF THE RLL({1, 3}, {1, 3})-CONSTRAINED

CODE FROM EXAMPLE 3 AND WITH THE ENCODER GIVEN IN FIG. 4.
BEFORE DECODING, IF A RUN OF TWO ZEROS OR TWO ONES IS OBSERVED,
CHANGE IT TO THREE, SINCE IT MOST LIKELY COMES FROM A DELETION

OF A LENGTH THREE RUN. SIMILARLY, IF A RUN OF FOUR ZEROS OR ONES
IS OBSERVED, CHANGE IT TO THREE.

Current word Next bit pair Decode to

00 Whatever 0

01 Not possible Detect error

10 00 or 11 0
10 1

11 Whatever 1

of length 3. This decoder makes an error if a run of length 1
is extended by the Gaussian shift channel to length more than
3/2 (this happens with probability p(1)), or if a run of length
3 is shortened to less than 3/2 (this happens with probability
Q
(

3
6ε

)
= p(1)).

We remark that on the discretized Gaussian shift channel
with quantization scheme Q({1, 3}), the error probability is
of the same order for small ε, i.e., it behaves as O(p(1)).

Example 3: A three-state, rate-1/2 encoder for a
RLL({1, 3}, {1, 3})-constrained code is depicted in Fig. 4,
while a very simple decoder/demapper is provided in
Table II. The code has minimum sustainable power 1/4, local
minimum power 1/7, and average power 13/24.

0/00

A

B

C

A

B

C

0/10

1/11

0/10
1/10

1/11

Fig. 4. An encoder for a RLL({1, 3}, {1, 3})-constrained code.

Example 4: A code with a very simple encoding and de-
coding can be obtained by using bit-stuffing. The resulting
code is a variable-length code. The encoder keeps the infor-
mation symbols ut, t = 1, . . . , k, unmodified, but inserts a
pair of extra symbols (ut, 1 − ut) if ut ≡ t (mod 2). The
decoder destuffs the extra inserted symbols in a similar way.
The encoder has rate 1/2, minimum sustainable power 1/4,
local minimum power 1/7, average power 1/2, and allowed
runlengths 1 and 3.

H. RLL({1}, {1, 3})-Limited Codes

The capacity of the constraint RLL({1}, {1, 3}) is 0.347.
Furthermore, there is no difference in the asymptotic FER
(i.e., the FER for small values of ε) with respect to
RLL({1, 3}, {1, 3})-limited codes. Thus, the only advantage
over the RLL({1, 3}, {1, 3}) limitation is a higher power
content.

Example 5: The variable-length RLL({1}, {1, 3})-
constrained code with codewords {01, 0111} has rate
1/3, minimum sustainable power 1/2, local minimum power
1/3, and average power 2/3.
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Fig. 5. FER on the discretized Gaussian shift channel as a function of ε for
different codes.

I. RLL({1, 2, 4}, {1, 2, 4})-Limited Codes

Codes satisfying the constrains

RLL({1, 2, 4}, {1, 2, 4}), RLL({1, 2}, {1, 2, 4}), and
RLL({1}, {1, 2, 4})

have capacities 0.811, 0.758, and 0.515, respectively. The
latter constraint may be attractive from a power transfer point
of view; the two former constraints admit code rates of 4/5
and 3/4, respectively, but may be hard to implement. For
the RLL({1}, {1, 2, 4}) constraint, a rate-1/2, 6-state encoder
can be designed using the state-splitting algorithm from [16].
Finally, we remark that the FER on the discretized Gaussian
shift channel is on the order of O(p(2)) and O(p(3/2))
with the quantization scheme Qrounding and Q({1, 2, 4}),
respectively, for small values of ε for these codes.

J. Related Constraints

Any RLL({3i : i = 0, . . . , L}, {3i : i = 0, . . . , L})-limited
code, for any positive integer L, has a FER of the order
of O(p(1)) (with both quantization schemes Qrounding and
Q({3i : i = 0, . . . , L})) for small ε. This can be shown
with a similar argument to that used to prove Theorem 3. We
remark here that the O(p(1)) performance guarantee under
the quantization scheme Qrounding assumes that the decoder
deals with non-admissible (with respect to the code) observed
runlengths in the appropriate way. Notice that the capacity
seems to approach a limit at about 0.58 as L increases.
Thus, there seems to be no immediate practical advantage on
extending these ideas further.

V. SIMULATION RESULTS

In this section, we provide some simulation results of some
of the above-mentioned codes on the discretized Gaussian shift
channel. In particular, we consider the Manchester code from
Section IV-B, the {10, 011} code from Section IV-C, and the
{101, 01101} code from Section IV-D, in addition to the newly
designed codes from Examples 1, 3, and 5. The information
block length k is chosen to be 40 bits.
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Analytical

Fig. 6. A comparison of the FER (as a function of ε) on the discretized
Gaussian shift channel with two different quantization schemes and with
analytical expressions for the asymptotic performance, for the Manchester
code and the variable-length code {01, 0111}.

In Fig. 5, we have plotted the FER performance of these
codes as function of ε on the discretized Gaussian shift channel
with quantization scheme Q([1, 2]) for the Manchester code,
for the {101, 01101} code from Section IV-D, and for the
code from Example 1, with quantization scheme Q([1, 3]) for
the {10, 011} code from Section IV-C, and with quantization
schemeQ({1, 3}) for the remaining codes. As can be observed
from the figure, the RLL({1, 3}, {1, 3})-constrained code from
Example 3 and the RLL({1}, {1, 3})-constrained code from
Example 5 have the best error rate performance, while the
variable-length code {10, 011} designed in [5, 6] for the tra-
ditional bit-shift channel has the worst performance among
the simulated codes. However, this is not surprising, since this
code has not been designed for the discretized Gaussian shift
channel.

In Fig. 6, we have compared the performance of two
different codes, namely the RLL({1, 2}, {1, 2})-constrained
Manchester code and the RLL({1}, {1, 3})-constrained code
{01, 0111} from Example 5 with two different quantization
schemes. We have used the quantization schemes simulated
in Fig. 5 and the quantization scheme Qrounding. Notice that
there is no performance difference between the two quan-
tization schemes for the RLL({1}, {1, 3})-constrained code,
while there is a significant performance difference for the
other code. This is consistent with our earlier discussion in
Section IV. In the figure, we also show analytical expressions
for the asymptotic performance which depend on both the
quantization scheme used and the particular decoding algo-
rithm. These expressions match perfectly with the simulation
results. For instance, for the RLL({1}, {1, 3})-constrained
code from Example 5, a detailed analysis shows that the FER
(with both quantization schemes Q({1, 3}) and Qrounding) is
approximately

k ·Q
(

1

2ε

)
= k · p(1)

as ε becomes smaller. For the Manchester code, the corre-



sponding expressions are

(3k/2 + 1/2) ·Q
(

1

3ε

)
= (3k/2 + 1/2) · p(3/2)

and
k/4 ·Q

(
1

4ε

)
= k/4 · p(2)

with quantization schemes Q([1, 2]) and Qrounding, respec-
tively. Finally, we remark that we have used look-up table
decoding in all simulations. For instance, for the codes from
Examples 1 and 3, we have used Tables I and II, respectively,
in the decoding.

VI. CONCLUSION AND FUTURE WORK

In this work, we have considered coding for power transfer,
modulation, and error control for the reader-to-tag channel in
near-field passive RFID systems. We have discussed power
issues and proposed the (discretized) Gaussian shift channel
as a channel model for the reader-to-tag channel in near-field
passive RFID systems. Furthermore, some new simple codes
for error avoidance on this channel model were presented and
their performance were compared to the Manchester code and
two previously proposed codes for the bit-shift channel model.

As future work, we will consider other important aspects
of the inductively coupled channel and incorporate these into
a more sophisticated channel model. For instance, how will
the designed codes perform on a hybrid channel which also
incorporates AWGN? Another interesting topic for future work
is the computation of the capacity (or upper and lower bounds
on it) of the different proposed channel models. We intend to
address these issues in future papers.
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[2] M. Bolić, D. Simplot-Ryl, and I. Stojmenović, Eds., RFID Systems:
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