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Abstract—One of the most common types of functions in
mathematics, physics, and engineering is a sum of products,
sometimes called a partition function. After “normalization,” a
sum of products has a natural graphical representation, called a
normal factor graph (NFG), in which vertices represent factors,
edges represent internal variables, and half-edges represent the
external variables of the partition function. In physics, so-called
trace diagrams share similar features.

We believe that the conceptual framework of representing
sums of products as partition functions of NFGs is an important
and intuitive paradigm that, surprisingly, does not seem to have
been introduced explicitly in the previous factor graph literature.

Of particular interest are NFG modifications that leave the
partition function invariant. A simple subclass of such NFG
modifications offers a unifying view of the Fourier transform,
tree-based reparameterization, loop calculus, and the Legendre
transform.

I. INTRODUCTION

Functions that can be expressed as sums of products are
ubiquitous in mathematics, science, and engineering. Borrow-
ing a physics term, we call such a function a partition function.

In this paper, we will represent partition functions by normal
factor graphs (NFGs), which build on the concepts of factor
graphs [14] and normal graphs [12]. A factor graph represents
a product of factors by a bipartite graph, in which one set
of vertices represents variables, while the other set of vertices
represents factors. By introducing “normal” degree restrictions
as in [12], we can represent a sum of products by an NFG in
which edges represent variables and vertices represent factors.
Moreover, internal and external variables are distinguished in
an NFG by being represented by edges of degree 2 and degree
1, respectively. NFGs closely resemble the “Forney-style factor
graphs” (FFGs) of Loeliger et al. [15], [16], with the difference
that “closing the box” (summing over internal variables) is
always explicitly assumed as part of the graph semantics.

There are as many applications of NFGs as there are of sums
of products. In this paper, we will present several applications
that highlight the usefulness of the graphical approach:
• Trace diagrams, which are closely related to NFGs,

often provide insight into linear algebraic relations, par-
ticularly of the kind that arise in various areas of physics;

• The sum-product algorithm is naturally nicely derived
in terms of NFGs;

• The normal factor graph duality theorem [2], [13] is
a powerful general result, of which one corollary is the
normal graph duality theorem of [12].

• The holographic transformations of NFGS of Al-
Bashabsheh and Mao [2], which may be used to derive
the “holographic algorithms” of Valiant [21] and others,
may be further generalized to derive the “tree-based
reparameterization” approach of Wainwright et al. [25],
the “loop calculus” results of Chertkov and Chernyak
[7], [8], and the Lagrange duality results of Vontobel and
Loeliger [23], [24].

• Linear codes defined on graphs and their weight gen-
erating functions have natural representations as NFGs,
as shown in [13], but we will not discuss this topic here.

II. PARTITION FUNCTIONS AND GRAPHS

A partition function is any function Z(x) that is given in
“sum-of-products form,” as follows:

Z(x) =
∑
y∈Y

∏
k∈K

fk(xk,yk), x ∈ X ,

where
• X is a set of m external variables Xi taking values xi

in alphabets Xi, 1 ≤ i ≤ m;
• Y is a set of n internal variables Yj taking values yj

in alphabets Yi, 1 ≤ j ≤ n;
• each factor fk(xk,yk), k ∈ K, is a function of certain

subsets Xk ⊆ X and Yk ⊆ Y of the sets of external and
internal variables, respectively.

The set X =
∏m
i=1 Xi of all possible external variable

configurations is called the domain of the partition function,
and the set Y =

∏n
j=1 Yj of all possible internal variable

configurations is called its configuration space. We say that a
factor fk(xk,yk) involves a variable Xi (resp. Yj) if fk is a
function of that variable; i.e., if Xi ∈ Xk (resp. Yj ∈ Yk).
For simplicity, we will assume that all functions are complex-
valued, and that all variable alphabets are discrete.1

A particular sum-of-products form for a partition function
will be called a realization. Different realizations that yield
the same partition function Z : X → C will be called
equivalent. We say that equivalent realizations preserve the
partition function.

1Usually in physics a partition function is a sum over internal configurations
(state configurations), and there are no external variables in our sense
(although there may be parameters, such as temperature). So our usage of
“partition function” extends the usual terminology of physics. Al-Bashabsheh
and Mao [2] use the term “exterior function.”



A. Normal partition functions

We will say that a realization of a partition function is
normal if all external variables are involved in precisely one
factor fk, and all internal variables are involved in precisely
two factors. These degree restrictions were introduced in [12]
in the context of behavioral graphs.

As observed in [12], any realization may be converted
to an equivalent normal realization by the following simple
normalization procedure.

• For every external variable Xi, if Xi is involved in p
factors, then define p replica variables Xi`, 1 ≤ ` ≤ p,
replace Xi by Xi` in the `th factor in which Xi is in-
volved, and introduce one new factor, namely an equality
indicator function Φ=(xi, {xi`, 1 ≤ ` ≤ p}) (see below).

• For every internal variable Yj , if Yj is involved in q ≥ 2
factors, then define q replica variables Yj`, 1 ≤ ` ≤ q,
replace Yj by Yj` in the `th factor in which Yj is in-
volved, and introduce one new factor, namely an equality
indicator function Φ=({yj`, 1 ≤ ` ≤ q}).

Thus all replica variables are internal variables that are in-
volved in precisely two factors, while the external variables
Xi become involved in only one factor, namely an equality
indicator function. Evidently this normalization procedure
preserves the partition function.

B. Normal factor graphs

For a normal realization of a partition function, a natural
graphical model is a normal factor graph (NFG), in which
vertices are associated with factors, ordinary edges (i.e., hy-
peredges of degree 2) are associated with internal variables,
“half-edges” [12] (i.e., hyperedges of degree 1) are associated
with external variables, and a variable edge or half-edge is
incident on a factor vertex if the variable is involved in that
factor.

Example 1 (vector-matrix multiplication). Consider a multi-
plication v = wM of a vector w by a matrix M , namely

vj =
∑
i∈I

wiMij , j ∈ J ,

for some discrete index sets I and J . This may be interpreted
as a normal realization of the function v : J → C, with
external variable J , internal variable I , and factors wi and
Mij . Figure 1 shows the corresponding normal factor graph,
in which the vertices are represented by labeled boxes, and the
half-edge is represented by a special dongle symbol.2

I J
w M = v

J

Fig. 1. Normal factor graph of a matrix multiplication v = wM .

2The dongle symbol “a” was chosen in [12] to suggest the possibility of
a connection to another external half-edge in the manner of two railroad cars
coupling, but of course this embellishment may be omitted.

C. Equality indicator functions

We use special symbols for certain frequently occurring
factors. The most common and fundamental factor is the
equality indicator function Φ=, which equals 1 if all incident
variables (which must have a common alphabet) are equal, and
equals 0 otherwise.

Figure 2 shows three ways of representing an equality
indicator function: first, by a vertex labeled by Φ=; second, by
a vertex labeled simply by an equality sign =; and third, as a
junction vertex. The second representation makes a connection
with the behavioral graph literature (e.g., Tanner graphs),
where vertices represent constraints rather than factors. The
third representation makes connections with ordinary block
diagrams, where any number of edges representing the same
variable may meet at a junction, as well as with the factor
graph literature, where variables are represented by vertices
rather than by edges.

Φ= = ~
Fig. 2. Three representations of an equality indicator function of degree 3.

An equality indicator function of degree 2 is often denoted
by a Kronecker delta function δ. Since such a function con-
nects only two edges and constrains their respective variables
to be equal, it may simply be omitted, as shown in Figure 3.3

δ =

Fig. 3. Three representations of an equality indicator function of degree 2.

III. TRACE DIAGRAMS

It turns out that physicists have long used graphical dia-
grams called “trace diagrams” [10], [17], [18], [19], [20] that
use semantics similar to those of NFGs. In this section we
give a brief exposition of this topic, following [19].

In trace diagrams, the factors are often vectors, matrices,
tensors, and so forth, and the variables are typically their
indices. For instance, a matrix M = {Mij , i ∈ I, j ∈ J }
may be considered to be a function of the two variables I and
J , and is represented as a vertex with two incident edges, as
in Figure 4(a).

M M

(a)

I J

(b)

I

Fig. 4. Representations of (a) a matrix M ; (b) the trace of M .

3The last equivalence shown in Figure 3 is actually a bit problematic, since a
single edge is not a legitimate normal factor graph; however, as a component
of a normal factor graph, such an edge is always incident on some factor
vertex fk , and since the combination of a factor fk involving some internal
variable Yj with an equality function Φ=(yj , y′

j) is just the same factor with
Y ′

j substituted for Yj , this substitution can be made in any legitimate NFG
(see also [2]).



Trace diagrams use the NFG convention that dangling edges
(half-edges) represent external variables, whereas ordinary
edges represent internal variables, and are to be summed over.
For example, if the matrix M is square (i.e., the index alpha-
bets I and J are the same), and the half-edges representing
I and J are connected as in Figure 4(b), then the resulting
figure represents the trace of M , since Tr M =

∑
iMii. This

apparently explains why these kinds of graphical models are
known as “trace diagrams.”

The convention that indices that appear twice are implicitly
to be summed over is known in physics as the Einstein sum-
mation convention. This convention is used rather generally in
physics, not just with trace diagrams.

Trace diagrams permit visual proofs of various relationships
in linear algebra. For example, Figure 5 proves the identity
Tr ABC = Tr BCA.

A B C

= B C A

Fig. 5. Proof of the identity Tr ABC = Tr BCA.

If u and v are two real vectors with a common index set
I, then their dot product (inner product) is defined as

u · v =
∑
i∈I

uivi.

The trace diagram (or normal factor graph) of a dot product
is illustrated in Figure 6(a).

I
u v u ε v

I
J K

(a) (b)
Fig. 6. Representations of (a) a dot product u ·v; (b) a cross product u×v.

If u and v are two real three-dimensional vectors, then their
cross product u× v = w is defined by

w1 = u2v3 − u3v2;
w2 = u3v1 − u1v3;
w3 = u1v2 − u2v1.

Equivalently,

wi =
3∑
j=1

3∑
k=1

εijkujvk,

where we use the Levi-Civita symbol εijk, defined as

εijk =


+1, if ijk is an even permutation of 123;
−1, if ijk is an odd permutation of 123;

0, otherwise.

Thus w is given in the form of a normal partition function
with external variable I and internal variables J and K. The
trace diagram or NFG of this cross product is illustrated in
Figure 6(b). (Notice that in this case the order of the indices
is important, since εijk = −εjik.)

Similarly, the determinant of a 3 × 3 matrix M may be
written in terms of εijk as

detM =
3∑
i=1

3∑
j=1

3∑
k=1

εijkM1iM2jM3k.

Thus if M1,M2 and M3 are the three rows of M , then its
determinant may be represented in trace diagram or normal
factor graph notation as in Figure 7.

M2 ε M3

M1

I

J K

Fig. 7. Representation of a determinant det{M1,M2,M3}.

Figure 7 shows that the determinant of M may be expressed
in three equivalent ways, as follows:

detM = M1 · (M2 ×M3)
= M2 · (M3 ×M1)
= M3 · (M1 ×M2).

The trace diagram notation permits other operations that
have not heretofore been considered in the factor graph liter-
ature. For example, two trace diagrams with the same sets of
external variables that are connected by a plus or minus sign
represent the sum or difference of the corresponding partition
functions.4 For example, Figure 8 illustrates the “contracted
epsilon identity,” namely

3∑
k=1

εijkεk`m = δi`δjm − δimδj`.

I
J ε K ε

M
L =

��
���XXXXX

I
J

M
L −

I
J

M
L

Fig. 8. Contracted epsilon identity.

From this identity, or its corresponding trace diagram, we
can derive such identities as

(u× v)×w = (u ·w)v − (v ·w)u,

illustrated in Figure 9(a), or

(u× v) · (w × x) = (u ·w)(v · x)− (u · x)(v ·w),

illustrated in Figure 9(b), which reduce expressions involving
two cross products to simpler forms involving only dot prod-
ucts.

4A product of partition functions is represented simply by a disconnected
factor graph, with each component graph representing a component function.
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Fig. 9. Cross product identities: (a) (u× v)×w = (u ·w)v− (v ·w)u;
(b) (u× v) · (w × x) = (u ·w)(v · x)− (u · x)(v ·w).

IV. THE SUM-PRODUCT ALGORITHM

The sum-product algorithm is an efficient method for com-
puting partition functions of cycle-free graphs. It has been
explained many times, including in [12]. Here we explain it
again in the language of normal factor graphs, with the objec-
tive of achieving a clearer and more intuitive explanation than
in [12]. We freely use ideas from e.g., [1], [14], [15], [16], [26].

As Al-Bashabsheh and Mao [2] have emphasized, a partition
function is completely determined by the set {fk(xk,yk)} of
factors, independent of their ordering. In evaluating a partition
function, factors may be arbitrarily ordered and grouped. This
observation (called the “generalized distributive law” by Aji
and McEliece [1]) is at the root of the sum-product algorithm.

We start with a normal realization of a partition function
with no external variables whose associated normal graph G
is connected and cycle-free. Thus the partition function of G
is a constant, denoted by Z(G), and G is an ordinary graph
(no half-edges) that moreover is a tree.

A connected graph G is cycle-free if and only if any cut
through any edge Yj divides G into two disconnected graphs,
which we label arbitrarily as

−→
Gj and

←−
Gj . Such a cut divides the

edge associated with Yj into two half-edges associated with
two external variables, denoted by

−→
Yj and

←−
Yj , with the same

alphabet Yj as Yj , as illustrated in Figure 10.

G = −→
Gj

Yj ←−
Gj ⇒ −→

Gj
−→
Yj

←−
Yj ←−Gj

Fig. 10. Disconnecting a cycle-free NFG G by a cut through edge Yj .

Let us define the messages −→µj(yj) and ←−µj(yj) as the
partition functions of

−→
Gj and

←−
Gj , respectively; i.e.,

−→µj(yj) =
∑
−→y∈
−→
Y

∏
k∈
−→
K

fk(yk),

where
−→
Y is the set of left-side variables (excluding Yj), and−→

K is the set of indices of left-side factors, and similarly for
←−µj(yj). The goal of the sum-product algorithm is to compute
the messages −→µj(yj),←−µj(yj) for every internal variable Yj .

To compute a message such as −→µj(yj), consider the factor
vertex to which

−→
Yj is attached. For simplicity, let us suppose

that this vertex has degree 3, and that the associated factor is
f(yj , yj′ , yj′′), as shown in Figure 11.

Since G is cycle-free, the subgraphs
−→
Gj′ and

−→
Gj′′ that

extend from the edges Yj′ and Yj′′ must be disjoint. Their
partition functions, −→µj′(yj′) and −→µj′′(yj′′), include all factors

−→
Gj
−→
Yj =

−→
Gj′′

Yj′′

−→
Gj′

Yj′

f(yj , yj′ , yj′′)
−→
Yj

Fig. 11. Expressing an NFG in terms of subgraphs connected to a vertex.

in −→µj(yj) except f(yj , yj′ , yj′′), and sum over all internal
variables except Yj′ and Yj′′ . Therefore the partition function
−→µj(yj) of

−→
Gj may be expressed in terms of the partition

functions of these subgraphs as follows:
−→µj(yj) =

∑
yj′∈Yj′

∑
yj′′∈Yj′′

f(yj , yj′ , yj′′)−→µj′(yj′)−→µj′′(yj′′).

More generally, if the factor vertex to which edge Yj is
attached is fk(yk), then the message update rule is

−→µj(yj) =
∑

yk\{yj}

fk(yk)
∏

j′∈Jk\{j}

−→µj′(yj′).

This is called the sum-product update rule.
Since G is connected and cycle-free, it is a tree (assuming

that it is finite). Each message −→µj has a depth equal to the
maximum length of any path from that message to any leaf
vertex. The messages at depth 1 can be computed immediately,
the messages at depth 2 can be computed as soon as the
messages at depth 1 are known, and so forth. If G is finite, then
all messages can be computed in at most δ(G) rounds, where
δ(G) is the maximum possible depth, called the diameter.

For any internal variable Yj , we define the marginal par-
tition function Zj(yj) as

Zj(yj) = −→µj(yj)←−µj(yj), yj ∈ Yj .

Thus Zj(yj) is simply the componentwise (dot) product of
the messages −→µj(yj) and ←−µj(yj). This is sometimes called
the past-future decomposition rule [12].

Graphically, Zj(yj) is the partition function of the graph
obtained from G by converting Yj from an internal to an
external variable as shown in Figure 12; i.e., by replacing
the edge associated with Yj by a “tap” consisting of the
concatenation of an edge labeled by

−→
Yj , an equality indicator

function, and another edge labeled by
←−
Yj , with a further half-

edge labeled by Yj attached to the equality indicator function.

G = −→
Gj

Yj ←−
Gj ⇒ −→

Gj

Yj

{−→
Yj

←−
Yj ←−Gj

Fig. 12. Converting Yj from internal to external by inserting a “tap.”

Conversely, Z(G) is the partition function of the graph
obtained by converting Yj back to an internal variable; i.e.,
by summing Zj(yj) over Yj :

Z(G) =
∑
yj∈Yj

Zj(yj) =
∑
yj∈Yj

−→µj(yj)←−µj(yj).

Thus, for any edge Yj , Z(G) is simply the dot product of the
messages −→µj and ←−µj .



V. HOLOGRAPHIC TRANSFORMATIONS

In this section, we recapitulate and generalize the concept
of “holographic transformations” of normal factor graphs,
which was introduced by Al-Bashabsheh and Mao [2], and
their “generalized Holant theorem,” which relates the partition
function of a normal factor graph to that of its holographic
transform. This theorem generalizes the Holant theorem of
Valiant [21] (see also [3], [4], [5], [6], [22]), which has
been used to show that some seemingly intractable counting
problems on graphs are in fact tractable.

Using this concept, Al-Bashabsheh and Mao [2] were able
to prove a very general and powerful Fourier transform duality
theorem for normal factor graphs, of which the original normal
graph duality theorem of [12] is an immediate corollary. We
give a variation of this proof which is perhaps even simpler
(compare also the proof in [13]).

In the last section of this paper, we will sketch further
applications of this general approach.

A. General approach

The general approach can be explained very simply, as
follows. Let A and B be two finite alphabets, which will often
be of the same size; i.e., |A| = |B|. Let U(a, b), S(b, b′),
and V (b′, a′) be complex-valued factors involving variables
A, B, B′, and A′ defined on A, B, B, and A, respectively;
alternatively, we may regard U, S, and V as matrices. Finally,
suppose that the concatenation USV , shown in Figure 13, is
the identity factor δaa′ , which can be represented simply as
an ordinary edge as in Figure 3.5

A
=

A
U

B
S

B
V

A

Fig. 13. A concatenation of factors that is equivalent to the identity.

We then have the following obvious lemma:

Lemma (generalized holographic transformations). In any
NFG, any ordinary edge may be replaced by a concatenation
of factors USV equivalent to the identity, as in Figure 13,
without changing the partition function.

The “holographic transformations” of [2] involve similar re-
placements, except without the middle factor S (alternatively,
with S(b, b′) = δbb′ ). Al-Bashabsheh and Mao [2] call B the
coupling alphabet, and say that U and V are dual with respect
to B. When |A| = |B|, they say that U and V are transformers;
in this case, as matrices, U and V are inverses.

If a normal factor graph has external variables Xi, then
they may be transformed as well, by the insertion of a factor
or matrix Wi(xi, wi) defined on Xi × Wi, where Wi is the
alphabet of a transformed external variable Wi. Thus the
partition function is transformed into a function of the new
external variables Wi. This is the essence of the “generalized
Holant theorem” of [2]. (The original Holant theorem of
Valiant [21] applies when there are no external variables.)

5Here and subsequently we may label an internal edge simply by its
alphabet, without introducing dummy internal variables.

B. General normal factor graph duality theorem
This general approach yields a very simple proof of the

“general normal factor graph duality theorem” of [2], [13].
Suppose that we have a normal factor graph in which each

variable alphabet A is a finite-dimensional vector space over
a finite field F of characteristic p (i.e., p is the least positive
integer such that pα = 0 for all α ∈ F). The dual space Â is
then a vector space over F of the same dimension as A, and
there is a well-defined Zp-valued inner product 〈â, a〉 with
the usual properties; e.g., 〈â, 0〉 = 〈0, a〉 = 0, 〈â, a+ a′〉 =
〈â, a〉+ 〈â, a′〉, and so forth (see, e.g., [11]).

Given a complex-valued function f : A → C defined on A,
its Fourier transform is then defined as the complex-valued
function F : Â → C on Â that maps â to

F (â) =
∑
a∈A

f(a)ω〈â,a〉, â ∈ Â,

where ω = e2πi/p is a primitive complex pth root of unity.
In an NFG, a Fourier transform may be represented as in

Figure 14, where the Fourier transform factor is

FA = {ω〈â,a〉 : â ∈ Â, a ∈ A}.

The transform F (â) is obtained by summing over A, which
in this case amounts to a matrix-vector multiplication.

A Â
f FA = F

Â

Fig. 14. Normal factor graph of a Fourier transform.

Note that as a factor in an NFG, we do not have to
distinguish between FA and its transpose; FA is simply a
function of the two variables corresponding to the two incident
edges, and as a matrix can act on either variable. Thus FA
can act also as a Fourier transform FÂ on a function of Â.

More generally, given a complex-valued multivariate func-
tion f(a) defined on a set of variables A = {Ai} whose
alphabets Ai are vector spaces over F, its Fourier transform
is defined as the complex-valued function

F (â) =
∑
a

f(a)
∏
i

ω〈âi,ai〉.

In other words, in a normal factor graph, each variable Ai may
be transformed separately, as illustrated in Figure 15. In [2],
this property is called separability.

Â1 Â3

Â2

F = Â1 A1 A3 Â3

Â2

A2

FA1 f FA3

FA2

Fig. 15. Fourier transform of multivariate function f(a1, a2, a3).

Now let us define U = V = FA and S = Φ∼/|A|, where
the sign inverter indicator function over Â is defined as

Φ∼(â, â′) =
{

1, if â = −â′;
0, otherwise.



Then the concatenation USV is the identity, since∑
â∈Â,â′∈A

ω〈â,a〉Φ∼(â, â′)ω〈â
′,a′〉 =

∑
â∈Â

ω〈â,a−a
′〉 = |A|δaa′ ,

by a basic orthogonality relation for Fourier transforms over
finite groups (see, e.g., [11]). This result is illustrated in
Figure 16, where we omit the scale factor of |A|.

A
=

A FA
Â

Φ∼
Â FA

A

Fig. 16. A concatenation of factors that is equivalent to an edge, up to scale.

Now we can prove our desired result:

Normal factor graph duality theorem [2], [13]. Given
an NFG with partition function Z(x), comprising external
variables Xi associated with half-edges, internal variables Yj
associated with ordinary edges (all alphabets being vector
spaces over a finite field F), and complex-valued factors fk
associated with vertices, the dual normal factor graph is
defined by replacing each alphabet Xi or Yj by its dual
alphabet X̂i or Ŷj , each factor fk by its Fourier transform
f̂k, and finally by placing a sign inverter indicator function
Φ∼ in the middle of every ordinary edge. Then the partition
function of the dual NFG is the Fourier transform Ẑ(x̂) of
Z(x), up to scale.6

Proof : Let us first convert the given NFG with partition func-
tion Z(x) to an NFG with partition function Ẑ(x̂), up to scale,
by appending a Fourier transform FXi

from Xi to X̂i to every
half-edge associated with every external variable Xi, as in
Figure 15. Then let us replace every ordinary edge associated
with every internal variable Yj by a concatenation FAΦ∼FA
like that shown in Figure 16; this preserves the partition
function Ẑ(x̂), up to scale. Now each vertex associated with
each factor fk is surrounded by Fourier transforms of all of the
variables involved in fk, so it and its surrounding transforms
may be replaced by a single vertex representing the Fourier
transform factor f̂k without changing the partition function,
up to scale.

Notice that this remarkably general theorem applies to any
normal factor graph, whether or not it has cycles.

Using the fact that the indicator functions of a linear code C
over F and of its orthogonal code C⊥ are a Fourier transform
pair, up to scale, one obtains as an immediately corollary a
duality theorem for normal factor graph representations of
linear codes [2], [13], which is equivalent to the original
normal graph duality theorem of [12].

VI. FURTHER DEVELOPMENTS

We now sketch briefly how the “tree-based reparameteriza-
tion” approach of Wainwright et al. [25], the “loop calculus”
results of Chertkov and Chernyak [7], [8], and the Lagrange
duality results of Vontobel and Loeliger [23], [24] fit within
this generalized framework. The full developments will appear
in a subsequent version of this paper.

6As shown in [2], the scale factor is |Y|.

A. Tree-based reparameterization

Wainwright, Jaakkola, and Willsky [25] have shown how
the sum-product algorithm applied to general graphs with
cycles can be understood as a tree-based reparameterization
algorithm, where each round of the message-passing algorithm
reparameterizes marginal distributions over simple subtrees
consisting of a pair of vertices connected by an edge. More
generally, they consider iterative algorithms that reparameter-
ize distributions over arbitrary cycle-free subtrees of the graph,
particularly spanning trees.

Let X be a set of m variables Xi taking values xi in finite
alphabets Xi, and let E be a set of pairs (Xi, Xj) indicating
which pairs of variables are connected. Suppose that the
corresponding graph with vertices Xi and edges (Xi, Xj) ∈ E
is a tree (i.e., cycle-free). Finally, suppose that a probability
distribution p(x) over these variables can be expressed as

p(x) ∝
∏

1≤i≤m

ψi(xi)
∏

(Xi,Xj)∈E

ψij(xi, xj),

where the functions ψi(xi) and ψij(xi, xj) depend only on the
singleton variables Xi and pairs (Xi, Xj), respectively. (By
the Hammersley-Clifford theorem, this can always be done
when p(x) is a positive Markov random field over the graph.)

We can view such a distribution p(x) as a partition function
in which all variables are external (a “global function”).
Normalizing this partition function, we obtain an equivalent
partition function with the same external variables, but with
an equality indicator function corresponding to each external
variable replacing it in the corresponding normal factor graph.
A typical fragment of such an NFG is shown in Figure 17.

Xi {
Xi

ψi

Xi

Xi ψij
Xj {

Xj

ψj

Xj

Xj

Fig. 17. Fragment of NFG representing a probability distribution on a tree.

Now we can execute the sum-product algorithm on such
a cycle-free NFG, obtaining on each edge two messages,
say −→µi(xi) and ←−µi(xi) on an edge with alphabet Xi. The
corresponding marginal probability distribution pi(xi) is pro-
portional to the componentwise product of these messages:

pi(xi) ∝ −→µi(xi)←−µi(xi), xi ∈ Xi.

Such a marginal distribution can be exhibited explicitly as
a message in a “reparameterized” NFG by replacing a factor
such as ψij(xi, xj) by the concatenation of three factors:

U(xi, x′i) = ←−µi(xi)δ(xi, x′i);

S(x′i, x
′
j) =

ψij(x′i, x
′
j)

←−µi(x′i)
−→µj(x′j)

V (xj , x′j) = −→µj(xj)δ(xj , x′j),

which evidently preserves the partition function.



Such a reparameterization can be performed also in a graph
with cycles, or over a subtree of a given graph. Nice results
are obtained when the messages are those that occur at a fixed
point of the sum-product algorithm, but the messages do not
have to be chosen in this way.

In future work, we plan to use this approach to restate and
generalize many of the results of [25] and related papers.

B. Loop calculus

Chertkov and Chernyak [7], [8], [9] have developed a “loop
calculus” for statistical systems defined on finite graphs that
allows the partition function of a system to be expressed as a
finite sum over “generalized loops,” in which the lowest-order
term corresponds to the Bethe-Peierls (sum-product algorithm)
approximation.

We briefly sketch our approach to their results. Suppose
that all alphabets are binary. Then replace every edge Yj in the
system by the concatenation UjSjVj , where in matrix notation

Uj =
[

+←−µj(0) −−→µj(1)
+←−µj(1) +−→µj(0)

]
;

Sj =
1

∆j

[
1 0
0 1

]
;

Vj =
[

+−→µj(0) +−→µj(1)
−←−µj(1) +←−µj(0)

]
,

where ←−µj(yj) and −→µj(yj) are functions that may (but need
not) be chosen as fixed-point messages of the sum-product
algorithm, and ∆j = −→µj(0)←−µj(0) + −→µj(1)←−µj(1) is the
determinant of Uj and Vj . Evidently the concatenation UjSjVj
is the identity, so this replacement preserves the partition
function.

Now express every Sj as the sum of two matrices:

Sj =
1

∆j

[
1 0
0 0

]
+

1
∆j

[
0 0
0 1

]
;

if there are n edges Yj , then the partition function of the
original NFG can correspondingly be expressed as the sum
of the partition functions of the 2n component NFGs.

If the functions ←−µj(yj) and −→µj(yj) are fixed-point mes-
sages of the sum-product algorithm, then it turns out that
the partition function of the “zero-order” component graph
is the Bethe-Peierls partition function (at that fixed-point of
the sum-product algorithm); that the partition function of any
component graph with a “loose end” (a vertex of effective
degree 1) is zero; and that the partition functions of the
remaining component graphs (corresponding to “generalized
loops,” in which all vertices have effective degree 2 or more)
are “small” multiples of the Bethe-Peierls partition function.
Again, the full development will be given in a subsequent
version of this paper.

C. Lagrange duality

Structurally similar operations can be used to obtain the
Lagrange duality results for normal graphs of Vontobel and
Loeliger [23], [24], which are based on the Legendre transform
of convex optimization theory.

One interesting aspect of this development is that instead
of sums of products, we consider minima over sums (i.e., the
sum-product semiring over the reals R is replaced by the min-
sum semiring over the extended real line R̄ = R∪+∞). Thus
a partition function has the following form:

Z(x) = min
y∈Y

∑
k∈K

fk(xk,yk), x ∈ X ,

where the “factors” fk(xk,yk) are R̄-valued.
The dual functions under the Legendre transform are func-

tions in the max-sum semiring. Dualization involves the inser-
tion of sign inverters into edges, as with Fourier dualization.
Again, details will be provided in future versions of this paper.
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