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Abstract—Biometrics, such as irises and fingerprints, enable se- the sketch. The sketch in the fuzzy vault scheme includes
cure and non-repudiable authentication. Fuzzy vault is a steme  real points related to the biometric template (usually tess
that can monolithically bind secret to biometric templates 40 for fingerprints) and a much larger number of random

Moreover, the modified fuzzy vault (MFV) leads to less entrog . . . .
loss and requires less memory for storing the sketches. Thper chaff points (usually hundreds for fingerprints) to hide tbal

proposes a novel low-complexity scheme to compute the monicPoints. Comparatively, the sketch in the modified fuzzy vaul
polynomial for the sketch during the enroliment process of he (MFV) [3] consists of the coefficients of a monic polynomial
MFV. An innovative interpolation method is also developed 6 whose degree equals the number of real points. As a resalt, th
reduce the computation complexity and latency of the verifiation sketch in the MFV requires much smaller memory for storage,

process. Efficient hardware implementation architecturesare d Is | inf fi bout th t lat
developed in this paper for the proposed schemes and their and reveais Iess information about the user template.

complexities are analyzed in detail. In this paper, novel complexity-reduction schemes are de-
veloped for implementing the MFV scheme, and fingerprint
. INTRODUCTION biometric is mainly considered. In the enroliment process,

Compared to traditional passwords, biometrics, such J¥nic polynomial that passes a set of given points needs to be
fingerprints and irises, have the advantage that they acpiani d€7ved for the sketch. Inspired by the Kotter's interpioka
to individuals, and can not be forgotten or lost. Hencé‘,lg_Orlthm [5] for constr_u.ctln.g polynqm|als with minimum
biometrics enable higher level of security. On the otherchan"ve'ghted degree, a modified interpolation process is dpeelo

the biometric templates acquired from the same user can tBee_fflme_ntIy constrl_Jct such a monic polynomial without
slightly different, and calls for error-correction. In atioh, solving linear equations. The verification process congpute

since biometrics are not replaceable, they should not recsto? POlynomial with minimum weighted degree that passes a
directly in the database in case it gets compromised. $gt of points derived by evaluating the monic polynomialrove

address these issues, biometric encryption schemes hane %@e ﬁymt_)_ols |’n tr;e q_usry t(;mpla}e. Althciugh Ith's_ can be done
developed [1]-[4] to marry encryption with error-correcti y the Kotters a_lgorlt m, t € polynomial eva uation need

In these schemes, secret information are bound with bigenef?€ carried out first. Alternatively, this paper proposes se u
templates, and neither the secret nor the enrolled biomeﬁ'e monic polynomial directly in the construction of an ilit

template can be derived from the sketches stored in tR@SIS: Which is then converted to compute the polynomial
database, unless another very similar biometric temptateVY'th minimum weighted degree using the Lee-_O Sullivan (LO)
provided. [6] interpolation process. Our approach avoids not only the

Due to the natural fuzziness of biometrics, the templa lynomial evaluation, but also the complicated compatei

acquired for verification may have deleted or added symb initial basis construction. Efficient VLSI architecas are
compared to the enrolled template of the same user. The fuf%? developed in this baper for implementin.g the proposed
commitment [1] and fuzzy syndrome hashing [4] schem&&NEMES, and the cornplexmes_ are analyzed in Qetall. .
employ linear block codes, and the decoding is done based N€ structure of this paper is as follows. Section Il intro-
on the parity check matrix. All the symbols from a templatduces the MFV and prior interpolation algorithms. Section
are arranged in a certain order to be decoded. In case thik@resents the modified interpolation for monic polynomia
are deletion or addition of symbols, the location of man9onstruction and modified initial basis construction foe th
symbols will be shifted. This causes decoding failure angfrification process. Hardware implementation architestu
accordingly high false rejection rate. On the contraryftzzy € developed, and their complexities are analyzed in @ecti
vault scheme [2] adopts interpolation-based decoding etiRe V- Conclusions follow in Section V.

Solomon (RS) codes, and is indifferent to addition, erasure

the order of the interpolation points. The information etbfor Il. MODIFIED FUZZY VAULT AND INTERPOLATION

a user and accessible during the verification process isccall The fuzzy vault schemes are built upén, k) RS codes

This material is based upon the work supported by NSF grap63s1 OVEr GF(?’”) with evaluat]on map encoding and algebraic
and 0835782. interpolation-based decoding. equals the number of secret
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template 0 enrollment other computations involved in the enroliment and verifaat
¥

process of the MFV scheme. The following definitions are
necessary to understand the materials in this paper.
Definition 1: The (w,, w,)-weighted degree of a monomial
z%® is aw, + bw,. For a bivariate polynomial)(z,y) =
SN qapr®y?, its (wy, wy,)-weighted degree is the maximum
verification of aw, + bw, such thatg, ; # 0.

Definition 2: The monomial with the highest lexicographic
order in a polynomial is called the leading term, and is
denoted byit(-). The corresponding coefficient is the leading

Compute p(a;) >Compute g(x)

secret message
(random) symbols p(x)

Database

Compute g(a’;)»{Compute p’(x)
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h

Hash (p'(x)) coefficient, and is represented by(-).
User biometric Definition 3: A set of nonzero ponnomigIsQ(O) (z,y),
Username decision  template o QW (z,y),...,QW (x,y) form a Grobner basis of a module

M, if for each polynomial, F(z,y), in the module M,
there existd € {0,1,2,...,t} such thatit(Q") (z,y)) divides
message symbols. In authentication-only applicatiangan- It(F(z,y)). A monomialz®y® is said to dividez® y*" when
dom symbols can be used. The order of the finite field is< ' andb =1'.
decided by the resolution required for biometric images. Fo From Definition 3, the polynomial of minimum weighted
example, for a fingerprint image, 8-bit resolution is uspalldegree in a module must be the polynomial of minimum
needed for each coordinate, and the two coordinates areighted degree in its Grobner basis. Hence, the polyrarhia
put together as a symbol ovérF(2'%). The template of a (1,k— 1) weighted degree(z, y), needed in the verification
fingerprint consists of the locations of the minutiae, whicprocess that passes each interpolation point can be found
are the ridge endings or bifurcations in the fingerprint imagby constructing a Grobner basis of the polynomials passing
Typically, there are 2840 minutiae in a fingerprint template,the same points. Such a task can be accomplished efficiently
and the number of minutiae decides the codeword length by using the Kotter's or LO interpolation algorithms. The
of the adopted RS code. Between two templates acquineadmber of monomials irQ(z,y) should be larger than the
from the same user, the number of different minutiae can bamber of interpolation constraints,, in order to guarantee a
more than 25%. Ann, k) RS code can correct as many asonzero solution. The monomials can be arranged according
[(n — k)/2] errors using traditional hard-decision decodingo increasing(1,k — 1) weighted lexicographic order. Then
Hence, to achieve reasonable false rejection fatan not be the maximumgy-degree,t, of the interpolation solution, and
a large number in the fuzzy vault schemes for fingerprints.hence the number of polynomials in the Grobner basis, can
The MFV scheme is shown in Fig. 1. Thesecret messagebe decided from the maximum-degree of the firsC' + 1
symbols can be considered as the coefficients of a dégrde monomials [8].
message polynomial(z). During the enrollment, given the To find a polynomial of minimum(1,% — 1) weighted
n symbols from the user biometriey, a1, ..., a,—1, §; = degree that passes each poiat;, 3;) once, the Kotter's
p(a;) (0 < i < n) are first computed. This can be considereiterpolation algorithm can be simplified as in Algorithm A.
as the evaluation map encoding of RS codes. Then a degree
monic polynomialg(x) that passes eady;, ;) is computed. Algorithm A: K 6tter’s Interpolation Algorithm
In addition, a hash function is applied p¢x). The hash value Initialize:

Fig. 1. The modified fuzzy vault scheme

and the coefficients of(z) are stored as the sketch. QO (z,y) =1, QW (z,y) =y, ..., QW (x,y) =y
During the verification process, the user provides fingatpri Wdego =0, Wdegy =k —1, ..., Wdegr = (k — 1)t

template with symbolsy,, o}, ..., o}, _,. Note thatn andn’ Start

can be different, even if the template is from the authorized for each(«;, ;)

user.f’ = g(«}) are computed, and then interpolation is carAl: computeQ® (o, 8;) (0 <1 <t)

ried out to find a bivariate polynomiad)(z,y), of minimum mink= arg min {Wdeg;|Q" (o, B; ¥ 0,0< 1 < t}

(1,k — 1) weighted degree that passes each pdirt 5;) fori =0tot, | # minl

(0 < i < n'). If the number of errors is within correctableA2: QY (z,y) <« QU (ay, 5 QWY (z,7)

range, then it is guaranteed th@tz, y) has a factoy — p/(x) + QW (ay, B:) QU™ (z, y)

with deg(p/(z)) < k. This is the same process as the algebraks: QUi (1, ) <= QU™ (x,9)(x + ay)

interpolation-based decoding for RS codes proposed inf{7]. Wdegmini <= Wdegmini + 1

the hash value of’ (x) matches the stored hash value, acce€utput Q¥)(z,y), ¢ = argmin{Wdeg|0 <1 <t}

is granted or the computed(z) is verified the same as the

secret messagéx). In the case of no matching, no additional

information is told by the verification. The updating in the A2 and A3 steps of the Kotter's
The implementation of hash functions has been addressedlgorithm forces each polynomial®) (z,y), to pass(c, 3;)

many papers. This work focuses on the implementation of théth minimum increase in the weighted degree. In additiba, t




polynomials still pass the points covered in previous tieres [1l. M ODIFIED INTERPOLATION AND BASIS
after the updating. At the end of each iteration, the 1 CONSTRUCTION

polynomials form a Grdbner basis of the polynomials thatspa
all points interpolated so far. Hence, the desired intexiparh fo
output polynomial can be found from the Grobner basi
constructed at the end of the last iteration.

Different from the Kotter’s algorithm, the LO interpolati
starts with a basis of + 1 polynomials that satisfy all
interpolation constraints. Then it is converted to a GEbna  Modified interpolation
basis, which can be defined equivalently as a basis whose

: : n n—1 i
polynomials have distincy-degree in the leading terms [6]. "€ monic polynomialg(z) = 2" + 35—, g;2/, needs
+  to pass each of the points(«a;,5;) (0 < ¢ < n), whereq;

(1 — W (1) RO
?ﬁzunl]_ec;hz%oriﬁ’ra) anr? (g()a+gérr(igjy t)ut ;gtco(r:é?gg. «gre distinct. It was suggested in [3] to find thecoefficients,
Algorithm B. In this algorithm, (1,k — 1) weighted 9;. by solvmgn Imsar equ_emonsg(ai) = Bi. Thls Process
lexicographic order is adopted in deciding the leading terrﬂas complexityO(n ) and is not har.dware fngndly. On. the

other hand, the Kotter's and LO interpolation algorithms

generate polynomials of minimum weighted degree that pass
each point through constructing Grobner bases. No matter
what weighted degree is adopted, these algorithms can not
guarantee to output a monic polynomial of degreehat
Start passes each of the points. Nevertheless, the idea from the
BL: r—r+1; proceed ifr < ¢; otherwise, go taOutput Kotter’s algorithm on forcing polynqmials to pass a point
B2: find s — y-degree oflt(c_g(r)(x ) can be borrowed to construct a monic polynomial iteratively

‘ ' Our proposed modified interpolation is listed in Algorithm C

This section proposes a modified interpolation algorithm
r calculating the monic polynomiad(z), in the enroliment
rocess, and a modified basis construction for the LO inter-
polation that can be used in the verification process of the
MFV.

Algorithm B: Lee-O’Sullivan Interpolation Algorithm

Input A basis {Q")(z,y)} (0< I < t) that satisfies all
interpolation constraints

Initialize: » =0

if s ==r, then go to step B1
B3: d=deg(¢\" () — deg(ql” (x))
B4: if d >0, then

Algorithm C: Modified Interpolation for Monic Polynomial

Q) (.y) = le(a:” () Q" (2,y) Constiuction 1 )
+ 2tle(¢” (2)Q (x, ) palize QO (z,y9) =1, QU(z,y) =y + 2
else ) fori=0ton—1
tmp(z,y) = Q_d(a:, 7{2) C1- computeQ® (ay, 8;) (I =0, 1)
QU (x,y) =z lcg s (2)QM) (z,y) c2: O (z,y) <« QW (s, 80O (2, y)
+elal” (@)@ (2.9) Q" (ay, 3)Q(z,y)
QW (x,y) = tmp(x,y) c3: QO (z,y) < QO (z,y)(x + ;)
goto step B2 output Q) (z, y)

Output Q) (z,y) with the minimum weighted degree

In Algorithm C, only two polynomials are involved. To
show the connections with the Kotter's algorithm, bivegia
[z +a:), [ =0 notations are used. Howeve@,@)(x,y)_s_tarts from 1 and is
Q(l)(:v )= dy—h), [ =1 (1) iteratively multiplied boy(x—i—ozi). Hence it is actually a univari-
’ 1 ’ ate polynomial Wit_hq§ )(x) = 0. At the beginning of iteration
y oy —h@), 21t i, QO (z,y) = [['_g(x + ;). Sincea; are all distinct for
whereh(z) is a polynomial passing eadhy;, §;) derived by fingerprint applicationsQ(® (o, 8;) = [T5g(ai + a;) # 0.
using the Lagrange interpolation. Accordingly, et (x, ) Accordingly, through the linear combination updating ist
in (1) passes all interpolation points. The polynomialsase C2 of Algorithm C, Q) (z,y) is forced to pasga;, 5;) in
linearly independent and have differeptlegree. Hence, they a similar way as that in the Kotter’'s Algorithm. In addition
form a basis of the polynomials that pass all points. StartiQ(!) (z,y) still passes(a;, 3;) for j < i after the updating,
from such a basis, the updating in Step B4 of Algorithm Bince bothQ) (z,y) and Q(®)(z,y) pass those points at the
cancels out the leading term 6K (z, ) iteratively, until the beginning of iterationi. The degree of(®)(z,y) increases
leading term hag-degree as. In addition, this updating doesfrom 0 at the beginning of iteration 0 ta — 1 at the
not change thg-degree of the leading term i3*) (z,y), and beginning of iterationn — 1. Hence, the linear combination
the ¢t + 1 polynomials still form a basis of the same modulé1 Step C2 does not involve any addition on monomigls
after the updating. After the iterations are carried out/fer  andz” in Q) (x, y), although they can be multiplied by the
1,2,...,t, thet + 1 polynomials in the basis have distingt same finite field element. Therefore, at the end of Algorithm

n—1 / y

degree in the leading terms, and hence form a Grobner ba€ls.Q™") (z,y) is in the format ofay + az™ + ZFO g%’

It was proposed in [6] to construct the initial basis as



(a € GF(2™)). Multiplying the inverse facto~! to each Intuitively, g(=) should contribute directly to the computation
coefficient, a monic polynomial that passes each point cahp’(z). The Kotter's algorithm iteratively builds a Grobner
be derived.Q™)(z,y) can be also updated &3")(z,y) + basis for polynomials passing one additional point at a time
QW (v, 3:)/QV (s, ;) x Q) (x,y) in Step C2 to avoid Sinceg(x) already passes all the points, it is very difficult to
the inverse factor multiplications at the end. It also rezhuihe make use ofy(x) in the Kotter's interpolation.
number of multiplications needed for each iteration. Hosvev  Compared to the Kotter's interpolation, the LO algorithm
calculating the inverse of finite field elements in each tiera  has simpler computations in each iteration. Moreover gittst
slows down the interpolation process. from an initial basis in the format of (1) that passes all the
Although the computations in Algorithm C look like thosepoints. Then the initial basis is converted to a Grobneisbas
in Algorithm A with (1, J) weighted degree and > n, the In order for the second and third polynomials in (1) to pass
ideas behind the polynomial initialization and updatingrim each point,h(z) needs to pass each point. Moreovify)
Algorithm C are different. There ane interpolation points in should not have any common factor wi[lj;igl(x +al) in
total, and passing each of them requires multiplying a factthe first equation of (1). Otherwise, (1) is not a proper basis
(+ ;) to one of the interpolation polynomials if approacheand any polynomialF'(x,y) = fo(z) + fi(z)y + ... in the
similar to that in Algorithm A are adopted. Therefore, theorresponding module is subject to the constraint thatsttha
z-degree of an interpolation polynomial will not exceed same common factor iff(z). Hence, given the set of points
if it is initially zero. On the other hand, the polynomial ofto be passed, the Lagrange formula is adopted to calculate
interest is in the format ofy + 2" + .... The y and 2™ h(z) in [6]. However, the monic polynomiaj(x) computed
terms will never get affected during the interpolation @s& from the modified interpolation satisfies the same critexial
if this polynomial is never multiplied by angw + «;) factor, can replace:(z). Hence, the LO interpolation can start from
and always forced to pags, ;) through linearly combining the basis
with another polynomial that has lower degree and nonzero n—1 ,
: T, (z+af), 1=0
evaluation value over eacfw;, 5;). All these problems can 0 - i=0
be solved by multiplying the: (z + «;) factors iteratively to QV(zy) = qy—gl@), I=1 @)
the same polynomial whose initiatdegree is zero, and using Yy —g(®), 2<1<t
this polynomial to linearly update the other polynomialttisa
initialized asy + x™.
To construct the desired monic polynomial that passes e

ch t|t]/|e " pOIﬂtSr,]n |tera_t|ons ndeed to bfe rr]un n A.lgorl'th;nsis avoids the complicated Lagrange interpolation for com-
- Moreover, the maximuny-degree of the two involve puting h(x). In the LO interpolation shown in Algorithm

polynomials isn. Hence, the complexity of Algorithm C is B, the number of iterations needed to make thelegree
O(n?). Compared to solving a set of linear equations as of, 1t(QW (z,y)) equall is decided by the differences of
suggested by [3], the proposed algorithm is much Simpl?ﬁ'e degree; qu(z)(x) q(z)(x) q(z)(x) at initialization
Moreover, it can be implemented by efficient and reguladreg(h(x)) _ n’—fandlielg(g(gg)')”:, TZ Sincen andn’ are thé
architectures as will be shown in the next section. numbers of symbols in the biometric templates from différen
B. Modified basis construction acquisitions, botl’ > n andn’ < n can happen. Therefore,

During the verification process of the MFV scheme, thltf%Slng the m9d|f|ed |n|t|al|z_at|on dogs not necessarily éace
the complexity of the LO interpolation process.

original procedure in [3] is to first evaluate the monic poly-
nomial g(x) over each symbolky,, of the query template to IV. VLS| ARCHITECTURES

derive a set of’ points (aj, 5; = g(a;)) (0 <@ <n’). Then | this section, efficient VLS| architectures are presented
p'(x) can be recovered as a factor of a bivariate polynomigy implementing the proposed schemes. Biometric enappti
Q(z,y), which has minimum(1, k — 1) weighted degree and systems do not need very high speed. Delay of less than a
passes each point. Given the set of points, either the Ktteynijisecond is short enough. The goal of our design is to
or the LO interpolation algorithm can compute such a bitariagchieve this speed with minimized silicon area. Fingetm
polynomi.al. The re-encoding and coordinate transforrmati(éryption is considered in our design, aGd"(219) is adopted

[9], [10] is & popular technique that can reduce the numbgj; hardware complexity analysis.is set to 9, so that 144-bit

of points to be interpolated from’ to n’ — k at the cost jriormation can be hidden in the biometric. In the case that
of two systematic encoders and a Berlekamp-Massey decogifglie aren — 21 symbols in the template, six errors, which

[11]. Considering the overhead, and thias much smaller 5re 6/21=28% of the codeword length, can be corrected.
thann’ in biometric encryption to tolerate the large intra-user

Sinceg(x) is stored in the database, it can be used directly.
A%a result, evaluating/(z) over eacha/ is not necessary.
Ai8reover, usingg(x) directly to construct the initial ba-

variation, this technique is not adopted in our design. A. VLSI architectures for enroliment
g(x) already passes each poift;, 5/), and the informa- By applying the Horner’s ruleg; = p(a;) can be computed
tion of all points is already incorporated in this polynomiain deg(p(z)) + 1 = k clock cycles using the univariate

Although the polynomial to be computed in the verificatiopolynomial evaluation (UPE) architecture shown in Figa?2.
processp’(x), has lower degree, it passes the same pointnd j; are stored into the memory after the computation.



4%(1“ 9(x) @)
le(q” (x))
v » () M N
<+-Pk2 Prct ><> » D p(a) gy (x) (=
—
Fig. 2. Architecture for univariate polynomial evaluatidPE) _$ q(()l)(x) %
. o
N
L ; 0"(a. ) :[}gé‘”(@ Vi
Inv - b
(1 LD j
qO ('x) " '\/ i
Q“)(‘Znﬂ,) v Yy v
o Fig. 4. Interpolation architecture for verification proses

(0)
9y (%) >
’:‘ E B. VLSI architectures for verification
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Fig. 3. Polynomial updating (PU) architecture for modifieteipolation ~ the verification process is affected byandn'. n’ varies with
the query template. In the case lot= 9, it can be computed

Each iteration of the proposed modified interpolation fgpatt = 1 if n' <24 andt = 2if 24 < n' < 48. Hence,

constructingg(z:) consists of two parts: polynomial evaluatiorf!P © three polynomials can be involved in the interpolation

in Step C1 of Algorithm C, and polynomial updating in Steﬁor fingerprint encryption, and our architecture is destte

C2 and C3. For the two involved polynomias®) (o, ;) = nandel this case. _ _ _
q§l)(ai)ﬁi N q(()z)(ai). As mentioned previouslyQ(® (2,y) is Both the modified basis construction and the LO algorithm

actually a univariate polynomial wittq%o)(x) — 0, Hence, can be implemented by the architecture in Fig. 4. This

(. A . - chitecture also processes the coefficients in a polydomia

@))(@i, 5;) can be computed by sending the coefficients czfrerially. The units in the dashed block multiply ofe+ a!)

gy (x) to the UPE architecture. In addition, the evaluations " : n'—1 N . g

of ¢\ (x) andp(z) can share the same UPE unit since theat a time, and computpl;_, (z + a;) iteratively for basis
4o Hitialization according to (2). Sincaeg(I'_; (« +al)) =1,

Lo (1), =
are not done at the same “mé' () canlgae computed by . o multiplication of (x + «}) takes (i +J2) clock cycles.
another copy of the UPE unit. Moreove;é, (x)

1) @) only has a \pjle these multiplications are being carried out, the mgmo
nonzero constant terq{ﬂo. Therefore, by adding multiplexorsqy QW (x,y) and Q? (z,y) are initialized usingy(z). The
to the UPE unit forqél)(ai) computation,qu ;, can be control functions in Step BiB3 steps of Algorithm B and that

computed and added " («;) using one more clock cycle. In for switching the polynomials in Step B4 are implemented by
total, two Copies of the UPE units are needed to eva|p@t§; the 'control’ unit and multiplexors in Flg 4. The linear cbm
andQ"(z,y) (I = 0,1), although one of the copies needs t@ation updating of the polynomial in Step B4 is implemented
have two multiplexors added. OnG&" («;, 8;) are computed, by the two multipliers and one adder in the top middle. For
they are sent to the polynomial updating (PU) architectute purpose of conciseness, this figure only shows the units
in Fig. 3 to carry out the C2 and C3 steps for polynomidpr processing; (z) (I = 0,1,2). There are another two sets
updating. of units for processinqgl)(x) and qgl)(a:).

In Fig. 3, the coefficieang is stored in the same memory The memory blocks for storin@§l)(x) 0 <1,j <2
block as those of)" (x), and the memory cells are initializedhave separate address generators and enable signalsh@nly t

while p(«a;) are being computed. One coefficient is read frofemories fqujT) (z) and st) (z) with j < r are enabled
each memory and updated at a time, starting from the mdstthe iterations for converting)™ (z,y). The purpose of
significant coefficient. The two multipliers and adder on théhe multiplication byz!?l in Step B4 is to make sure that
top implement the C2 step, and the multiplier-registereaddthe leading terms of)(™(z,y) and Q*)(z,y) are aligned.
units on the bottom carry out the C3 step. The updated coeffi-can be achieved by using proper addresses for memory
cients are written back to the memory. Since both the PU aadcess. Nevertheless, for the linear combination, zeres ne
UPE architectures process the polynomial coefficientabgri to be padded after the least significant coefficients of the
with the most significant ones first, the updated coefficiengolynomial that has been multiplied by?. The '0" inputs
from the PU unit can be sent to the UPE unit right after tt® the two multiplexors in the middle of Fig. 4 are used
start the evaluation value computation for the next iterati for this purpose. The linear combination of the polynomials
After the last iteration, the inverse of the coefficient;ofs may cancel out not only the leading term gdf) (x), but also
multiplied to each coefficient stored in th,él)(x) memory other following terms. Hence, zero testing needs to be done
to derive the monicg(x). For security reasong; and 5, in the control block to tell the real degree QS”) (z) after
should be cleared from the memory after they have usedthe linear combination. The leading coefficient and degifee o
the polynomial updating, anqﬁo)(x) should be erased duringeachqgl)(x) (0 < 1,5 < 2) are stored in the control block.
the last iteration of the modified interpolation. Their initial values can be easily derived from (2). They can




TABLE |
16 T ;
HARDWARE COMPLEXITY OF FINGERPRINT BIOMETRIC ENCRYPTION  MeNts, aGF(2°°) multiplier can be implemented by around

WITHn =n’ =30AND k=9 413 XOR gates with 16 gates in the critical path using the
‘GF ‘GF ‘GF ‘Z:lm—bit bt [RAM ‘ Catency architecture in [_;3].According|y, it can be obseryed froig.F
Mult. Add. finv. | Mux. [Regis. |(bits) | (ckks) 2~4 that the critical paths of the proposed architectures have
&ﬁiﬁrﬁ}p_ R RN S at most 20 gates. Using CMOS technology, a clock period of
Mod. Basis Constr.| 7 | 4 |0 21 T |216m 495 20ns can be easily achieved. As a result, the latency of the
& LO Interp. 1743 proposed architectures are less than 0.05ms. Due to the high

order of the involved finite field, implementing the inversio
be only replaced by that of another polynomial or updatgging |ook-up tables would cause large area. Alternatjvely
as a result of the linear combination according to step Bdomposite field arithmetic can be adopted to decompose the
Hence, the control block is able to derive the most updatgg@mputations into lower order fields. In this casezA(219)
leading coefficient and degree of eagfl(x) through tracking inverter can be implemented by less than 1K XOR gates
the polynomial updating and the coefficients in the linearipstead of a 1024K-bit look-up table. To match the critical
combined polynomial. Then proper coefficients are chosen ggth of the rest architecture, the composite field inverger ¢
le(qd”(x)) andie(ql” (z)). be pipelined.

To find the factor of the interpolation output in the format

of y — p'(x), the Roth-Ruckenstein algorithm [12] can be v CONCLUSIO_'\_'S ) _ )
employed. In the case af < 2, an efficient architecture for ~ This paper proposed novel modified interpolation and basis
implementing this algorithm can be found in [9], and is ndtonstruction schemes for MFV biometric encryption. Thiloug

repeated in this paper. making use of the properties of biometric templates andirexit
_ _ interpolation algorithms, the proposed schemes bypassainn
C. Hardware complexity analysis essary computations and lead to significant complexity cedu
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