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Abstract—Communication over inductively-coupled links is
becoming prevalent in service delivery for medical, financial,
and physical security applications and so there is a growing
need to prevent eavesdropping. This paper presents circuit-
theoretic and communication-theoretic models of inductively-
coupled communication systems. Due to coupling, the presence
of an eavesdropper detunes the transfer function between the
legitimate users. It is shown this detuning can be detected to
reveal the presence of the eavesdropper. Further, if capacity-
approaching codes are employed, neither the eavesdropper nor
the legitimate receiver are able to reconstruct the transmit-
ted message with low error probability, effectively destroying
the message. Building on this insight, a coding-based secure
communication protocol for inductively-coupled communication,
inspired by quantum key distribution, is developed. The notion of
security is defined operationally in terms of probabilities rather
than through traditional notions of equivocation.

I. INTRODUCTION

Provisioning information and energy over inductively-
coupled links is becoming common in many engineering sys-
tems including medical/scientific implants [1], RFID systems
[2], [3], and near-field communications systems for commerce
[4], though it should be noted that inductive telegraphy was a
popular means of communicating with moving trains a century
ago [5, Chapter VII]. As such, there has been recent interest
in information-theoretic characterization of the ultimate limits
in simultaneously transmitting energy and information in the
presence of noise [6], [7] as well as in the presence of timing
errors [8], [9].

Separately, there has been interest in understanding the pri-
vacy and security aspects of inductively-coupled systems. With
the emergence of RFID in customer-facing service delivery
rather than simply back-office logistical operations [10], there
is a growing business need for securing such communications.
This is particularly important when transmitted information
involves medical data, financial transactions, or physical access
control signals. One particular kind of privacy attack is eaves-
dropping, where a third party antenna is used to couple into
the communication channel and capture some information; the
literature in this area (including a recount of effective attacks
in practice) is well-summarized in [11]; one recently proposed
approach to protect against eavesdroppers is active jamming
[12].

Contrary to traditional studies of wireless communication
that use far-field models of electromagnetics, inductive cou-
pling is a near-field effect, i.e. the distance between the
participating antennas is comparable to (or smaller than) the

transmission wavelength. As antennas are brought to near-
field, the nature of interaction changes fundamentally. Rather
than the transmitting antenna remotely oscillating electrons in
the receiving antenna, there is magnetic flux that induces a
current from one antenna to the other through the air. Hence,
unlike traditional models of wireless channels [13] where the
channel between the legitimate parties is independent of the
channel used by the eavesdropper, all parties are mutually
coupled.

Security for inductively-coupled communication has pre-
viously been connected [14], [15] to the wiretap channel
[16], a canonical problem in information-theoretic security
[17]. However [14], [15] do not use a physical model for an
inductively-coupled link. Ytrehus points out that for induc-
tive coupling, “an eavesdropper needs to insert his/her own
additional antenna into the system, and this may detune the
overall system and make it difficult or impossible to carry out
the legitimate conversation” [3].

What is detuning? Inductively-coupled links are tuned so
that the signal is transmitted around the resonant frequency in
the transfer function between the two terminals. The presence
of an eavesdropper in the system could change the transfer
functions, including shifting the resonant frequency, leading to
detuning. The detuning effect resembles the effect of measure-
ment in quantum mechanical systems in that it fundamentally
perturbs the system; here it modifies the spectral response of
the transmitted signal rather than causing waveform collapse
as in quantum systems.

Building on this observation, this paper proposes a strategy
to detect the presence of an eavesdropper based on spectral
change. Not only can the presence of an eavesdropper be
detected in quantum communication, but the desired infor-
mation content of the signal is also destroyed. Can analogous
information destruction be attained in our classical setting?
Indeed, by using capacity-approaching codes to essentially
make transmitted signals fragile, we show detuning can lead
to high error probability1 in the reconstructed signal. Taking a
cue from quantum key distribution [19], this largely conceptual
paper explains how one can exploit the detuning effect for

1Unlike traditional results in information-theoretic security [17], our notion
of secrecy is defined directly in an operational way without appealing to
the notion of equivocation. Shannon’s notion of perfect secrecy requires the
equivocation to be zero [18]; weak secrecy requires the equivocation rate to
go to zero; and strong secrecy requires the (unnormalized) equivocation to go
to zero. Here, the notion of secrecy is defined directly in terms of probability
of unauthorized release.



secure communication using coding.
An important caveat about our assumed system model

should be stated. We assume that the transmitter and receiver
both know the main statistical parameters of the channel
(transfer function and noise power) in the absence of the
eavesdropper. These are determined primarily by

• physical geometry of the antennas (their relative position-
ing and the relative angles of their axes); and

• the presence of other conducting materials in the environ-
ment that are also inductively-coupled into the system.

In practical systems, obtaining knowledge of these properties
precisely may be difficult. Indeed there may be several un-
known conducting objects proximate to the communication
system, including:

• Bystanders that have no particular goal, but are just
nearby so as to have mutual inductance with the system.
As a typical example [20]: “clusters of RFID tags in close
proximity to each other, for example, exhibit significant
detuning effects caused by their mutual inductances.”

• Scavengers that are trying to harvest as much energy as
possible from the legitimate transmission, treating it as
ambient energy [21].

• Jammers that are trying to have a deleterious impact on
transmission between the two legitimate terminals.

Here we ignore these possibilities to cleanly examine the
potential of securing communication over inductively-coupled
channels.

The remainder of the paper is organized as follows. First the
near-field electromagnetic problem is converted into a circuit
problem using models of mutual inductance. This allows
the use of circuit theory to derive transfer functions for the
inductively-coupled system, when there are just the legitimate
users and when there is also an eavesdropper present. A
detuning effect caused by the eavesdropper is exemplified in a
particular linear geometry. Assuming the presence of additive
white Gaussian thermal noise, the optimal waterfilling power
allocation in the absence of the eavesdropper is derived. With
the waterfilling allocation, detecting the presence of the eaves-
dropper is treated as a binary spectrum sensing hypothesis
testing problem: probabilities of error and unauthorized release
are discussed. Next, a key distribution scheme that would allow
nearly secure communication is delineated. The paper closes
with a discussion of future directions.

II. CIRCUIT MODEL

Although inductive coupling is very much an electromag-
netic field phenomenon, it behooves us to study it in terms
of an equivalent circuit model [22, Ch. 1] by using differ-
ential equation relations for mutual inductance derived from
Faraday’s Law [23, Ch. 8].

A. Transfer Functions with Eavesdropper

Consider the communication system depicted in Fig. 1. The
legitimate transfer function V2(jω)/I1(jω) is given by

Fig. 1. A circuit model of the communication system with transmitter
1, legitimate receiver 2, and eavesdropper 3. The mutual inductance matrix
among the three inductors is also indicated.

Fig. 2. A circuit model of the communication system with transmitter 1 and
legitimate receiver 2.

V2(jω)
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=
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We relegate the derivation to Appendix A.
Analogously, the transfer function of the eavesdropper is

V3(jω)

I1(jω)
=

jωM13 +
(jω)2M13M23

ZL+jωL2+R2

1 + R3

ZK
+ jωL3

ZK
− (jωM23)2

(ZL+jωL2+R2)ZK

. (2)

B. Transfer Function without Eavesdropper

What happens when the eavesdropper is not coupled into
the system, i.e. M13 = M23 = 0? Then the transfer function
is:

V2(jω)

I1(jω)
=

jωM12

1 + jωL2+R2

ZL

(3)

This can alternatively be obtained directly from the simplified
circuit, Fig. 2.

So now we have current-to-voltage transfer functions for the
legitimate transmission in the absence and in the presence of
an eavesdropper.

C. Detuning

One might wonder how the eavesdropper affects the le-
gitimate transfer function and in particular how the resonant
frequency is detuned. Moreover, one might wonder what the
eavesdropper’s transfer function is when causing detuning. To
indicate the general phenomenon, here we provide a series
of examples in a particular geometry. Geometry is the spatial
configuration of the transmitter, receiver and eavesdropper in
terms of the relative placement of coils and the angles of their
axes.
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Fig. 3. Linear geometry of an inductively-coupled communication system
with an eavesdropper. The distance between the several terminals are dRE,
dTR, and dTE.

Consider the linear coil geometry depicted in Fig. 3; al-
though the eavesdropper is drawn further from the transmitter
than the legitimate receiver, it can also be between the two
legitimate terminals. Assuming equal number of coil turns
and identical magnetic properties, by Stokes’ theorem [2], the
mutual inductances among the terminals are approximately
governed by distances dTR, dTE, and dRE. In particular, we
use the approximations:

Mij ≈ min

(√
LiLj ,

√
LiLj

dij

)
. (4)

Exact mutual inductance expressions for this geometry and
other more complicated geometries are rather complicated and
their derivation is still in fact an active area of research; see
[24] and references thereto. Note that the mutual inductance
matrix

L =

 L1 M12 M13

M12 L2 M23

M13 M23 L3

 (5)

must be symmetric and positive semidefinite due to conserva-
tion of energy.

Fig. 4 shows the transfer functions of the legitimate receiver
and of the eavesdropper as the eavesdropper is moved from
in-between the legitimate terminals in the first panel to outside
at farther and farther distances in the remaining panels. The
legitimate transfer function without the eavesdropper is shown
for comparison.

The detuning effect is readily apparent in these plots. In
particular, when the eavesdropper is far from the legitimate
terminals, the legitimate transfer function is not detuned very
much and the eavesdropper has a much weaker channel
transfer function. When the eavesdropper is in between or
close to the legitimate terminals, the detuning effect is rather
pronounced. Moreover, the eavesdropper’s transfer function
may be greater than the legitimate receiver’s transfer function
for some subset of frequencies.

Fig. 4. Detuning with an eavesdropper coupled to the system under the linear
geometry of Fig. 3. The blue line is |V2(f)/I1(f)| for the communication
system when the eavesdropper is absent and the black line is when the
eavesdropper is present. The resonant frequency (without the eavesdropper)
is denoted by the red star. The red line indicates the eavesdropper’s transfer
function |V3(f)/I1(f)|. The fixed circuit parameters are the self inductances
L1 = 0.1 mH, L2 = 0.1 mH, and L3 = 0.1 mH; the resistances R1 = 100
Ω, R2 = 100 Ω, and R3 = 100 Ω; the load resistances RL = 100 kΩ,
and RK = 100 kΩ; and load capacitances C2 = 10 pF, and C3 = 10 pF.
The mutual inductances among the parties are determined from the geometry
(4). The distance between the legitimate terminals is fixed at dTR = 10 m.
The distance between the transmitter and eavesdropper (and thereby between
the legitimate receiver and eavesdropper) is varied in the several subplots:
dTE = d13.

III. COMMUNICATION MODEL

A. System model

Having developed the noiseless transfer functions in the
presence and absence of an eavesdropper, now we enhance the
model to include thermal noise, which is treated as additive
white Gaussian noise (AWGN) at the V2 terminal (and at
the V3 terminal). As has been previously established [7],
such an inductively-coupled system is an AWGN channel
with frequency-selective fading. As in [7], we assume that
the transmitter and the legitimate receiver know the transfer
function exactly in the absence of the eavesdropper, i.e. they
know the terms L1, L2,M12, C2, R1, R2, RL and the thermal
noise intensity. The terms L3,M13,M23, R3, RK , C3 are not
known at either of the legitimate terminals.

B. Waterfilling

For a time-invariant frequency-selective channel with input
xk, output yk, AWGN wk with one-sided power spectral
density N0, and channel impulse response hk, the input-output



relation is yk = (h?x)(k)+wk, where (h?x)(k) denotes the
convolution of sequences hk and xk evaluated at time instant
k. The channel impulse response is derived from the circuit
parameters which are known. We assume there is an average
transmit power constraint P .

The optimal input distribution of {xk} required to achieve
capacity is determined in part by the channel frequency
response H(f). For a power distribution Q(f) that meets
the power constraint

∫
Q(f)df = P , the capacity of the

channel (in the usual sense of maximum information rate with
arbitrarily small error probability) is:

C =

∫
log

(
1 +
|H(f)|2Q(f)

N0

)
df . (6)

The best Q(f), denoted as P (f), can be found using the
convexity of the curve log(1 + x).

The optimal power distribution follows waterfilling over
frequency:

P (f) =

{
1
γ0
− 1

γ(f) , γ(f) > γ0

0, γ(f) < γ0,
(7)

where γ(f) = |H(f)|2/N0 and γ0 is a constant ensuring that
the power constraint is met. This expression, originally derived
by Shannon in the context of channels with colored noise [25],
implies that greater power should be allocated to frequencies
with higher SNR.

For the inductively-coupled circuit,

|H(f)|2 =
(2πf)2M2

12

(2πf)4K4 + (2πf)2K2 +K1
, (8)

where K4 = L2
2C

2
2 , K2 = C2

2R
2
2 + L2

2/R
2
L − 2L2C2, and

K1 = 1 − 2R2/RL + R2
2/R

2
L. This gives an expression for

γ(f). Let 	(f) = {γ(f) > γ0} be the active frequencies.

C. Detuning Mismatch

If the channel frequency response differs from the frequency
response for which the spectral power allocation of the signal-
ing scheme is optimized, then the mismatch may cause error
rates to no longer be negligible.2 This is particularly true for
codes that operate close to the capacity of the channel in the
absence of the eavesdropper, due to the strong converse part of
the noisy channel coding theorem [26]. Codes operating near
channel capacity are fragile.

IV. A SECURE COMMUNICATION PROTOCOL

The previous two sections defined the circuit model and
communication system model, while emphasizing the detun-
ing effect. The waterfilling allocation for optimal legitimate
communication was also discussed. Now we develop a way to
secure inductively-coupled communication.

2There are various ways to approximate or bound this error rate, e.g. by
using the loss in mutual information. Although a closed form expression for
the loss in mutual information is omitted, it is clear how one can be derived
from (1) and (8).

A. Transmitter

By varying its current, the legitimate transmitter produces a
codeword from a Gaussian codebook that is described by its
spectrum X(f) optimized for H(f) given in (8).

Due to system coupling, the transmitter is able measure the
channel transfer function. It performs a binary hypothesis test
to determine the presence or absence of the eavesdropper. This
test is detailed when describing the legitimate receiver.

B. Legitimate Receiver

When the legitimate receiver senses the transmitted signal,
it performs two operations simultaneously. First, the spectral
response of the channel is measured and second, the signal is
decoded using the decoder for the Gaussian codebook.

1) Spectrum Sensing: The first operation performed by the
legitimate receiver is a binary hypothesis test on whether the
eavesdropper is absent or present. The (waterfilling) spectral
response X(f) of the transmitted signal is known and identical
in the two situations. The difference in the two settings is
the channel frequency response. Let it be denoted H(f) with
eavesdropper absent and let it be denoted G(f) with eaves-
dropper present (this is unknown to the receiver). This means
the receiver is trying to differentiate between hypotheses A0

and A1:

A0 : Y (f) = H(f)X(f) +W (f) (9)
A1 : Y (f) = G(f)X(f) +W (f), (10)

where W (f) is AWGN. Letting Â0 and Â1 be the receiver
decisions, four outcomes of detection are possible:

• (A0, Â0): Eavesdropper absent, declared absent: secure
communication

• (A0, Â1): Eavesdropper absent, declared present: unnec-
essary caution

• (A1, Â0): Eavesdropper present, declared absent: un-
known unauthorized release

• (A1, Â1): Eavesdropper present, declared present: known
unauthorized release

Since G(f) is unknown, a periodogram energy detector [27]
can be used.

Due to coupling (with its attendant access to electrical cur-
rents), the transmitter also can measure the channel response
and also perform an equivalent binary hypothesis test. We
are interested in the maximum error probabilities between
the transmitter and receiver. We use the Neyman-Pearson
formulation to optimally tradeoff between unnecessary caution
and unknown unauthorized release of data.

2) Decoding: The receiver uses standard channel decoding.
If the eavesdropper is absent and the code has rate below
capacity, reliable communication is achieved by the direct part
of the noisy channel coding theorem.

As observed in Fig. 4, when the eavesdropper is present
the channel is detuned and the signal-to-noise ratio over the
waterfilling frequencies 	(f) may be worse than designed for.
As a consequence, by the strong converse [26], error rates will
be significant.



C. Eavesdropper

The eavesdropper has two goals: evading detection and
reliably decoding the transmitted message. In operation, it just
does one thing: standard channel decoding using the legitimate
Gaussian codebook.

As observed in Fig. 4, the transfer function of the eavesdrop-
per over the waterfilling frequencies 	(f) may be less than
the code was designed for. When this is the case, by the strong
converse [26], error rates will be significant. If this is not the
case, the eavesdropper would be able to decode reliably.

D. Use of Key Distribution Protocol

In what we have described so far for the (A1, Â1) case, the
legitimate users can detect an eavesdropper only after they
have communicated their message. It would be much better,
however, to guarantee security ex ante rather than ex post. To
do so, we enhance the prior discussion by borrowing the idea
of quantum key distribution from quantum cryptography [19].

In a key distribution protocol, the legitimate users do
not initially use the inductively-coupled channel to transmit
message themselves, but only to transmit a random sequence
of symbols: a key. If the key is received when the eavesdropper
is declared absent, then the legitimate users can safely use this
key to encode messages in a one-time pad fashion [18]. On
the other hand, if the key is received when the eavesdropper is
declared present, then the legitimate users can simply disregard
the key and try again with a new key. Since the key was
random, no loss of security was incurred.

If the entropy of a received key is larger than the entropy
of a message to be sent, then by Shannon’s classical argument
[18], perfect secrecy can be guaranteed for a second stage
transmission.

E. Analysis of Errors and Unauthorized Release

The probabilities of receiving a message without error and
without unauthorized release can be analyzed formally, but in
this short and conceptual paper, we describe things informally.

There are several deleterious events:
E1: In the (A0, Â0) setting, the key codeword is received in

error in the first stage.
E2: In the (A0, Â0) setting, the message codeword is received

in error in the second stage.
E3: The (A1, Â0) setting arises in key transmission and the

eavesdropper correctly decodes the transmitted key.
The events E1 and E2 relate to erroneous reception. Their

probabilities can be controlled using standard arguments from
the direct part of the channel coding theorem [25].

The event E3 relates to unauthorized release. It has two
parts: missed detection of the eavesdropper by the legitimate
parties and correct decoding by the eavesdropper. The first part
can be controlled using the Neyman-Pearson version of energy
detection [27] and depends on how H(f) differs from G(f)
over 	(f). The second part can be controlled using the strong
converse of the channel coding theorem [26] and depends on
how H(f) compares to |V3(f)/I1(f)| over 	(f).

Note that the use of the strong converse depends on the
code being close to the capacity of the channel without the
eavesdropper. If the code has a large gap to capacity, then
correct decoding by the eavesdropper may not be controlled
appropriately.

Further note that even when the strong converse implies
large probability of error at the eavesdropper, the eavesdropper
may still learn something to reduce key entropy. For one-time
pad results to hold, the message entropy must remain below
the key entropy [18]. Detailed study of the worst-case message
entropy limit remains for future work.

F. Summary

To summarize the previous two possibilities, while also
introducing a new one, there is a trichotomy such that either:

1) the eavesdropper is close enough that legitimate users
feel its perturbation, or

2) the eavesdropper is far enough that legitimate users do
not feel its perturbation, but that its received signal is so
weak that the traditional wiretap model applies [16], or

3) the eavesdropper’s perturbation is undetectable and it
is receiving a weak signal over |V3(f)/I1(f)|, but
somehow it has reduced its thermal noise W (f) so
that the signal-to-noise ratio (SNR) is sufficient for
unauthorized release. Reducing thermal noise requires
cryogenic cooling, but then this cold spot is detectable.

Securing against this last cryogenic possibility requires heat
detection equipment in addition to communication equipment.
One might wonder about frequency-selective cooling with an
array of eavesdropper coils, where the SNR in a relevant
frequency band is increased but by decreasing the SNR in
another band, the overall temperature is not changed. There is
a limit to this, since the several coils are necessarily coupled
to each other and therefore cause crosstalk.

We should note that for the first (and third) possibility, any
proximate conducting object causes cessation of legitimate
communication. This is true whether the object is actually an
eavesdropper or just a bystander with no ill intent; in secure
communication, protection against bystanders is necessary.
This is equivalent to quantum cryptography where malicious
perturbations have the same effect as benign ones [19].

The cessation of substantive communication in our scheme
suggests a way to cause a denial-of-service attack. Indeed there
is no way around this, either here or in quantum cryptography
[19]. One method to mitigate jamming suggested in the
quantum key distribution literature is the use of quantum key
distribution networks, with the hope that not all network paths
have been compromised. We could also construct a network.

V. CONCLUSION

We have suggested a secure classical communication proto-
col akin to quantum cryptography, by exploiting the physical
properties of inductive coupling. In practical systems, there
may be other third parties that are coupled into the system
such as bystanders, energy scavengers, and jammers, that we



have ignored at present but should be considered in future
work.

Although inductively-coupled communication systems to-
day may use uncoded transmission or feedback-based proto-
cols, the use of capacity-approaching codes is central to our
development through the strong converse of the channel coding
theorem. The use of these codes makes transmitted information
just fragile enough that the presence of an eavesdropper
destroys information.

Moving forward, it would be of interest to cartographically
map regions of secure communication by using the geomet-
ric/magnetic properties of mutual inductance.
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APPENDIX A
TRANSFER FUNCTION

For the legitimate receiver, by Kirchhoff’s Voltage Law
(KVL), we get:

V2 = jωM12I1 − jωL2I2 + jωM23I3 − I2R2. (11)

By Ohm’s Law, we get:

I2 = V2

(
1
RL

+ jωC2

)
= V2/ZL, (12)

where ZL = 1/
(

1
RL

+ jωC2

)
is the load impedance of the

legitimate receiver.
For the eavesdropper, by KVL, we get:

V3 = jωM13I1 + jωM23I2 − jωL3I3 − I3R3. (13)

By Ohm’s Law, we get:

I3 = V3

(
1
RK

+ jωC3

)
= V3/ZK , (14)

where ZK = 1/
(

1
RK

+ jωC3

)
is the eavesdropper’s load

impedance.
From (13) and (14),

V3 = jωM13I1 + jωM23I2 − (jωL3 +R3) I3 (15)

= jωM13I1 + jωM23I2 − (jωL3 +R3)
V3
ZK

and so

V3

[
1 +

jωL3 +R3

ZK

]
= jωM13I1 + jωM23I2. (16)

Now, using (11) and (12),

V2 = jωM12I1 − (jωL2 +R2)
V2
ZL

+ jωM23I3. (17)

Rearranging (17),

V2

[
1 +

R2

ZL
+
jωL2

ZL

]
= jωM12I1 +

jωM23V3
ZK

= jωM12I1 +

jωM23

ZK

[
jωM13I1 +

jωM23V2

ZL

]
1 + jωL3+R3

ZK

= jωM12I1 +
jωM23

ZK + jωL3 +R3

[
jωM13I1 +

jωM23V2

ZL

]
.

Thus,

V2

[
1 +

R2

ZL
+
jωL2

ZL
− (jωM23)

2

(ZK + jωL3 +R3)ZL

]
=

(
jωM12 +

(jω)2M13M23

ZK + jωL3 +R3

)
I1,

which yields the transfer function

V2(jω)

I1(jω)
=

jωM12 +
(jω)2M12M23

ZK+jωL3+R3

1 + R2

ZL
+ jωL2

ZL
− (jωM23)2

(ZK+jωL3+R3)ZL

. (18)
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