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ABSTRACT

We consider the sparse sample goodness of fit problem, where
the number of samples n is smaller than the size of the al-
phabet m. The generalized error exponent based on large
deviation analysis was proposed to characterize the perfor-
mance of tests, using the high-dimensional model in which
both n and m tend to infinity and n = o(m). In previous
work, the best achievable probability of error is shown to de-
cay − log(Pe) = (n2/m)(1 + o(1))J with upper and lower
bounds on J . However, there is a significant gap between the
two bounds.

In this paper, we close the gap by proving a tight upper-
bound, which matches the lower-bound over the entire region
of generalized error exponents of false alarm and missed de-
tection, achieved by the coincidence-based test. This implies
that the coincidence-based test is asymptotically optimal.

Index Terms— chi-square test, high-dimensional model,
goodness of fit, large deviations, optimal test

1. INTRODUCTION

Goodness of fit problem with small number of samples arises
from many applications such as biomedical research and so-
cial science where the cost of obtaining a sample is high. To
evaluate a test for the case when the number of samples n
is smaller than the size of alphabet m, the criterion of gen-
eralized error exponent was proposed in the previous work
[1]: it characterizes the rate that the probability of error con-
verges to zero in a high-dimensional model where n and m
both increase to infinity and n = o(m). This criterion pro-
vides insights that are not available from asymptotic consis-
tency analysis or Central Limit Theorem analysis: The widely
used Pearson’s chi-square test has a zero generalized error ex-
ponent of probability of error while a coincidence-based test
proposed in [2] has a non-zero generalized error exponent.
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Lower and upper bounds on the best achievable generalized
error exponent have been obtained in previous works but they
are not tight. It remained an open question what the optimal
test is.

In this paper, answer this question by showing that there
exists a better upper-bound that matches the existing lower-
bound achieved by the coincidence-based test, and thus the
coincidence-based test is optimal.

The technique used in proof of previous upper-bound only
allows us to bound the probability of missed detection while
leaving out the probability of false alarm. The proof of
the new result uses a technique that allows us to simultane-
ously bound the generalized error exponents of false alarm
and missed detection. We believe this technique could find
its application in statistical inference problems where tight
hardness results on rate of convergence are desirable.

1.1. Problem statement

Consider the following goodness of fit problem: Suppose
the observations take value in the finite alphabet [m] :=
{1, 2, . . . ,m}, and denote the set of probability distribution
over [m] by P([m]). An i.i.d. sequence Zn

1 = {Z1, . . . , Zn}
is observed, where Zi ∈ [m]. Under the null hypothesis H0,
Zi has a uniform distribution π over [m]; under the alterna-
tive hypothesis H1, Zi has a unknown distribution µ ∈ Πm,
where Πm is given by

Πm = {µ : d(µ, π) ≥ ε}, (1)

and d is the total-variation metric:

d(µ, π) = sup{|µ(A)− π(A)| : A ⊆ [m]} = 1
2‖µ− π‖1.

A test φ = {φn}n≥1 is a sequence of binary-valued function
φn : [m]n → {0, 1}. It decides in favor of H1 if φn = 1 and
H0 otherwise. The performance of a test is evaluated using
the probability of false-alarm PF and (worst-case) probability
of missed detection PM :

PF (φn) = Pπ{φn = 1}, PM (φn, µ) = Pµ{φn = 0},

PM (φn) = sup
µ∈Πm

PM (φn, µ).



The following generalization of classical error exponents
has been proposed, defined with respect to the normalization
r(n,m) which takes value r(n,m) = n2/mwhen n = o(m):

JF (φ,m) :=− lim sup
n→∞

r−1(n,m) log(PF (φn)),

JM (φ,m) :=− lim sup
n→∞

r−1(n,m) log(PM (φn)).
(2)

Note that in the classical error exponent applicable to the case
m = O(n) is defined with the normalization is r(n,m) = n.

1.2. Previous results

The following lower and upper bounds on (JF , JM ) have
been established in [1]:

Theorem 1.1 (Lower-bound from achievability result in
[1]). The following pair of generalized error exponents are
achieved by the coincidence-based test φK: For τ ∈ [0, κ(ε)],

JF (φK) = sup
θ≥0
{θτ − 1

2 (e2θ − 1− 2θ)},

JM (φK) = sup
θ≥0
{θ(κ(ε)−τ)− 1

2 (e−2θ− 1 + 2θ)(1 + κ(ε))}

where

κ(ε) =

{
ε

1−ε , ε ≥ 0.5,

4ε2, ε < 0.5.
(3)

The coincidence-based test that achieves this pair of gener-
alized error exponents was introduced in [2]: Let

Kn =

m∑
j=1

I{nΓnj = 1}, (4)

where Γnj = 1
n

∑n
i=1 I{Zi = j} is the empirical distribu-

tion. This test statistic counts the number of symbols appear-
ing once. The test is given by φK = I{Kn ≤ Eπn [Kn]− τn}.

Theorem 1.2 (Upper-bound from hardness result in [1]). For
any test φ satisfying

lim
n→∞

PF (φn) = 0, (5)

the following upper-bound on the generalized error exponent
of missed detection holds:

JM (φ,m) ≤ J̄(ε). (6)

where

J̄(ε) = sup
θ≥0
{θκ(ε)− 1

2 (e−2θ− 1 + 2θ)(1 + κ(ε))} (7)

The right-hand side of (7) is equal to the value of JM (φK)
given in Theorem 1.1 with τ = 0. Therefore, the upper-bound
on JM given in (6), which holds for any JF , is only tight
at JF = 0. It is desirable to obtain an upper-bound on the
generalized error exponent that is tight over the entire region.

2. MAIN RESULTS

Theorem 2.1 (Tight upper-bound). Consider any τ ∈ [0, κ(ε)].
For any test φ satisfying

JF (φ) ≥ sup
θ≥0
{θτ − 1

2 (e2θ − 1− 2θ)}, (8)

the following upper-bound on the generalized error exponent
of missed detection hold:

JM (φ) ≤ sup
θ≥0
{θ(κ(ε)−τ)− 1

2 (e−2θ−1+2θ)(1+κ(ε))}. (9)

The achievability and new hardness results are shown in
Fig. 1. The upper-bound matches the lower-bound over the
entire region , and thus the coincidence-based test is optimal
with respect to generalized error exponent.
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Fig. 1. Achievable region when ε = 0.35 given by the lower-
bound in Theorem 1.1 and upper-bounds in Theorem 2.1. The
upper-bound matches the lower-bound completely.

3. PROOF

The main idea of our proof is the following: Consider any
J1 > 0. Suppose there is a test φ such that JF (φ) ≥ J1.
We would like to prove that JM (φ) ≤ J2. Consider any δ >
0. We construct a sequence of events {An} that satisfies the
following:

lim
n→∞

−m
n2

log(Pπ(An)) ≤ J1 − δ; (10)

For any zn1 satisfying {Zn
1 = zn1} ⊆ An, we have:

sup
µ∈Πm

µn

πn
(zn1 ) ≥ exp{−n

2

m
(J2 − J1 + δ)}. (11)

Since JF (φ) ≥ J1, we conclude from (10) that Pπ(φ =
0|An) = 1 − o(1). Then the upper-bound on generalized
error exponent can be obtained from (11)

PM (φn) ≥ Pπ(An)Pπ(φ = 0|An) exp{−n
2

m
(J2 − J1 + δ)}

Proof. We only prove for the case where ε ≥ 0.5. The proof
for the case where ε < 0.5 is essentially the same but more
tedious. Since the case where τ = 0 has been proved in Theo-
rem 1.2, we only consider τ > 0. For simplicity of exposition,



denote

f1(τ, ε) = sup
θ≥0
{θτ − 1

2 (e2θ − 1− 2θ)},

f2(τ, ε) = sup
θ≥0
{θ(κ(ε)−τ)− 1

2 (e−2θ− 1 + 2θ)(1 + κ(ε))}.

Define the event

An = {Kn ≤ n− (1 + τ − δ)n
2

m
}.

As a consequence of Theorem 1.1, we obtain
Lemma 3.1.

lim
n→∞

−m
n2

logPπ(An) = f1(τ − δ, ε).

Let Km denote the collection of all subsets of [m] whose
cardinality is bm(1 − ε)c. For each U ∈ Km, define the
distribution

µU,j =

{ 1
bm(1−ε)c , j ∈ U ;

0, j ∈ [m] \ U . (12)

Consider the mixture µ̄n = 1
|Km|

∑
U∈Km

µnU . The following
lower-bound on the average likelihood ratio µ̄n/πn holds:

Lemma 3.2. For any sequence zn1 = {z1, . . . , zn} such that
{Zn

1 = zn1} ⊆ An,

µ̄n

πn
(zn1 )≥exp{−1

2

n2

m
[
ε

1−ε
+log(1−ε)(1+τ−δ)]+O(

n3

m2
)}.

Consider any test φ such that JF (φ) ≥ f1(τ, ε). Compar-
ing this with Lemma 3.1, we conclude that

Pπ{φn = 0|An} = 1− o(1).

We then have

PM (φn)

≥ sup
µ∈Πm

Pµ{φn = 0|An}Pπ(An)

≥ Pµ̄{φn = 0|An}Pπ(An)

≥ Pπ{φn = 0|An}Pπ(An)

× exp{−1
2

n2

m
[
ε

1−ε
+log(1−ε)(1 + τ − δ)]+O(

n3

m2
)}.

Consequently,

JM (φ)

≤ 1
2

ε

1− ε
+ 1

2 log(1− ε)(1 + τ − δ) + f1(τ − δ, ε)

= 1
2 [κ(ε) + log(1 + κ(ε))(1 + τ − δ)]
+ 1

2 [(τ − δ) log(1 + τ − δ)− τ + δ + log(1 + τ − δ)]
= f2(τ, ε) + h(δ). (13)

where

h(δ)= 1
2 [−δlog(1+κ(ε))+(1+τ)log(1− δ

1+τ
)−δlog(1+τ−δ)+δ].

Note that limδ→∞ h(δ) = 0. Since the inequality (13) holds
for any δ > 0, we conclude that JM (φ) ≤ f2(τ, ε). ut

Proof of Lemma 3.2. Let S := {j : j appears in zn1}. Let
s = |S|. Since {Zn

1 = zn1} ⊆ An, and 2(s−H1) +H1 ≤ n,
we obtain

s ≤ n− 1
2 (1 + τ − δ). (14)

The likelihood ratio µnU/π
n is given by

µnU
πn

(zn1 ) = (
m

bm(1− ε)c
)nIS⊆U .

Consequently,
µ̄n

πn
(zn1 ) = (

m

bm(1− ε)c
)n(

1

|Km|
∑
U∈Km

IS⊆U ), (15)

where
1

|Km|
∑
U∈Km

IS⊆U =

(
m− s

bm(1− ε)c − s

)
/

(
m

bm(1− ε)c

)
.

Stirling’s formula leads the following asymptotic approxima-
tion of right hand side:(

m−s
bm(1−ε)c−s

)
/

(
m

bm(1−ε)c

)
=(1−ε)sexp{−1

2

s2

m

ε

1−ε
+O(

s3

m2
)}.

Substituting this and (14) into (15), we obtain the claim of the
lemma. ut

4. CONCLUSION

The hardness result presented in this paper gives a tight
upper-bound on the achievable generalized error exponents
for goodness of fit test. The performance of the coincidence-
based test achieves this upper-bound, and is optimal in terms
of generalized error exponents. Future research directions
include:

(i) There are other tests, such as the weighted coincidence-
based test introduced in [1] that achieve the same
generalized error exponent. To compare these tests,
one needs to look at finer criteria, such as sharp large
deviation analysis [3].

(ii) For goodness of fit problem with large number of sam-
ples (m=O(n)), the converse result established in [4]
is an upper-bound on the (classical) error exponent of
missed detection. It is possible that the technique used
in this paper is also applicable to that case to give a
full converse result, i.e., upper-bounds on both error
exponent of missed detection and false alarm.
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