
On the Implementation of Modified Fuzzy Vault for
Biometric Encryption

Xinmiao Zhang
Case Western Reserve University

xinmiao.zhang@case.edu

Richard Shi and James Ritcey
University of Washington
{cjshi, jar7}@uw.edu

Abstract—Biometrics, such as irises and fingerprints, enable se-
cure and non-repudiable authentication. Fuzzy vault is a scheme
that can monolithically bind secret to biometric templates.
Moreover, the modified fuzzy vault (MFV) leads to less entropy
loss and requires less memory for storing the sketches. Thispaper
proposes a novel low-complexity scheme to compute the monic
polynomial for the sketch during the enrollment process of the
MFV. An innovative interpolation method is also developed to
reduce the computation complexity and latency of the verification
process. Efficient hardware implementation architectures are
developed in this paper for the proposed schemes and their
complexities are analyzed in detail.

I. I NTRODUCTION

Compared to traditional passwords, biometrics, such as
fingerprints and irises, have the advantage that they are unique
to individuals, and can not be forgotten or lost. Hence,
biometrics enable higher level of security. On the other hand,
the biometric templates acquired from the same user can be
slightly different, and calls for error-correction. In addition,
since biometrics are not replaceable, they should not be stored
directly in the database in case it gets compromised. To
address these issues, biometric encryption schemes have been
developed [1]–[4] to marry encryption with error-correction.
In these schemes, secret information are bound with biometric
templates, and neither the secret nor the enrolled biometric
template can be derived from the sketches stored in the
database, unless another very similar biometric template is
provided.

Due to the natural fuzziness of biometrics, the template
acquired for verification may have deleted or added symbols
compared to the enrolled template of the same user. The fuzzy
commitment [1] and fuzzy syndrome hashing [4] schemes
employ linear block codes, and the decoding is done based
on the parity check matrix. All the symbols from a template
are arranged in a certain order to be decoded. In case there
are deletion or addition of symbols, the location of many
symbols will be shifted. This causes decoding failure and
accordingly high false rejection rate. On the contrary, thefuzzy
vault scheme [2] adopts interpolation-based decoding of Reed-
Solomon (RS) codes, and is indifferent to addition, erasure, or
the order of the interpolation points. The information stored for
a user and accessible during the verification process is called

This material is based upon the work supported by NSF grants 0846331
and 0835782.

the sketch. The sketch in the fuzzy vault scheme includes
real points related to the biometric template (usually lessthan
40 for fingerprints) and a much larger number of random
chaff points (usually hundreds for fingerprints) to hide thereal
points. Comparatively, the sketch in the modified fuzzy vault
(MFV) [3] consists of the coefficients of a monic polynomial
whose degree equals the number of real points. As a result, the
sketch in the MFV requires much smaller memory for storage,
and reveals less information about the user template.

In this paper, novel complexity-reduction schemes are de-
veloped for implementing the MFV scheme, and fingerprint
biometric is mainly considered. In the enrollment process,a
monic polynomial that passes a set of given points needs to be
derived for the sketch. Inspired by the Kötter’s interpolation
algorithm [5] for constructing polynomials with minimum
weighted degree, a modified interpolation process is developed
to efficiently construct such a monic polynomial without
solving linear equations. The verification process computes
a polynomial with minimum weighted degree that passes a
set of points derived by evaluating the monic polynomial over
the symbols in the query template. Although this can be done
by the Kötter’s algorithm, the polynomial evaluation needs to
be carried out first. Alternatively, this paper proposes to use
the monic polynomial directly in the construction of an initial
basis, which is then converted to compute the polynomial
with minimum weighted degree using the Lee-O’Sullivan (LO)
[6] interpolation process. Our approach avoids not only the
polynomial evaluation, but also the complicated computations
for initial basis construction. Efficient VLSI architectures are
also developed in this paper for implementing the proposed
schemes, and the complexities are analyzed in detail.

The structure of this paper is as follows. Section II intro-
duces the MFV and prior interpolation algorithms. Section
III presents the modified interpolation for monic polynomial
construction and modified initial basis construction for the
verification process. Hardware implementation architectures
are developed, and their complexities are analyzed in Section
IV. Conclusions follow in Section V.

II. M ODIFIED FUZZY VAULT AND INTERPOLATION

The fuzzy vault schemes are built upon(n, k) RS codes
over GF (2m) with evaluation map encoding and algebraic
interpolation-based decoding.k equals the number of secret

Fig. 1. The modified fuzzy vault scheme

message symbols. In authentication-only applications,k ran-
dom symbols can be used. The order of the finite field is
decided by the resolution required for biometric images. For
example, for a fingerprint image, 8-bit resolution is usually
needed for each coordinate, and the two coordinates are
put together as a symbol overGF (216). The template of a
fingerprint consists of the locations of the minutiae, which
are the ridge endings or bifurcations in the fingerprint image.
Typically, there are 20∼40 minutiae in a fingerprint template,
and the number of minutiae decidesn, the codeword length
of the adopted RS code. Between two templates acquired
from the same user, the number of different minutiae can be
more than 25%. An(n, k) RS code can correct as many as
⌊(n − k)/2⌋ errors using traditional hard-decision decoding.
Hence, to achieve reasonable false rejection rate,k can not be
a large number in the fuzzy vault schemes for fingerprints.

The MFV scheme is shown in Fig. 1. Thek secret message
symbols can be considered as the coefficients of a degreek−1
message polynomialp(x). During the enrollment, given the
n symbols from the user biometric,α0, α1, . . . , αn−1, βi =
p(αi) (0 ≤ i < n) are first computed. This can be considered
as the evaluation map encoding of RS codes. Then a degreen
monic polynomialg(x) that passes each(αi, βi) is computed.
In addition, a hash function is applied top(x). The hash value
and the coefficients ofg(x) are stored as the sketch.

During the verification process, the user provides fingerprint
template with symbolsα′

0, α
′
1, . . . , α

′
n′−1. Note thatn andn′

can be different, even if the template is from the authorized
user.β′ = g(α′

i) are computed, and then interpolation is car-
ried out to find a bivariate polynomial,Q(x, y), of minimum
(1, k − 1) weighted degree that passes each point(α′

i, β
′
i)

(0 ≤ i < n′). If the number of errors is within correctable
range, then it is guaranteed thatQ(x, y) has a factory−p′(x)
with deg(p′(x)) < k. This is the same process as the algebraic
interpolation-based decoding for RS codes proposed in [7].If
the hash value ofp′(x) matches the stored hash value, access
is granted or the computedp′(x) is verified the same as the
secret messagep(x). In the case of no matching, no additional
information is told by the verification.

The implementation of hash functions has been addressed in
many papers. This work focuses on the implementation of the

other computations involved in the enrollment and verification
process of the MFV scheme. The following definitions are
necessary to understand the materials in this paper.
Definition 1: The (wx, wy)-weighted degree of a monomial
xayb is awx + bwy. For a bivariate polynomialQ(x, y) =
∑∑

qa,bx
ayb, its (wx, wy)-weighted degree is the maximum

of awx + bwy such thatqa,b 6= 0.
Definition 2: The monomial with the highest lexicographic
order in a polynomial is called the leading term, and is
denoted bylt(·). The corresponding coefficient is the leading
coefficient, and is represented bylc(·).
Definition 3: A set of nonzero polynomials,Q(0)(x, y),
Q(1)(x, y), . . . , Q(t)(x, y) form a Gröbner basis of a module
M, if for each polynomial,F (x, y), in the moduleM,
there existsl ∈ {0, 1, 2, ..., t} such thatlt(Q(l)(x, y)) divides
lt(F (x, y)). A monomialxayb is said to dividexa′

yb′ when
a ≤ a′ andb = b′.

From Definition 3, the polynomial of minimum weighted
degree in a module must be the polynomial of minimum
weighted degree in its Gröbner basis. Hence, the polynomial of
(1, k−1) weighted degree,Q(x, y), needed in the verification
process that passes each interpolation point can be found
by constructing a Gröbner basis of the polynomials passing
the same points. Such a task can be accomplished efficiently
by using the Kötter’s or LO interpolation algorithms. The
number of monomials inQ(x, y) should be larger than the
number of interpolation constraints,C, in order to guarantee a
nonzero solution. The monomials can be arranged according
to increasing(1, k − 1) weighted lexicographic order. Then
the maximumy-degree,t, of the interpolation solution, and
hence the number of polynomials in the Gröbner basis, can
be decided from the maximumy-degree of the firstC + 1
monomials [8].

To find a polynomial of minimum(1, k − 1) weighted
degree that passes each point(αi, βi) once, the Kötter’s
interpolation algorithm can be simplified as in Algorithm A.

Algorithm A: K ötter’s Interpolation Algorithm
Initialize:

Q(0)(x, y) = 1, Q(1)(x, y) = y, . . . , Q(t)(x, y) = yt

Wdeg0 = 0, Wdeg1 = k − 1, . . . , Wdegt = (k − 1)t
Start:

for each(αi, βi)
A1: computeQ(l)(αi, βi) (0 ≤ l ≤ t)

minl= argminl{Wdegl|Q
(l)(αi, βi)6= 0, 0≤ l ≤ t}

for l = 0 to t, l 6= minl
A2: Q(l)(x, y) ⇐ Q(minl)(αi, βi)Q

(l)(x, y)
+ Q(l)(αi, βi)Q

(minl)(x, y)
A3: Q(minl)(x, y) ⇐ Q(minl)(x, y)(x + αi)

Wdegminl ⇐ Wdegminl + 1
Output: Q(ϕ)(x, y), ϕ = arg min{Wdegl|0 ≤ l ≤ t}

The updating in the A2 and A3 steps of the Kötter’s
algorithm forces each polynomial,Q(l)(x, y), to pass(αi, βi)
with minimum increase in the weighted degree. In addition, the

polynomials still pass the points covered in previous iterations
after the updating. At the end of each iteration, thet + 1
polynomials form a Gröbner basis of the polynomials that pass
all points interpolated so far. Hence, the desired interpolation
output polynomial can be found from the Gröbner basis
constructed at the end of the last iteration.

Different from the Kötter’s algorithm, the LO interpolation
starts with a basis oft + 1 polynomials that satisfy all
interpolation constraints. Then it is converted to a Gröbner
basis, which can be defined equivalently as a basis whose
polynomials have distincty-degree in the leading terms [6].
Assume thatQ(l)(x, y) = q

(l)
0 (x) + q

(l)
1 (x)y + · · ·+ q

(l)
t (x)yt.

The LO algorithm can be carried out according to
Algorithm B. In this algorithm, (1, k − 1) weighted
lexicographic order is adopted in deciding the leading term.

Algorithm B: Lee-O’Sullivan Interpolation Algorithm
Input: A basis {Q(l)(x, y)} (0≤ l ≤ t) that satisfies all
interpolation constraints
Initialize: r = 0
Start:
B1: r = r + 1; proceed ifr ≤ t; otherwise, go toOutput
B2: find s = y-degree oflt(Q(r)(x, y))

if s == r, then go to step B1
B3: d = deg(q

(r)
s (x)) − deg(q

(s)
s (x))

B4: if d ≥ 0, then
Q(r)(x, y) = lc(q

(s)
s (x))Q(r)(x, y)

+ xdlc(q
(r)
s (x))Q(s)(x, y)

else
tmp(x, y) = Q(r)(x, y)

Q(r)(x, y) = x−dlc(q
(s)
s (x))Q(r)(x, y)

+ lc(q
(r)
s (x))Q(s)(x, y)

Q(s)(x, y) = tmp(x, y)
goto step B2

Output: Q(l)(x, y) with the minimum weighted degree

It was proposed in [6] to construct the initial basis as

Q(l)(x, y) =











∏

(x + αi), l = 0

y − h(x), l = 1

yl−1(y − h(x)), 2 ≤ l ≤ t

(1)

whereh(x) is a polynomial passing each(αi, βi) derived by
using the Lagrange interpolation. Accordingly, eachQ(l)(x, y)
in (1) passes all interpolation points. The polynomials arealso
linearly independent and have differenty-degree. Hence, they
form a basis of the polynomials that pass all points. Starting
from such a basis, the updating in Step B4 of Algorithm B
cancels out the leading term ofQ(r)(x, y) iteratively, until the
leading term hasy-degree asr. In addition, this updating does
not change they-degree of the leading term inQ(s)(x, y), and
the t + 1 polynomials still form a basis of the same module
after the updating. After the iterations are carried out forr =
1, 2, . . . , t, the t + 1 polynomials in the basis have distincty-
degree in the leading terms, and hence form a Gröbner basis.

III. M ODIFIED INTERPOLATION AND BASIS

CONSTRUCTION

This section proposes a modified interpolation algorithm
for calculating the monic polynomial,g(x), in the enrollment
process, and a modified basis construction for the LO inter-
polation that can be used in the verification process of the
MFV.

A. Modified interpolation

The monic polynomial,g(x) = xn +
∑n−1

j=0 gjx
j , needs

to pass each of then points (αi, βi) (0 ≤ i < n), whereαi

are distinct. It was suggested in [3] to find then coefficients,
gj, by solving n linear equationsg(αi) = βi. This process
has complexityO(n3), and is not hardware friendly. On the
other hand, the Kötter’s and LO interpolation algorithms
generate polynomials of minimum weighted degree that pass
each point through constructing Gröbner bases. No matter
what weighted degree is adopted, these algorithms can not
guarantee to output a monic polynomial of degreen that
passes each of then points. Nevertheless, the idea from the
Kötter’s algorithm on forcing polynomials to pass a point
can be borrowed to construct a monic polynomial iteratively.
Our proposed modified interpolation is listed in Algorithm C.

Algorithm C: Modified Interpolation for Monic Polynomial
Construction
Initialize: Q(0)(x, y) = 1, Q(1)(x, y) = y + xn

Start:
for i = 0 to n − 1

C1: computeQ(l)(αi, βi) (l = 0, 1)
C2: Q(1)(x, y) ⇐ Q(1)(αi, βi)Q

(0)(x, y)
+ Q(0)(αi, βi)Q

(1)(x, y)
C3: Q(0)(x, y) ⇐ Q(0)(x, y)(x + αi)
Output: Q(1)(x, y)

In Algorithm C, only two polynomials are involved. To
show the connections with the Kötter’s algorithm, bivariate
notations are used. However,Q(0)(x, y) starts from 1 and is
iteratively multiplied by(x+αi). Hence it is actually a univari-
ate polynomial withq(0)

1 (x) = 0. At the beginning of iteration
i, Q(0)(x, y) =

∏i−1
j=0(x + αj). Sinceαi are all distinct for

fingerprint applications,Q(0)(αi, βi) =
∏i−1

j=0(αi + αj) 6= 0.
Accordingly, through the linear combination updating in Step
C2 of Algorithm C, Q(1)(x, y) is forced to pass(αi, βi) in
a similar way as that in the Kötter’s Algorithm. In addition,
Q(1)(x, y) still passes(αj , βj) for j < i after the updating,
since bothQ(1)(x, y) andQ(0)(x, y) pass those points at the
beginning of iterationi. The degree ofQ(0)(x, y) increases
from 0 at the beginning of iteration 0 ton − 1 at the
beginning of iterationn − 1. Hence, the linear combination
in Step C2 does not involve any addition on monomialsy
andxn in Q(1)(x, y), although they can be multiplied by the
same finite field element. Therefore, at the end of Algorithm
C, Q(1)(x, y) is in the format ofay + axn +

∑n−1
j=0 g′jx

j

(a ∈ GF (2m)). Multiplying the inverse factora−1 to each
coefficient, a monic polynomial that passes each point can
be derived.Q(1)(x, y) can be also updated asQ(1)(x, y) +
(Q(1)(αi, βi)/Q(0)(αi, βi)) × Q(0)(x, y) in Step C2 to avoid
the inverse factor multiplications at the end. It also reduces the
number of multiplications needed for each iteration. However,
calculating the inverse of finite field elements in each iteration
slows down the interpolation process.

Although the computations in Algorithm C look like those
in Algorithm A with (1, J) weighted degree andJ ≥ n, the
ideas behind the polynomial initialization and updating rule in
Algorithm C are different. There aren interpolation points in
total, and passing each of them requires multiplying a factor
(x+αi) to one of the interpolation polynomials if approaches
similar to that in Algorithm A are adopted. Therefore, the
x-degree of an interpolation polynomial will not exceedn
if it is initially zero. On the other hand, the polynomial of
interest is in the format ofy + xn + The y and xn

terms will never get affected during the interpolation process
if this polynomial is never multiplied by any(x + αi) factor,
and always forced to pass(αi, βi) through linearly combining
with another polynomial that has lower degree and nonzero
evaluation value over each(αi, βi). All these problems can
be solved by multiplying then (x + αi) factors iteratively to
the same polynomial whose initialx-degree is zero, and using
this polynomial to linearly update the other polynomial that is
initialized asy + xn.

To construct the desired monic polynomial that passes each
of the n points, n iterations need to be run in Algorithm
C. Moreover, the maximumx-degree of the two involved
polynomials isn. Hence, the complexity of Algorithm C is
O(n2). Compared to solving a set ofn linear equations as
suggested by [3], the proposed algorithm is much simpler.
Moreover, it can be implemented by efficient and regular
architectures as will be shown in the next section.

B. Modified basis construction

During the verification process of the MFV scheme, the
original procedure in [3] is to first evaluate the monic poly-
nomial g(x) over each symbol,α′

i, of the query template to
derive a set ofn′ points(α′

i, β
′
i = g(α′

i)) (0 ≤ i < n′). Then
p′(x) can be recovered as a factor of a bivariate polynomial
Q(x, y), which has minimum(1, k − 1) weighted degree and
passes each point. Given the set of points, either the Kötter’s
or the LO interpolation algorithm can compute such a bivariate
polynomial. The re-encoding and coordinate transformation
[9], [10] is a popular technique that can reduce the number
of points to be interpolated fromn′ to n′ − k at the cost
of two systematic encoders and a Berlekamp-Massey decoder
[11]. Considering the overhead, and thatk is much smaller
thann′ in biometric encryption to tolerate the large intra-user
variation, this technique is not adopted in our design.

g(x) already passes each point(α′
i, β

′
i), and the informa-

tion of all points is already incorporated in this polynomial.
Although the polynomial to be computed in the verification
process,p′(x), has lower degree, it passes the same points.

Intuitively, g(x) should contribute directly to the computation
of p′(x). The Kötter’s algorithm iteratively builds a Gröbner
basis for polynomials passing one additional point at a time.
Sinceg(x) already passes all the points, it is very difficult to
make use ofg(x) in the Kötter’s interpolation.

Compared to the Kötter’s interpolation, the LO algorithm
has simpler computations in each iteration. Moreover, it starts
from an initial basis in the format of (1) that passes all the
points. Then the initial basis is converted to a Gröbner basis.
In order for the second and third polynomials in (1) to pass
each point,h(x) needs to pass each point. Moreover,h(x)

should not have any common factor with
∏n′−1

i=0 (x + α′
i) in

the first equation of (1). Otherwise, (1) is not a proper basis,
and any polynomial,F (x, y) = f0(x) + f1(x)y + . . . in the
corresponding module is subject to the constraint that it has the
same common factor inf0(x). Hence, given the set of points
to be passed, the Lagrange formula is adopted to calculate
h(x) in [6]. However, the monic polynomialg(x) computed
from the modified interpolation satisfies the same criteria,and
can replaceh(x). Hence, the LO interpolation can start from
the basis

Q(l)(x, y) =











∏n′−1
i=0 (x + α′

i), l = 0

y − g(x), l = 1

yl−1(y − g(x)), 2 ≤ l ≤ t

(2)

Sinceg(x) is stored in the database, it can be used directly.
As a result, evaluatingg(x) over eachα′

i is not necessary.
Moreover, usingg(x) directly to construct the initial ba-
sis avoids the complicated Lagrange interpolation for com-
puting h(x). In the LO interpolation shown in Algorithm
B, the number of iterations needed to make they-degree
of lt(Q(l)(x, y)) equal l is decided by the differences of
the degrees ofq(l)

0 (x), q
(l)
1 (x), . . . , q

(l)
l (x) at initialization.

deg(h(x)) = n′−1 anddeg(g(x)) = n. Sincen andn′ are the
numbers of symbols in the biometric templates from different
acquisitions, bothn′ > n andn′ < n can happen. Therefore,
using the modified initialization does not necessarily increase
the complexity of the LO interpolation process.

IV. VLSI A RCHITECTURES

In this section, efficient VLSI architectures are presented
for implementing the proposed schemes. Biometric encryption
systems do not need very high speed. Delay of less than a
millisecond is short enough. The goal of our design is to
achieve this speed with minimized silicon area. Fingerprint en-
cryption is considered in our design, andGF (216) is adopted
for hardware complexity analysis.k is set to 9, so that 144-bit
information can be hidden in the biometric. In the case that
there aren = 21 symbols in the template, six errors, which
are 6/21=28% of the codeword length, can be corrected.

A. VLSI architectures for enrollment

By applying the Horner’s rule,βi = p(αi) can be computed
in deg(p(x)) + 1 = k clock cycles using the univariate
polynomial evaluation (UPE) architecture shown in Fig. 2.αi

andβi are stored into the memory after the computation.

Fig. 2. Architecture for univariate polynomial evaluation(UPE)

(0)

0 ()q x

(1)

0 ()q x

(0)(,)i iQ !

(1)(,)i iQ !

i

Fig. 3. Polynomial updating (PU) architecture for modified interpolation

Each iteration of the proposed modified interpolation for
constructingg(x) consists of two parts: polynomial evaluation
in Step C1 of Algorithm C, and polynomial updating in Step
C2 and C3. For the two involved polynomials,Q(l)(αi, βi) =

q
(l)
1 (αi)βi + q

(l)
0 (αi). As mentioned previously,Q(0)(x, y) is

actually a univariate polynomial withq(0)
1 (x) = 0, Hence,

Q(0)(αi, βi) can be computed by sending the coefficients of
q
(0)
0 (x) to the UPE architecture. In addition, the evaluations

of q
(0)
0 (x) and p(x) can share the same UPE unit since they

are not done at the same time.q
(1)
0 (αi) can be computed by

another copy of the UPE unit. Moreover,q
(1)
1 (x) only has a

nonzero constant termq(1)
1,0. Therefore, by adding multiplexors

to the UPE unit forq(1)
0 (αi) computation,q(1)

1,0βi can be

computed and added toq(1)
0 (αi) using one more clock cycle. In

total, two copies of the UPE units are needed to evaluatep(x)
andQ(l)(x, y) (l = 0, 1), although one of the copies needs to
have two multiplexors added. OnceQ(l)(αi, βi) are computed,
they are sent to the polynomial updating (PU) architecture
in Fig. 3 to carry out the C2 and C3 steps for polynomial
updating.

In Fig. 3, the coefficientq(1)
1,0 is stored in the same memory

block as those ofq(1)
0 (x), and the memory cells are initialized

while p(αi) are being computed. One coefficient is read from
each memory and updated at a time, starting from the most
significant coefficient. The two multipliers and adder on the
top implement the C2 step, and the multiplier-register-adder
units on the bottom carry out the C3 step. The updated coeffi-
cients are written back to the memory. Since both the PU and
UPE architectures process the polynomial coefficients serially
with the most significant ones first, the updated coefficients
from the PU unit can be sent to the UPE unit right after to
start the evaluation value computation for the next iteration.
After the last iteration, the inverse of the coefficient ofy is
multiplied to each coefficient stored in theq(1)

0 (x) memory
to derive the monicg(x). For security reason,αi and βi

should be cleared from the memory after they have used in
the polynomial updating, andq(0)

0 (x) should be erased during
the last iteration of the modified interpolation.

(0)

0 ()q x

()(())l

slc q x

'i

()(())s

slc q x
(2)

0 ()q x

(1)

0 ()q x

Fig. 4. Interpolation architecture for verification process

B. VLSI architectures for verification

The number of polynomials involved in the interpolation of
the verification process is affected byk andn′. n′ varies with
the query template. In the case ofk = 9, it can be computed
that t = 1 if n′ < 24 and t = 2 if 24 ≤ n′ < 48. Hence,
up to three polynomials can be involved in the interpolation
for fingerprint encryption, and our architecture is designed to
handel this case.

Both the modified basis construction and the LO algorithm
can be implemented by the architecture in Fig. 4. This
architecture also processes the coefficients in a polynomial
serially. The units in the dashed block multiply one(x + α′

i)

at a time, and compute
∏n′−1

i=0 (x + α′
i) iteratively for basis

initialization according to (2). Sincedeg(
∏i−1

j=0(x + α′
j)) = i,

the multiplication of (x + α′
i) takes (i + 2) clock cycles.

While these multiplications are being carried out, the memory
for Q(1)(x, y) and Q(2)(x, y) are initialized usingg(x). The
control functions in Step B1∼B3 steps of Algorithm B and that
for switching the polynomials in Step B4 are implemented by
the ’control’ unit and multiplexors in Fig. 4. The linear combi-
nation updating of the polynomial in Step B4 is implemented
by the two multipliers and one adder in the top middle. For
the purpose of conciseness, this figure only shows the units
for processingq(l)

0 (x) (l = 0, 1, 2). There are another two sets
of units for processingq(l)

1 (x) andq
(l)
2 (x).

The memory blocks for storingq(l)
j (x) (0 ≤ l, j ≤ 2)

have separate address generators and enable signals. Only the
memories forq(r)

j (x) and q
(s)
j (x) with j ≤ r are enabled

in the iterations for convertingQ(r)(x, y). The purpose of
the multiplication byx|d| in Step B4 is to make sure that
the leading terms ofQ(r)(x, y) and Q(s)(x, y) are aligned.
It can be achieved by using proper addresses for memory
access. Nevertheless, for the linear combination, zeros need
to be padded after the least significant coefficients of the
polynomial that has been multiplied byx|d|. The ’0’ inputs
to the two multiplexors in the middle of Fig. 4 are used
for this purpose. The linear combination of the polynomials
may cancel out not only the leading term ofq

(r)
s (x), but also

other following terms. Hence, zero testing needs to be done
in the control block to tell the real degree ofq

(r)
s (x) after

the linear combination. The leading coefficient and degree of
eachq

(l)
j (x) (0 ≤ l, j ≤ 2) are stored in the control block.

Their initial values can be easily derived from (2). They can

TABLE I
HARDWARE COMPLEXITY OF FINGERPRINT BIOMETRIC ENCRYPTION

WITH n = n
′
= 30 AND k = 9

GF GF GF 2:1 m-bit m-bit RAM Latency
Mult. Add. Inv. Mux. Regis. (bits) (clks)

p(x) Eval. 5 4 1 3 3 124m 270
& Mod. Interp. +1024

Mod. Basis Constr. 7 4 0 21 1 216m 495
& LO Interp. +1743

be only replaced by that of another polynomial or updated
as a result of the linear combination according to step B4.
Hence, the control block is able to derive the most updated
leading coefficient and degree of eachq

(l)
j (x) through tracking

the polynomial updating and the coefficients in the linearly
combined polynomial. Then proper coefficients are chosen as
lc(q

(r)
s (x)) and lc(q

(s)
s (x)).

To find the factor of the interpolation output in the format
of y − p′(x), the Roth-Ruckenstein algorithm [12] can be
employed. In the case oft ≤ 2, an efficient architecture for
implementing this algorithm can be found in [9], and is not
repeated in this paper.

C. Hardware complexity analysis

Table I summarizes the hardware complexity of the pro-
posed architectures for fingerprint biometric encryption.The
numbers of functional units, such as multipliers and adders
over GF (2m), can be directly counted from the proposed
architectures. During the enrollment, then points(αi, βi) need
to be stored temporarily, and each of theq(0)(x) andq(1)(x)
memory blocks in Fig. 3 hasn + 2 coefficients. Using one
UPE unit, theβi for n points can be calculated inkn clock
cycles. In the modified interpolation, updating or evaluating
the polynomials taken+2 clock cycles each time. Considering
that the polynomial updating in the last iteration can not be
overlapped with any evaluation value computation, and the
inverse factor needs to be multiplied at the end, the modified
interpolation requires around(n + 2)2 clock cycles.

In the interpolation for verification, computing the initial
polynomial

∏n′−1
i=0 (x+α′

i) takes
∑n′−1

i=0 (i+2) = n′(n′+3)/2
clock cycles. For the LO process, the latency and the size of
each memory block in Fig. 4 are dependent on thex-degrees
of the univariate polynomialsq(l)

j (x) (0 ≤ l, j ≤ 2). The linear
combination in Step B4 can cancel out multiple coefficients at
a time, and thex-degree also changes when the polynomials
are switched. These issues make it very difficult to express the
latency and memory size of the LO process in terms of the
code parameters,n′ andk. Hence, the latency and memory size
are provided for an example case withn = n′ = 30 andk = 9
in Table I. In this example, the template for verification hasten
different symbols from that acquired in the enrollment. When
the number of errors is smaller, the interpolation process has
shorter latency. For example, when there are only two different
symbols, the latency of the LO process can drop from 1743
to 1169 clock cycles.

Finite field additions are bit-wise XOR operations.GF (216)
can be constructed from irreducible polynomials of weight
five. Using standard basis representation of finite field ele-

ments, aGF (216) multiplier can be implemented by around
413 XOR gates with 16 gates in the critical path using the
architecture in [13]. Accordingly, it can be observed from Fig.
2∼4 that the critical paths of the proposed architectures have
at most 20 gates. Using CMOS technology, a clock period of
20ns can be easily achieved. As a result, the latency of the
proposed architectures are less than 0.05ms. Due to the high
order of the involved finite field, implementing the inversion
using look-up tables would cause large area. Alternatively,
composite field arithmetic can be adopted to decompose the
computations into lower order fields. In this case, aGF (216)
inverter can be implemented by less than 1K XOR gates
instead of a 1024K-bit look-up table. To match the critical
path of the rest architecture, the composite field inverter can
be pipelined.

V. CONCLUSIONS

This paper proposed novel modified interpolation and basis
construction schemes for MFV biometric encryption. Through
making use of the properties of biometric templates and exiting
interpolation algorithms, the proposed schemes bypass unnec-
essary computations and lead to significant complexity reduc-
tion. In addition, efficient implementation architectureswere
proposed and hardware complexity was analyzed. The MFV
scheme shares the same theory as algebraic interpolation-based
RS decoding. Nevertheless, it involves different types of codes
and settings, and renders previous decoder designs inefficient
or unusable. Developing low-cost and secure biometric en-
cryption architectures will be the focus of our future research.

REFERENCES

[1] A. Juels and M. Wattenberg, ”A fuzzy commitment scheme,”Proc. 6th
ACM Conf. on Computer and Commu. Security, pp. 28-36, 1999.

[2] A. Juels and M. Sudan, ”A fuzzy vault scheme,”Proc. IEEE Intl. Symp.
Info. Theory, 2004.

[3] Y. Dodis, L. Reyzin and A. Smith, ”Fuzzy extractors: how to generate
strong keys from biometrics and other noisy data,”Proc. Advances in
cryptology-Eurocrypt, pp. 523-540, 2004.

[4] E. Martinian, S. Yekhanin, and J. S. Yedidia, ”Secure biometrics via
syndromes,”Proc. Allerton Conf. on Commun., Control and Comp., 2005.

[5] R. Kötter, On Algebraic Decoding of Algebraic-Geometric and Cyclic
Codes, Ph.D. dissertation, Dept. of Elec. Engr., Linköping University,
Linköping, Sweden, 1996.

[6] K. Lee and M. O’Sullivan, “An interpolation algorithm using Gröbner
bases for soft-decision decoding of Reed-Solomon codes,”Proc. IEEE
Intl. Symp. Info. Theory, pp. 2032-2036, Jul. 2006.

[7] M. Sudan, Decoding of Reed-Solomon codes beyond the error correction
bound,” J. Complexity, 13:180C193, 1997.

[8] R. Koetter and A. Vardy, “Algebraic soft-decision decoding of Reed-
Solomon codes,”IEEE Trans. Info. Theory, vol. 49, no. 11, pp. 2809-
2825, Nov. 2003.

[9] J. Zhu and X. Zhang, ”Efficient VLSI architecture for soft-decision
decoding of Reed-Solomon codes,”IEEE Trans. Circits and Syst.-I, vol.
55, no. 10, pp. 3050-3062, Nov. 2008.

[10] R. Kötter, J. Ma and A. Vardy, “The re-encoding transformation in alge-
braic list-decoding of Reed-Solomon codes,”IEEE Trans. Info. Theory,
vol. 57, no. 2, pp. 633-647, Feb. 2011.

[11] E. R. Berlekamp,Algebraic Coding Theory, McGraw-Hill, New York,
1968.

[12] R. M. Roth and G. Ruckenstein, “Efficient decoding of Reed-Solomon
codes beyond half the minimum distance,”IEEE Trans. Info. Theory, vol.
46, no. 1, pp. 246-257, Jan. 2000.

[13] X. Zhang and K. K. Parhi, ”Fast factorization architecture in soft-
decision Reed-Solomon decoding,”IEEE Trans. VLSI Syst., vol. 13, no.
4, pp. 413-426, Apr. 2005.

