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Nicolò Michelusi∗, Kostas Stamatiou† and Michele Zorzi∗†

{nicolo.michelusi,kstamat,zorzi}@dei.unipd.it
∗Department of Information Engineering, University of Padova - via Gradenigo, 6b, 35131 Padova, Italy

†Consorzio Ferrara Ricerche (CFR) - via Saragat, 1, 44122 Ferrara, Italy

Abstract—We consider an energy harvesting device whose
state at a given time is determined by its energy level and an
“importance” value, associated to the transmission of a data
packet to the receiver at that particular time. We consider policies
that, at each time, elect whether to transmit the data packet or
not, based on the current energy level and data importance, so as
to maximize the long-term average transmitted data importance.
Under the assumption of i.i.d. Bernoulli energy arrivals, we show
that the sensor should report only data with an importance value
above a given threshold, which is a strictly decreasing function
of the energy level, and we derive upper and lower bounds
on the thresholds for any energy level. Leveraging on these
findings, we construct a suboptimal policy that performs very
close to the optimal one, at a fraction of the complexity. Finally,
we demonstrate that a threshold policy, which on the average
transmits with probability equal to the average energy arrival
rate is asymptotically optimal as the energy storage capacity
grows large.

I. INTRODUCTION

Energy harvesting devices (EHD) collect, or “harvest”,

energy from the environment in order to perform sensing and

data-communication tasks, thus having the ability to operate

autonomously for extended periods of time [1]. In contrast to

traditional sensors, where the objective is to minimize energy

consumption under a performance constraint, e.g., delay [2],

in the case of an EHD, the objective is the “management” of

the harvested energy. Intuitively, an EHD should judiciously

perform its assigned task based on its available energy, be-

coming more “conservative” as its energy supply runs low to

ensure uninterrupted operation, and more “aggressive” when

energy is abundant.

In this paper, we study the case of an EHD which reports

incoming data of different “importance” levels to a receiver

(RX), with the overall goal to maximize the long-term aver-

age importance of the reported data. A number of practical

examples fall under this general model: a temperature-sensing

EHD, where the importance is an increasing function of the

temperature value, higher temperatures being the indicator of

overheating or fire; an EHD which relays different priority

packets in a sensor network [3]; an EHD which adjusts the

packet information rate based on the channel condition to the

RX, in which case the importance level corresponds to the

instantaneous rate and the objective is to maximize the long-

term average throughput [4].

We consider a slotted-time system with i.i.d. Bernoulli

energy arrivals, and i.i.d. importance values which follow an

arbitrary continuous distribution. We show that, for the class

of binary (transmit/no transmit) policies, the optimal policy

dictates the transmission of data with importance above a

given threshold, which is decreasing in the energy level. In

other words, the EHD becomes more frugal as its energy level

decreases, reserving its energy only for the transmission of

important data. This is an intuitive result, yet its proof is quite

involved, requiring a crafty manipulation of the energy level

steady-state distribution. Using the structure of the optimal

policy, we derive upper and lower bounds on the transmission

thresholds for any energy level and construct a suboptimal

policy which is shown to perform close to the optimal one.

Moreover, we show that a “balanced” policy, i.e., a threshold

policy which on the average (over the importance value

distribution) transmits with probability equal to the average

energy harvesting rate becomes asymptotically optimal, as the

energy storage capacity goes to infinity.

The problem of maximizing the average value of the re-

ported data from an energy-aware replenishable sensor was

formulated in [5]. However, [5] considered a continuous-time

system and employed policy iteration to determine the optimal

thresholds. [3] investigated the relaying of packets of different

priorities in a network of energy-limited sensors, but did not

account for energy harvesting capability. In [4], an EHD with

a data queue was considered and sufficient stability conditions,

as well as heuristic delay-minimizing policies, were derived.

Other related work on EHDs includes [6], [7], which consider

variants of the system model employed in this work, but are

concerned with a different performance metric, namely the

probability of detection of a randomly occurring event, and [8],

which proposes the use of RF-energy harvesting to enhance

the performance of passive RFID systems.

This paper is organized as follows. In Section II, the system

model is described in detail. Our theoretical results are derived

in Section III. In Section IV, we present numerical results

related to the performance of the optimal policy and various

suboptimal policies. Finally, Section V concludes the paper.

II. SYSTEM MODEL

A. General

We consider a slotted-time system, where slot k is the time

interval [k, k+1), k ∈ Z
+. At each time instant k, the EHD has

a new data packet to send to the RX, and the packet duration

is one slot. If the packet is not sent, then it is discarded.

The EHD energy storage capability is modeled by a buffer.

As in previous work [6], [7], we assume for simplicity that

each position in the buffer can hold one energy quantum

and that the transmission of one data packet requires the



expenditure of one energy quantum. The maximum number

of quanta that can be stored is emax and the set of possible

energy levels is denoted by E = {0, 1, . . . , emax}.
Denote the amount of energy quanta at time k as Ek. The

evolution of Ek is determined by the following equation

Ek+1 = min
{

[Ek −Qk]
+ +Bk, emax

}

, (1)

where:

• {Bk} is the energy arrival process, which models the

randomness in the energy harvesting mechanism, e.g., due

to an erratic energy supply. We assume that {Bk} are i.i.d.
Bernoulli random variables with mean b̄ ∈ (0, 1).1 More-

over, we assume that a new energy quantum harvested in

slot k can only be used at a later time instant > k.
• {Qk} is the action process, which is one if the current

data packet is transmitted and one energy quantum is

drawn from the buffer, and zero otherwise.

We now formally define energy outage and overflow.

Definition 1 In slot k, energy outage occurs if Ek = 0 and

energy overflow occurs if (Ek = emax)∩(Bk = 1)∩(Qk = 0).

Under energy outage, no transmissions can be performed,

hence Qk = 0 regardless of the importance of the current data

packet. When energy overflow occurs, an incoming energy

quantum cannot be stored due to the finite storage capacity.

Since energy is lost, an energy overflow potentially represents

a lost transmission opportunity in the future.

At time k, the EHD state Sk is defined as Sk = (Ek, Vk),
where Vk is the importance value of the current data packet.

We assume that Vk ∈ R
+ is a continuous random variable

with probability density function (pdf) fV (v), v ≥ 0, and

that {Vk} are i.i.d.

B. Policy definition and general optimization problem

Given Sk, a policy determines Qk ∈ {0, 1} at time k.
Formally, a policy µ is a probability measure on the action

space {0, 1}, parameterized by the state Sk, i.e., given that

Sk = (e, v) ∈ E×R
+, µ(1; e, v) and µ(0; e, v) = 1−µ(1; e, v)

are the probabilities of drawing one energy quantum (i.e.,

transmitting the data packet) and not drawing an energy

quantum (i.e., discarding the data packet), respectively.2

Given an initial state S0, the long-term average reward

under policy µ is defined as

G(µ,S0) = lim
K→∞

inf
1

K
E

[

K−1
∑

k=0

QkVk

∣

∣

∣

∣

∣

S0

]

, (2)

where the expectation is taken with respect to {Bk, Qk, Vk}
and Qk is drawn according to µ. The optimization problem at

hand is to determine the optimal µ∗ such that

µ∗ = argmax
µ

G(µ,S0). (3)

1b̄ = 0 corresponds to the case of no energy harvesting and b̄ = 1 to the
case where energy is always available, hence no energy management issues
arise.

2For the sake of maximizing a long-term average reward function of the
state and action processes, it is sufficient to consider only state-dependent
stationary policies [9].

It can be proved that µ∗ must have a threshold structure [10],

i.e., for each energy level e ∈ E , there exists a threshold vth(e)
such that

{

µ(1; e, v) = 1 v ≥ vth(e)
µ(1; e, v) = 0 v < vth(e).

(4)

As a result, we henceforth consider only the subset of policies

with threshold structure.

For ease of notation, we introduce the function g(x), x ∈
[0, 1], defined as

g(x) = EV

[

χ
(

V ≥ F̄−1
V (x)

)

V
]

=

∫ +∞

F̄−1

V
(x)

vλ(v)dv, (5)

where χ(·) is the indicator function and F̄−1
V (x) is the inverse

of the complementary cumulative distribution function of the

importance value process F̄V (v), i.e.,

x = F̄V (v) =

∫ +∞

v

fV (ν)dν, x ∈ [0, 1]. (6)

The function g(x) is the average reward accrued by trans-

mitting only the data packets with importance value above

the threshold v = F̄−1
V (x), which corresponds to an average

transmission probability x = F̄V (v).
With these definitions in place, let η(e) = EV [µ(1; e, V )]

denote the average transmission probability when the energy

level is e. From (6), we have that vth(e) = F̄−1
V ((η(e)).

Moreover, from (5), the average reward accrued, when the

energy level is e, is g(η(e)).
Due to the threshold structure, the mapping between µ,

vth(·) and η(·) is one-to-one, and the transition probabilities of

the time-homogeneous Markov chain {Ek} are governed by η.
Henceforth, we refer to policy µ in terms of the corresponding

average transmission probability η.
We close this section by stating without proof some prop-

erties of the function g(x), which are used in Section III.

Lemma 1 The function g(x) defined in (5) is strictly increas-

ing, strictly concave in (0, 1) and g′(x) = F̄−1
V (x).

III. CHARACTERIZATION OF THE OPTIMAL POLICY

A. Definitions and preliminary results

Before addressing (3), we provide some definitions and

preliminary results.

Definition 2 A policy η is said to be admissible if the Markov

chain {Ek} is irreducible.

Under an admissible policy η, there exists a unique steady-

state distribution of the energy level states, denoted by

πη(e), e ∈ E . Moreover, the long-term reward does not depend

on the initial state. With a slight abuse of notation, (2) becomes

G(η) = lim
K→∞

1

K
E

[

K−1
∑

k=0

χ
(

Vk ≥ F̄−1
V (η(Ek))

)

Vk

∣

∣

∣

∣

∣

S0

]

=

emax
∑

e=0

πη(e)g(η(e)). (7)



In the following lemma, we determine the set of admissible

policies.

Lemma 2 The set of admissible policies is

U = {η : η(0) = 0, η(emax) ∈ (0, 1],

η(e) ∈ (0, 1), e = 1, . . . , emax − 1}.

Lemma 2 is proved in [10] by showing that Ek is in a unique

communicating class, if and only if η ∈ U . If η /∈ U , after a
transient phase which depends on the initial condition E0, Ek

is absorbed by a subset of energy levels Ẽ ⊂ E . As a result,

the EHD emulates the behavior of an equivalent EHD with

a smaller energy-level set Ẽ . Since the system resources are

under-utilized, a policy η /∈ U is suboptimal.

Since it is sufficient to consider only η ∈ U , the optimization

problem in (3) becomes

η∗ = argmax
η∈U

G(η). (8)

B. Example: emax = 1

Before proceeding to the analysis for general emax, we give

a simple example for the case emax = 1. Solving for the steady
state distribution, we obtain

πη(0) =
(1− b̄)η(1)

b̄+ (1− b̄)η(1)
, (9)

πη(1) =
b̄

b̄+ (1− b̄)η(1)
. (10)

From (7), the long-term reward is given by

G(η) = πη(1)g(η(1)) =
b̄

b̄+ (1− b̄)η(1)
g(η(1)). (11)

Note that a large η(1) gives a large accrued reward g(η(1)),
but induces frequent energy outage with long-term probability

Pr(outage) = 1 − πη(1). Conversely, a small η(1) results in

infrequent outage, but less accrued reward g(η(1)). Therefore,
the optimal η∗(1) reflects the trade-off between maximizing

g(η(1)) and minimizing Pr(outage). Taking the derivative of

G(η) over η(1), we obtain

dG(η)

dη(1)
∝g′(η(1))

[

b̄+(1− b̄)η(1)
]

−(1− b̄)g(η(1)),q(η(1)),

where ∝ denotes equality up to a positive factor (which does

not affect the sign of q(η(1))). Using the concavity of the

reward function g(x) (Lemma 1), it can be shown that q(η(1))
is a decreasing function of η(1), with q(0) > 0 and q(1) < 0.
Therefore, G(η) is maximized at η∗(1), which is the unique

solution of q(η∗(1)) = 0.
In the next section, we consider the case emax > 1 and

determine structural properties of the optimal policy.

C. Structure of the optimal policy for emax > 1

The sequence {(Sk, Qk), k ≥ 0} is a Markov Decision

Process [11], hence the optimal policy can be evaluated

numerically as the solution of a Linear Program (LP) [9].

The objective of this section is to characterize the structure of

the optimal policy. Our main result is stated in the following

theorem.

Theorem 1 The optimal policy η∗ has the following proper-

ties:

P1) η∗(e) is a strictly increasing function of e ∈ E .
P2) η∗(e) ∈ (ηL, ηU ), ∀e ∈ E \ {0}, where ηL ∈ (0, b̄),

ηU ∈ (b̄, 1) uniquely solve

g(ηL) + (1− ηL)g
′(ηL) =

g(b̄)

b̄
, (12)

g(ηU )− ηUg
′(ηU ) = g(b̄). (13)

Proof: We give an outline of the proof. A detailed proof

is provided in [10].

We prove P1 by contradiction. Let η0 ∈ U be a generic

transmission policy, which violates P1. Then, we can show

that there exists ǫ ∈ {1, . . . , emax − 1} such that

η0(ǫ− 1) < η0(ǫ) ≥ η0(ǫ+ 1). (14)

The violation of P1 is due to the fact that η0(ǫ) ≥ η0(ǫ+ 1),
i.e., η0 is not strictly increasing from ǫ to ǫ+1. We now define

a new transmission policy, ηδ, parameterized by δ > 0, as:

ηδ(e) =











η0(e), e ∈ E \ {ǫ− 1, ǫ, ǫ+ 1}
η0(ǫ− 1) + h(δ), e = ǫ− 1
η0(ǫ)− δ, e = ǫ
η0(ǫ+ 1) + r(δ), e = ǫ+ 1.

Intuitively, policy ηδ is constructed from the original policy

η0 by transferring some transmissions from energy state ǫ to

states (ǫ+ 1) and (ǫ− 1), whereas transmissions in all other

states are left unchanged. The functions r(δ) > 0 and h(δ) ≥ 0
are uniquely defined as follows. If ǫ > 1, the transmission

transfer is done by preserving the steady state distribution

of visiting the low energy states {0, . . . , ǫ − 2} and the high

energy states {ǫ+2, . . . , emax} (a similar consideration holds

for ǫ = 1, with the difference that in this case h(δ) = 0, since
ηδ(0) = 0). Therefore, on the one hand, the new policy ηδ
recovers from the structure that violates P1, by diminishing

the gap η(ǫ) − η(ǫ + 1) by a quantity δ + r(δ) > 0; on the

other hand, it confines the perturbations on the steady state

distribution only to states {ǫ − 1, ǫ, ǫ + 1}, thus simplifying

the analysis. Formally,

1) if ǫ = 1, let h(δ) = 0 and let r(δ) be such that

πηδ
(emax) = πη0

(emax), ∀δ < κ,
2) if ǫ > 1, let h(δ) and r(δ) be such that

{

πηδ
(emax) = πη0

(emax)
πηδ

(0) = πη0
(0)

, ∀δ < κ, (15)

where 0 < κ ≪ 1 is an arbitrarily small constant, which

guarantees an admissible policy ηδ ∈ U , i.e., ηδ(ǫ − 1) ∈
(0, 1), ηδ(ǫ) ∈ (0, 1), ηδ(ǫ + 1) ∈ (0, 1) for ǫ + 1 < emax,

ηδ(ǫ+ 1) ∈ (0, 1] for ǫ+ 1 = emax.

It can be shown that this choice also gives πηδ
(e) = πη0

(e)
for {e < ǫ− 1} ∪ {e > ǫ+1}. In fact, states {e < ǫ− 1} and

{e > ǫ + 1} communicate with states {ǫ − 1, ǫ, ǫ + 1} only

through states ǫ − 2 and ǫ + 2, respectively. Therefore, since
the policy is left unchanged in states {e < ǫ−1}∪{e > ǫ+1},



by imposing no perturbation in the steady state distribution of

states 0 and emax, no perturbation is induced in states {e <
ǫ− 1} and {e > ǫ+1}, respectively. Then, by comparing the

long-term rewards under policies η0 and ηδ, we have

Dη0
(δ) ,

G(ηδ)−G(η0)

δ
= (16)

πηδ
(ǫ− 1)g(η0(ǫ− 1) + h(δ))− πη0

(ǫ− 1)g(η0(ǫ− 1))

δ

+
πηδ

(ǫ)g(η0(ǫ)− δ)− πη0
(ǫ)g(η0(ǫ))

δ

+
πηδ

(ǫ+ 1)g(η0(ǫ+ 1) + r(δ))− πη0
(ǫ+ 1)g(η0(ǫ+ 1))

δ
.

Finally, it can be shown thatDη0
(0+) , limδ→0+ Dη0

(δ) > 0,
therefore, for some 0 < κ ≪ 1 we have Dη0

(δ) > 0, ∀δ ∈
(0, κ). Equivalently, G(ηδ) > G(η0), hence η0 and any policy

violating P1 are strictly suboptimal.

For the proof of P2, we proceed as follows. Computing the

derivative of G(η) with respect to η(1), we have, after some

algebraic manipulation,

dG(η)

dη(1)
∝ g(η(1)) + (1− η(1))g′(η(1))−

G(η)

b̄

> g(η(1)) + (1− η(1))g′(η(1))−
g(b̄)

b̄
, L(η(1), b̄),

where the second step follows from G(η) < g(b̄) (see

Appendix). Using the concavity of g(x) (Lemma 1), it can be

shown that L(η(1), b̄) is a decreasing function of η(1), with
limx→0+ L(x, b̄) > 0 and L(b̄, b̄) < 0. Therefore, there exists

a unique ηL ∈ (0, b̄) that solves L(ηL, b̄) = 0. Then, for all

η(1) ≤ ηL we have L(η(1), b̄) ≥ 0, hence dG(η)
dη(1) > 0, which

proves that η(1) ≤ ηL is strictly suboptimal.

By computing the derivative of G(η) with respect to

η(emax), we have

dG(η)

dη(emax)
∝ −g(η(emax)) + η(emax)g

′(η(emax)) +G(η)

< −g(η(emax)) + η(emax)g
′(η(emax)) + g(b̄)

, U(η(emax), b̄).

Since g(x) is concave, U(η(emax), b̄) is a decreasing function

of η(emax), with U(b̄, b̄) > 0 and limx→1− U(x, b̄) < 0.
Therefore, there exists a unique ηU ∈ (b̄, 1) that solves

U(ηU , b̄) = 0. Then, for all η(emax) ≥ ηU we have

U(η(emax), b̄) ≤ 0, hence dG(η)
dη(emax)

< 0, which proves that

η(emax) ≥ ηU is strictly suboptimal. Finally, by combining

these results with P1, we obtain

ηL < η(1) < η(2) < · · · < η(emax) < ηU . (17)

Remarks on Theorem 1: P1 of Theorem 1 states the intuitive

fact that the more energy available in the buffer, the higher

the incentive to transmit. Moreover, if the energy level in

time-slot k is Ek = emax, energy overflow will occur with

probability b̄(1 − η(emax)). Therefore, the large transmission

probability in the high energy states reflects the incentive

to avoid visiting the full energy state Ek = emax, thus
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Figure 1. Reward function g(η), and geometric interpretation of the upper
bound ηU and lower bound ηL to the transmission probability η(e).

minimizing the impact of overflow to the system performance.

In contrast, the small transmission probability in the low

energy states aims to minimize the impact of energy outage,

by conservatively prioritizing the battery recharge process over

data transmission.

The bounds ηU and ηL of P2 can be interpreted geometri-

cally with the help of Fig. 1. The tangent line drawn from point
(

1, g(b̄)

b̄

)

(D) to the curve {(η, g(η)), η ∈ (0, 1)} touches it

at (ηL, g(ηL)) (C). Similarly, the tangent line drawn from the

point
(

0, g(b̄)
)

(A) to the curve {(η, g(η)), η ∈ (0, 1)} touches

it at (ηU , g(ηU )) (B).

IV. NUMERICAL RESULTS

In this section, we employ the framework developed in Sec-

tions II and III to maximize the long-term average throughput

from the EHD to the RX, for i.i.d. channel gains Hk, which

are exponentially distributed with unit mean, i.e., with pdf

fH(h) = e−h, h > 0. The achievable rate in slot k is

Vk = ln(1 + SNRHk), (18)

where SNR is the average signal-to-noise-ratio at RX. From

(5), we have

g(η(e)) =

∫ +∞

hth(e)

ln(1 + SNRh)e−hdh, (19)

where η(e) is the transmission probability induced by using a

channel threshold hth(e) (corresponding to the rate threshold

vth(e) = ln(1 + SNRhth(e))), and is given by

η(e) =

∫ +∞

hth(e)

e−hdh = e−hth(e). (20)

We consider the following policies.

• Optimal policy (OP): numerically evaluated by solving

(8) as a linear program [9].

• Balanced policy (BP): a threshold policy which, on

average, transmits in all non-zero energy levels with

probability b̄, i.e., ηBP(e) = b̄, e ∈ E \{0}. In each non-

zero energy state, BP matches the energy consumption
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Figure 2. Long-term reward for different policies, normalized to g(b̄), versus
battery capacity. Energy harvesting rate b̄ = 0.1. SNR = 10dB.

rate to the energy harvesting rate, thus ”balancing” the

EHD operation. For BP, we have that

G(ηBP) =
emax

emax + 1− b̄
g(b̄). (21)

From (21), it is seen that, when the energy storage

capacity grows large, BP approaches the upper bound

g(b̄), i.e., it is asymptotically optimal.

• Greedy policy (GP): always transmits as long as there is

energy in the storage unit, independently of the channel

realization, i.e., ηGP(e) = 1, e ∈ E \{0}. For this policy,
we have

G(ηGP) = b̄g(1). (22)

• Low-complexity policy (LCP): based on Theorem 1, and

the fact that the balanced policy is asymptotically optimal,

we construct a heuristic policy which (a) is conservative

when energy is low, (b) emulates the balanced policy

in the middle-energy levels, (c) is aggressive when the

energy storage capacity is approached. Mathematically,

LCP is defined as

ηLCP(e)=







ηlo(e), 1≤e≤3
b̄, 4≤e≤emax−3
ηhi(e), emax − 2 ≤ e ≤ emax

for emax ≥ 6, and

ηLCP(e)=















ηlo(e) 1 ≤ e < emax − 2
ηlo(e)+ηhi(e)

2 max{emax − 2, 1} ≤ e
≤ min{emax, 3}

ηhi(e) 3 < e ≤ emax,

for emax < 6, where

ηlo(e) =
e− 1

3
b̄+

4− e

3
ηL,

ηhi(e) =
emax − e

3
b̄+

e+ 3− emax

3
ηU .

and ηL, ηU are defined in (12)-(13). LCP is constructed such

that the average transmission probability increases linearly

from the lower bound ηL to b̄ in the low energy states
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Figure 3. Percentage gain of OP and LCP over BP, versus battery capacity.
Energy harvesting rate b̄ ∈ {0.1, 0.01}, SNR = 10 dB.

(1 ≤ e ≤ 3), it is constant or “balanced” in the mid-

dle energy states (3 < e < emax − 2), and it increases

linearly to the upper bound ηU in the high energy levels

(e ≥ emax − 2). When emax < 6, the two regions where

the transmission probability increases linearly overlap in the

interval max{emax − 2, 1}, . . . ,min{emax, 3}, in which case

the transmission probability is taken as the average between

ηlo(·) and ηhi(·). ηLCP(e) is plotted versus e for emax = 25
in Fig. 5. Note that LCP can be easily implemented in

an environment of changing statistics, e.g., variable b̄. In

contrast, OP requires the solution of a new LP every time b̄
changes, which could be challenging for an EHD with limited

computational resources.

In Fig. 2, we plot the long-term reward (throughput) for

b̄ = 0.1, normalized to the upper bound g(b̄). The gain of

OP with respect to BP, plotted in Fig. 3, is as much as 58%
for small storage capacity, and slowly decays to zero as the

storage capacity grows large. Figs. 2-3 also demonstrate that

the performance of LCP is very close to that of OP for the

whole range of emax considered. Regarding GP, it is seen

in Fig. 2 that it performs very poorly, due to the fact that

it transmits indiscriminately, wasting energy on channels that

can only support a low rate. Moreover, its performance does

not vary with emax, as each energy quantum is immediately

spent when it becomes available, so that the energy level keeps

bouncing between Ek = 0 and Ek = 1.
To give further insight on the operation mechanisms of the

various policies, in Fig. 4 we plot the steady-state distribution

of the energy levels for OP, LCP and BP. For BP, it is

spread equally likely over all states, so that the system,

in the long-term, spends the same amount of time in each

state. Therefore, BP cannot prevent the system from visiting

the low/high energy states and suffers from frequent energy

outage and overflow events. In contrast, for OP and LCP, the

states characterized by small/high energy levels are hit less

frequently in comparison to BP, since these policies are more

conservative in the low energy states (by transmitting with

smaller probability than b̄), and more aggressive in the high

energy states (by transmitting with higher probability than b̄).
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Figure 4. Steady state distributions of the energy levels. Energy harvesting
rate b̄ = 0.1, SNR = 10 dB, battery capacity emax = 10.

The result is that the steady-state distribution is concentrated

in the intermediate energy levels, where neither outage nor

overflow occurs. Hence, in the long-term, the impact of these

events to the system performance is minimized.
Finally, in Fig. 5 we plot the transmission probability as

a function of the energy level, for OP, LCP and BP. It is

seen that LCP follows closely the structure of OP and that

the upper and lower bounds to the transmission probability

derived in Theorem 1 are approached at e = emax and e = 1,
respectively.

V. CONCLUSIONS

We derived properties of the optimal binary policy for an

EHD which transmits data of different importance, under i.i.d.

energy arrival and data importance processes. A three-level

suboptimal policy was constructed: conservative in the low

energy states, so as to prevent energy outages, aggressive in

the high energy states, so as to prevent energy overflows,

and balanced in the middle energy states, so as to match the

energy consumption rate to the energy rate harvested from the

environment. It was demonstrated through numerical examples

that this policy attains close to optimal performance.
As part of our future work, we will generalize the assump-

tions of Bernoulli i.i.d. energy arrival process and of binary

policies, and include more realistic energy harvesting scenarios

and battery models.
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APPENDIX

We derive an upper bound to G(η) for any η ∈ U .
Since g(x) is strictly concave (Lemma 1), applying Jensen’s

inequality on (7) we obtain

G(η) =

emax
∑

e=0

πη(e)g(η(e)) < g

(

emax
∑

e=0

πη(e)η(e)

)

, (23)
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Figure 5. Transmission probability as a function of the energy level. Energy
harvesting rate b̄ = 0.1, SNR = 10 dB, battery capacity emax = 25.

where the strict inequality comes from the fact that η(e) >
η(0) = 0, ∀e ∈ {1, . . . , emax}. Now, note that (1) implies

an average long-term transmission constraint dictated by the

average harvesting rate b̄, i.e.,

emax
∑

e=0

πη(e)η(e) ≤ b̄. (24)

Since g(x) is increasing in x (Lemma 1),

G(η) < g

(

emax
∑

e=0

πη(e)η(e)

)

≤ g(b̄). (25)
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