
Spectrum White Space Trade in Cognitive Radio

Networks

Gaurav S. Kasbekar and Saswati Sarkar

Abstract—We study price competition among primaries in a
Cognitive Radio Network (CRN) with multiple primaries and
secondaries located in a large region. In every slot, each primary
has unused bandwidth with some probability, which may be
different for different primaries. Also, there may be a random
number of secondaries. A primary can lease out its unused
bandwidth to a secondary in exchange for a fee. Each primary
tries to attract secondaries by setting a lower price for its
bandwidth than the other primaries. Radio spectrum has the
distinctive feature that transmissions at neighboring locations
on the same channel interfere with each other, whereas the
same channel can be used at far-off locations without mutual
interference. So in the above price competition scenario, each
primary must jointly select a set of mutually non-interfering
locations within the region (which corresponds to an independent
set in the conflict graph representing the region) at which to
offer bandwidth and the price at each location. In this paper,
we analyze this price competition scenario as a game and seek
a Nash Equilibrium (NE). For the game at a single location, we
explicitly compute a NE and prove its uniqueness. Also, for the
game at multiple locations, we identify a class of conflict graphs,
which we refer to as mean valid graphs, such that the conflict
graphs of a large number of topologies that commonly arise in
practice are mean valid. We explicitly compute a NE in mean
valid graphs and show that it is unique in the class of NE with
symmetric independent set selection strategies of the primaries.

I. INTRODUCTION

The emerging cognitive radio technology [1] promises effi-

cient usage of the available radio spectrum. In cognitive radio

networks (CRNs), there are two types of spectrum users: (i)

primary users who lease portions (channels or bands) of the

spectrum directly from the regulator, and (ii) secondary users

who lease channels from primaries and can use a channel when

it is not in use by the primary. Time is slotted, and in every slot,

each primary has unused bandwidth with some probability,

which it would like to sell to secondaries. Now, secondaries

buy bandwidth from the primaries that offer it at a low price,

which results in price competition among the primaries. If a

primary quotes a low price, it will attract buyers, but will

earn lower profit per sale. This is a common feature of an

oligopoly [4], in which multiple firms sell a common good to

a pool of buyers. Price competition in an oligopoly is naturally

modeled using game theory [2], and has been extensively

studied in economics using, for example, the classic Bertrand

game [4] and its variants.

However, a CRN has several distinguishing features, which

makes the price competition very different from oligopolies

encountered in economics. First, in every slot, each primary
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may or may not have unused bandwidth available. Second,

the number of secondaries will be random and not known

apriori as each secondary may be a local spectrum provider or

even a user shopping for spectrum in a futuristic scenario, e.g.,

users at airports, hotspots, etc. Thus, each primary who has

unused bandwidth is uncertain about the number of primaries

from whom it will face competition as well as the demand for

bandwidth; it may only have access to imperfect information

such as statistical distributions about either. A low price

will result in unnecessarily low revenues in the event that

very few other primaries have unused bandwidth or several

secondaries are shopping for bandwidth, because even with

a higher price the primary’s bandwidth would have been

bought, and vice versa. Third, spectrum is a commodity that

allows spatial reuse: the same band can be simultaneously

used at far-off locations without interference; on the other

hand, simultaneous transmissions at neighboring locations on

the same band interfere with each other. Thus, spatial reuse

provides an opportunity to primaries to increase their profit

by selling the same band to secondaries at different locations,

which they can utilize subject to satisfying the interference

constraints. So when multiple primaries own bandwidth in a

large region, each needs to decide on a set of non-interfering

locations in the region, which corresponds to an independent

set in the conflict graph representing the region, at which to

offer bandwidth. This is another source of strategic interaction

among the primaries– each primary would like to select a

maximum-sized independent set to offer bandwidth at; but if

a lot of primaries offer bandwidth at the same locations, there

is intense competition at those locations. So a primary would

have benefited by instead offering bandwidth at a smaller

independent set and charging high prices at those locations.

Pricing related issues have been extensively studied

in the context of wired networks and the Internet;

see [9] for an overview. Price competition among spec-

trum providers in wireless networks has been studied

in [10], [11], [12], [13], [15], [16], [17]. Specifically, price

competition among multiple primaries in CRNs is analyzed

in [15], [16], [17]. However, neither uncertain bandwidth

availability, nor spatial reuse is modeled in any of the above

papers. Also, most of these papers do not explicitly find

a Nash Equilibrium (NE) (exceptions are [11], [15], [17]).

Our model incorporates both uncertain bandwidth availability

and spatial reuse, which makes the problem challenging;

despite this, we are able to explicitly compute a NE. In [18],

auction mechanisms are proposed for a CRN, using which

a primary can choose an allocation of its channel to multiple

secondaries based on their bids and taking into account spatial

reuse of spectrum. However, the mechanisms in [18] are for
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the case of a single primary, unlike in our model, which

applies to multiple primaries. Zhou et. al. [19] have designed

double auction based spectrum trades in which an auctioneer

chooses an allocation taking into account spatial reuse and

bids. However, in the price competition model we consider,

each primary independently sells bandwidth, and hence a

central entity such as an auctioneer is not required. In the

economics literature, the Bertrand game [4] and several of its

variants [5], [6], [7], [8], [20] have been used to study price

competition. Osborne et al [5] consider price competition in a

duopoly, when the capacity of each firm is constrained. Chawla

et al. [20] consider price competition in networks where each

seller owns a capacity-constrained link, and decides the price

for using it; the consumers choose paths they would use in

the networks based on the prices declared and pay the sellers

accordingly. The capacities in both cases are deterministic,

whereas the availability of bandwidth is random in our model.

The closest to our work are [7], [8], which analyze price

competition where each seller may be inactive with some

probability, as also our prior work [22], [26], [27] in which we

analyzed price competition in a CRN. The above body of work

however suffers from the limitation that they either consider

(i) only the symmetric model where the bandwidth availability

probability of each seller is the same [7], [8], [22], [27] or

(ii) primaries and secondaries located at a single location

[7], [8], [26] (i.e., no spatial reuse) 1. In addition, the results in

[7], [8] are restricted to the case of one buyer, and [26] assumes

a fixed, and apriori known number of secondaries, whereas a

CRN is likely to have an unknown and random number of

secondaries, which we consider in this paper. Characterizing

the Nash Equilibrium (NE) in either asymmetric games (i.e.,

when different primaries have different bandwidth availability

probabilities in our context) or in games over graphs (i.e.,

in presence of spatial reuse in our context) is usually quite

challenging, and the combination of the above often turns out

to be analytically untractable. This is the space where we seek

to contribute in this paper.

We consider price competition in a CRN with multiple

primaries and multiple secondaries, where each primary has

available bandwidth in a slot with a certain probability, which

may be different for different primaries. Also, the number of

secondaries may be random and unknown to the primaries,

with only their distribution being known. First, we analyze

the case of primaries and secondaries in a single location

(Section III). Since prices can take real values, the strategy

sets of players are continuous. In addition, the utilities of the

primaries are not continuous functions of their actions. Thus,

classical results, including those for concave and potential

games, do not establish the existence and uniqueness of NE

in the resulting game, and there is no standard algorithm for

finding a NE. Nevertheless, we are able to explicitly compute

a NE and show that it is unique in the class of all NE, even

allowing for player strategies that are arbitrary mixtures of

1In [22], the asymmetric case is considered only for a toy model with two
primaries and one secondary; [26] largely focuses on a single location game,
except for a limited analysis of spatial reuse in the setting of a linear conflict
graph.

continuous and discrete probability distributions (Section III).

We subsequently model the scenario where each primary

owns bandwidth across multiple locations using a conflict

graph in which there is an edge between each pair of mutually

interfering locations (Section II-A). Each primary must simul-

taneously select a set of mutually non-interfering locations

(independent set) at which to offer bandwidth and the prices

at those locations. We focus on a class of conflict graphs that

we refer to as mean valid graphs. As we show in Section IV-B,

it turns out that the conflict graphs of a large number of

topologies that arise in practice are mean valid. We show that

a mean valid graph has a unique NE in the class of NE with

symmetric independent set selection strategies of the primaries

(Section IV-C). Also, this NE has a simple form and the NE

strategies can be explicitly computed by solving a system of

equations that we provide. Finally, we prove that in the limit

as the numbers of primaries and secondaries go to infinity,

the NE structure exhibits interesting threshold behavior: in

particular, the efficiency of this NE, which is the ratio of the

aggregate revenue of all the primaries under the NE and the

maximum possible aggregate revenue, changes from 1 to 0
as the average bandwidth availability increases relative to the

average bandwidth demand at each location.

Due to space constraints, we relegate all proofs to our

technical report [23].

II. MODEL AND OBJECTIVE

A. Model

Suppose there are n ≥ 2 primaries, each of whom owns a

channel throughout a large region which is a geographically

well-separated or separately administered area, such as a state

or a country 2. The channels owned by the primaries are all

orthogonal to each other. Time is divided into slots of equal

duration. In every slot, each primary independently either uses

its channel throughout the region to satisfy its own subscriber

demand, or does not use it anywhere in the region. A typical

scenario where this happens is when primaries broadcast the

same signal over the entire region, e.g., if they are television

broadcasters. For i ∈ {1, . . . , n}, let qi ∈ (0, 1) be the

probability that primary i does not use its channel in a slot

(to satisfy its subscriber demand). Without loss of generality,

we assume that:

q1 ≥ q2 ≥ . . . ≥ qn. (1)

Now, the region contains smaller parts, which we refer to as

locations. For example, the large region may be a state, and

the locations may be towns within it.

Each secondary may be a local spectrum provider or even

a user seeking to lease spectrum bands to transmit data on

an on-demand basis at a location. In practice, the number

of secondaries seeking to buy bandwidth may be random

and unequal at different locations and also apriori unknown

to the primaries, due to user mobility, varying bandwidth

requirements of the secondaries, etc. Thus, the number of

secondaries seeking to buy bandwidth (henceforth referred to

2We assume that all the primaries own bandwidth in the same region.
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as the number of secondaries for simplicity) at a location

v is Kv, where Kv is a random variable with probability

mass function (p.m.f.) Pr(Kv = k) = γk. Also, the random

variables Kv at different nodes v may be correlated. The

primaries apriori know only the γks, but not the values of

Kv for any given location v. We will make some technical

assumptions on the p.m.f. {γk}: (i)
∑n−1

k=0 γk > 0 (i.e., the

total number of primaries exceeds the number of secondaries

with positive probability, but not necessarily probability 1) (ii)

if γ0 > 0, then γ1 > 0 (if the event that no secondary requires

bandwidth has positive probability, then the event that only 1
secondary requires bandwidth also has positive probability).

A large class of probability mass functions, including those

generated from the most common scenario, where each local

provider or user from a given pool requires bandwidth with

a positive probability independent of others, satisfy both the

above assumptions.

A primary who has unused bandwidth in a slot can lease

it out to secondaries at a subset of the locations, provided

this subset satisfies the spatial reuse constraints, which we

describe next. The overall region can be represented by an

undirected graph [3] G = (V,E), where V is the set of nodes

and E is the set of edges, called the conflict graph, in which

each node represents a location, and there is an edge between

two nodes iff transmissions at the corresponding locations

interfere with each other. Note that graphs have been widely

used to model ad hoc networks, wherein wireless devices

are modeled as nodes in an undirected graph, with mutually

interfering nodes being connected by an edge (e.g., see [24]).

However, the concept of spatial reuse in our paper is more

closely related to the corresponding notion in cellular net-

works, where cells are represented by nodes in an undirected

graph, with interfering cells corresponding to neighbors in the

graph [25]. Recall that an independent set [3] (I.S.) in a graph

is a set of nodes such that there is no edge between any pair of

nodes in the set. Now, a primary who is not using its channel

must offer it at a set of mutually non-interfering locations, or

equivalently, at an I.S. of nodes; otherwise secondaries3 will

not be able to successfully transmit simultaneously using the

bandwidth they purchase, owing to mutual interference.

A primary i who offers bandwidth at an I.S. I , must also

determine for each node v ∈ I , the access fee, pi,v , to be

charged to a secondary if the latter leases the bandwidth at

node v. A primary incurs a cost of c ≥ 0 per slot per node

for leasing out bandwidth. This cost may arise, for example, if

the secondary uses its infrastructure to access the Internet. We

assume that pi,v ≤ ν for each primary i and each node v, for

some constant ν > c. This upper bound ν may arise as follows.

(1) The spectrum regulator may impose this upper bound to

ensure that primaries do not excessively overprice bandwidth

even when competition is limited owing to bandwidth scarcity

or high demands from secondaries, or when the primaries

collude. (2) Alternatively, the valuation of each secondary for

1 unit of bandwidth may be ν, and no secondary will buy

3Note that secondaries usually purchase bandwidth for communication (and
not television broadcasts). Thus, two secondaries can not use the same band
simultaneously at interfering locations.

bandwidth at a price that exceeds its valuation. We assume

that the primaries know this upper limit ν.

Secondaries buy bandwidth from the primaries that offer

the lowest price. More precisely, in a given slot, let Zv be

the number of primaries who offer unused bandwidth at node

v. Then, since there are Kv secondaries at the node, the

bandwidth of the min(Zv,Kv) primaries that offer the lowest

prices is bought (ties are resolved at random) at the node.

If primary i has unused bandwidth, then the utility or payoff

of primary i is defined to be its net revenue 4. Also, we

consider an additive utility function, which is natural in the

context of monetary profits. So the utility of a primary i who

offers bandwidth at an I.S. I and sets a price of pi,v at node

v ∈ I is given by
∑

(pi,v − c), where the summation is over

the nodes v ∈ I at which primary i’s bandwidth is bought.

(The utility is 0 if bandwidth is not bought at any node).

Thus, each primary must jointly select an I.S. at which

to offer bandwidth, and the prices to set at the nodes in it.

Both the I.S. and price selection may be random. Thus, a

strategy, say ψi, of a primary i provides a probability mass

function (p.m.f.) for selection among the I.S., and the price

distribution it uses at each node (both selections contingent

on having unused bandwidth). Note that we allow a primary

to use different (and arbitrary) price distributions for different

nodes (and therefore allow, but do not require, the selection of

different prices at different nodes), and arbitrary p.m.f. (i.e.,

discrete distributions) for selection among the different I.S.

The vector (ψ1, . . . , ψn) of strategies of the primaries is called

a strategy profile [4]. Let ψ−i = (ψ1, . . . , ψi−1, ψi+1, . . . , ψn)
denote the vector of strategies of primaries other than i. Let

E{ui(ψi, ψ−i)} denote the expected utility of primary i when

it adopts strategy ψi and the other primaries adopt ψ−i.

B. Nash Equilibrium

We use the Nash Equilibrium solution concept, which has

been extensively used in game theory in general and wireless

network applications in particular to predict the outcome of a

game.

Definition 1 (Nash Equilibrium (NE)): A Nash equilibrium

(NE) is a strategy profile such that no player can improve its

expected utility by unilaterally deviating from its strategy [4].

Thus, (ψ∗
1 , . . . , ψ

∗
n) is a NE if for each primary i:

E{ui(ψ
∗
i , ψ

∗
−i)} ≥ E{ui(ψ̃i, ψ

∗
−i)}, ∀ ψ̃i (2)

Equation (2) says that when players other than i play ψ∗
−i,

ψ∗
i maximizes i’s expected utility; ψ∗

i is said to be its best

response [4] to ψ∗
−i.

Note that the existence of a NE is not apriori clear even

in the simplest possible setting of a single location, far less

the uniqueness and characterization of NE strategy profiles.

This is because the prices can take real values and hence the

strategy sets of players are not finite. In addition, the utilities of

the primaries are not continuous functions of their actions. For

example, consider the game in which there is a single location

4If instead, the utility were defined to be primary i’s net revenue, uncondi-
tional on whether it has unused bandwidth or not, then the expected utilities
of primary i in the game analysis would all be scaled by qi.
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v, n = 2 primaries and Kv = 1 secondary with probability 1.

If primary 1 has unused bandwidth, its expected utility is




p1,v − c if p1,v < p2,v
(p1,v − c)/2 if p1,v = p2,v
(1− q2)(p1,v − c) if p1,v > p2,v.

which is a discontinuous function of the prices. Thus, classical

results, including those for concave and potential games, do

not establish the existence of NE in the resulting game, and

there is no standard algorithm for finding a NE.

III. SINGLE LOCATION

In this section, we analyze price competition when all the

primaries and secondaries are present in a single location.

Let the (random) number of secondaries at this location be

denoted as K. Since there is only one location, there are no

spatial reuse constraints, and the strategy of a primary i is

a distribution function (d.f.) 5 ψi(.), which it uses to select

the price pi. For convenience, we define the pseudo-price of

primary i ∈ {1, . . . , n}, p′i, as the price it selects if it has

unused bandwidth and p′i = ν + 1 otherwise 6. Also, let φi(.)
be the d.f. of p′i. For c ≤ x ≤ ν, p′i ≤ x for a primary

i iff it has unused bandwidth and sets a price pi ≤ x. So

φi(x) = qiP (pi ≤ x) = qiψi(x). Thus, ψi(.) and φi(.)
differ only by a constant factor on [c, ν] and we use them

interchangeably wherever applicable.

A. Necessary Conditions for a NE

Consider a NE under which the d.f. of the price (respec-

tively, pseudo-price) of primary i is ψi(.) (respectively, φi(.)).
In Theorem 1 below, we show that the NE strategies must have

a particular structure. Before stating Theorem 1, we describe

some basic properties of the NE strategies.

Property 1: φ2(.), . . . , φn(.) are continuous on [c, ν]. φ1(.)
is continuous at every x ∈ [c, ν), has a jump 7 of size q1 − q2
at ν if q1 > q2 and is continuous at ν if q1 = q2.

Thus, there does not exist a pure strategy NE (one in which

every primary selects a single price with probability (w.p.) 1).

Now, let ui,max be the expected payoff that primary i gets

in the NE and Li be the lower endpoint of the support set 8

of ψi(.), i.e.:

Li = inf{x : ψi(x) > 0}. (3)

Also, let wi be the probability of the event that at least K
primaries among {1, . . . , n}\i have unused bandwidth. Let r
be the probability that K ≥ 1. Note that r = 1 − γ0, and wi

can be easily computed using the p.m.f {γk} and the fact that

each primary j independently has unused bandwidth w.p. qj .

Property 2: L1 = . . . Ln = p̃, where p̃ = c+ (ν−c)(1−w1)
r

.

Also, ui,max = (p̃− c)r, i = 1, . . . , n.

Thus, the lower endpoints of the support sets of the d.f.s

ψ1(.), . . . , ψn(.) of all the primaries are the same.

5Recall that the d.f. of a random variable X is the function f(x) = P (X ≤
x), x ∈ R, where R denotes the set of real numbers.

6The choice ν+1 is arbitrary. Any other choice greater than ν also works.
7A d.f. f(x) is said to have a jump (discontinuity) of size b > 0 at x = a

if f(a) − f(a−) = b, where f(a−) = limx↑a f(x).
8The support set of a d.f. is the smallest closed set such that its complement

has probability zero under the d.f.

Theorem 1: The following are necessary conditions for

strategies φ1(.), . . . , φn(.) to constitute a NE:

1) φ1(.), . . . , φn(.) satisfy Property 1 and Property 2.

2) There exist numbers Rj , j = 1, . . . , n + 1, and a function

{φ(x) : x ∈ [p̃, ν)} such that

p̃ = Rn+1 < Rn ≤ Rn−1 ≤ . . . ≤ R1 ≤ ν, (4)

φ1(x) = . . . = φj(x) = φ(x), p̃ ≤ x < Rj , j ∈ {1, . . . , n},
(5)

and φj(Rj) = qj , j = 1, . . . , n. (6)

Also, every point in [p̃, Rj) is a best response for primary j and

it plays every sub-interval in [p̃, Rj) with positive probability.

Finally, R1 = R2 = ν.

Theorem 1 says that all n primaries play prices in the range

[p̃, Rn), the d.f. φn(.) of primary n stops increasing at Rn, the

remaining primaries 1, . . . , n− 1 also play prices in the range

[Rn, Rn−1), the d.f. φn−1(.) of primary n−1 stops increasing

at Rn−1, and so on. Also, primary 1’s d.f. φ1(.) has a jump of

height q1 − q2 at ν if q1 > q2. Fig. 1 illustrates the structure.

Fig. 1. The figure shows the structure of a NE described in Theorem 1.
The horizontal axis shows prices in the range x ∈ [p̃, ν] and the vertical axis
shows the functions φ(.) and φ1(.), . . . , φn(.).

B. Explicit Computation, Uniqueness and Sufficiency

By Theorem 1, for each i ∈ {1, . . . , n}:

φi(x) =

{
φ(x), p̃ ≤ x < Ri

qi, x ≥ Ri
(7)

So the candidate NE strategies φ1(.), . . . , φn(.) are completely

determined once p̃, R1, . . . , Rn and the function φ(.) are

specified. Also, Property 2 provides the value of p̃, and

R1 = R2 = ν by Theorem 1. First, we will show that

there also exist unique R3, . . . , Rn and φ(.) satisfying (4),

(5), and (6) and will compute them. Then, we will show that

the resulting strategies given by (7) indeed constitute a NE

(sufficiency).

Let p′−i be the K’th smallest pseudo-price out of the

pseudo-prices, {p′l : l ∈ {1, . . . , n}, l 6= i}, of the primaries

other than i (with p′−i = 0 if K = 0 and p′−i = ν + 2 if

K > n − 1 ). Also, let F−i(x) denote the d.f. of p′−i. Since

there are K secondaries, if primary 1 has unused bandwidth
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and sets p1 = x ∈ [p̃, ν), its bandwidth is bought iff 9 p′−1 > x,

which happens w.p. 1−F−1(x). Note that primary 1’s payoff

is (x − c) if its bandwidth is bought and 0 otherwise. So,

letting E{ui(x, ψ−i)} denote the expected payoff of primary

i if it sets a price x and the other primaries use the strategy

profile ψ−i, we have:

E{u1(x, ψ−1)} = (x− c)(1−F−1(x)) = (p̃− c)r, x ∈ [p̃, ν)
(8)

where the second equality follows from the facts that each

x ∈ [p̃, ν) is a best response for primary 1 by Theorem 1, and

u1,max = (p̃− c)r by Property 2. By (8), we get:

F−1(x) =
x− c− (p̃− c)r

x− c
, x ∈ [p̃, ν). (9)

Next, we calculate Ri, i = 3, . . . , n and φ(.) using (9).

1) Computation of Ri, i = 3, . . . , n: For 0 ≤ y ≤ 1, let

fi(y) be the probability of K or more successes out of n −
1 independent Bernoulli events, (i − 1) of which have the

same success probability y and the remaining (n − i) have

success probabilities qi+1, . . . , qn. An expression for fi(y) can

be easily computed.

Now, to compute Ri, i ∈ {3, . . . , n}, we note that by (7)

and (4), φj(Ri) = qi, j = 2, . . . , i, and φj(Ri) = qj , j =
i+1, . . . , n. So from the preceding paragraph, with the events

{p′j ≤ Ri}, j = 2, . . . , n as the n − 1 Bernoulli events, and

by the definition of F−1(.), we get:

F−1(Ri) = fi(qi). (10)

By (9) and (10), Ri is unique and is given by:

Ri = c+
(p̃− c)r

1− fi(qi)
. (11)

2) Computation of φ(.): Now we compute the function

{φ(.) : x ∈ [p̃, ν)} by separately computing it for each interval

[Ri+1, Ri), i ∈ {2, . . . , n}. If Ri+1 = Ri, then note that the

interval [Ri+1, Ri) is empty. Now suppose Ri+1 < Ri. For

x ∈ [Ri+1, Ri), by (7) and (4):

φj(x) = qj , j = i+ 1, . . . , n (12)

and φ1(x) = . . . = φi(x) = φ(x). (13)

By definition of the function fi(.), with the events {p′j ≤
x}, j = 2, . . . , n as the n − 1 Bernoulli events, by definition

of F−1(x) and using P{p′j ≤ x} = φj(x), (12) and (13):

fi(φ(x)) = F−1(x), Ri+1 ≤ x < Ri. (14)

Note that F−1(x) is given by (9).

Lemma 1: For each x, (14) has a unique solution φ(x). The

function φ(.) is strictly increasing and continuous on [p̃, ν).
For i ∈ {2, . . . , n}, φ(Ri) = qi. Also, φ(p̃) = 0.

Thus, there is a unique function φ(.), and by (7), unique

φi(.), i = 1, . . . , n that satisfy the conditions in Theorem 1.

9By Property 1, no primary has a jump at any x ∈ [p̃, ν). So P (p′−1
=

x) = 0.

3) Sufficiency:

Theorem 2: The pseudo-price d.f.s φi(.), i = 1, . . . , n in

(7), with R1 = R2 = ν, Ri, i = 3, . . . , n given by (11),

and φ(.) being the solution of (14), constitute the unique NE.

The corresponding price d.f.s are ψi(x) =
1
qi
φi(x), x ∈ [c, ν],

i = 1, . . . , n.

Thus, in the price competition game at a single location,

there is a unique NE that can be computed explicitly. This

NE fetches equal expected payoffs for each primary, which by

Property 2 is given by:

(p̃− c)r = (ν − c)(1 − w1). (15)

C. Discussion

The structure of the unique NE identified in Theorems 1

and 2 provides several interesting insights:

1) First, from (1), (4) and the fact that the support set of

ψi(.) is [p̃, Ri], it follows that only the primaries with a high

bandwidth availability probability (q) play high prices (see

Fig. 1). Intuitively this is because all the primaries play low

prices (near p̃), so if a primary sets a high price, he is undercut

by all the other primaries. But a primary with a high q runs

a lower risk of being undercut than one with a low q because

of the lower bandwidth availability probabilities of the set of

primaries other than itself.

2) Second, by Property 1, ψ1(.) has a jump at v iff q1 > q2
and is continuous everywhere else, whereas ψ2(.), . . . , ψn(.)
are always continuous on [c, v].

IV. MULTIPLE LOCATIONS

We now study the existence, computation and uniqueness

of NE in the presence of spatial reuse. Recall that a strategy

of a primary now consists of a p.m.f. over I.S. and price

distributions at individual nodes. Our first observation is that

in general, there may be multiple NE in this case. For

example, consider the simple setup with two nodes v1 and

v2 connected by an edge, two primaries and one secondary

with probability 1 at each node. It can be easily verified

that both of the following strategy profiles constitute NEs:

primary 1 offers bandwidth at node v1 (respectively, v2) if it

has unused bandwidth and primary 2 at node v2 (respectively,

v1) if it has unused bandwidth, and both primaries set the

maximum possible price of ν. The results in games with

multiple locations may therefore fundamentally differ from

those for a single location.

Note that obtaining the structure of NE in games over graphs

is usually extremely challenging. As a result, in many prob-

lems of practical importance (e.g., base station deployment

games [21]), such characterizations have been done only in

small graphs with a few nodes. In spite of this, we will

establish the existence of a NE and explicitly compute it for

a fairly general class of graphs that we refer to as mean valid

graphs. In addition, we will also prove its uniqueness in the

class of NEs in which all primaries choose the I.S. they would

offer bandwidth at with identical probability mass functions.
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A. A Separation Result

We start by providing a separation framework from which

the price distributions at individual nodes follow once the I.S.

selection p.m.f.s are determined. Let I be the set of all I.S. in

G. For convenience, we assume that the empty I.S. I∅ ∈ I and

we allow a primary to offer bandwidth at I∅, i.e. to not offer

bandwidth at any node, with some probability. Consider a NE

under which, if primary i has unused bandwidth, it selects I.S.

I ∈ I w.p. βi(I), where
∑

I∈I
βi(I) = 1. The probability,

say αi
v , with which primary i offers bandwidth at a node v ∈ V

equals the sum of the probabilities associated with all the I.S.

that contain the node:

αi
v =

∑

I∈I :v∈I

βi(I). (16)

Now, considering that primary i has unused bandwidth w.p.

qi, it offers it at node v w.p. qiα
i
v . The price selection problem

at each node v is now equivalent to that for the single

location case, the difference being that primary i offers unused

bandwidth w.p. qiα
i
v, instead of qi, at node v. Thus:

Lemma 2: Suppose under a NE primary i ∈ {1, . . . , n}
selects node v w.p. αi

v if it has unused bandwidth. Then under

that NE the price distribution of primary i at node v is the d.f.

ψi(.) in Section III, with q1α
1
v, . . . , qnα

n
v in place of q1, . . . , qn

respectively all through.

Thus, the strategy profile of the primaries in an NE is

completely specified once the I.S. selection p.m.f.s {βi(I) :
I ∈ I , i ∈ {1, . . . , n}} (which will in turn provide the αi

vs

via (16)) are obtained.

B. Mean Valid Graphs

We now introduce mean valid graphs, which model the

conflict graphs of several topologies that commonly arise in

practice. In the next section, we show that these graphs have a

NE, which can be explicitly computed and has a simple form;

this NE will also turn out to be unique in a large class of

strategy profiles.

1) Definition:

Definition 2 (Valid Distribution): An assignment {αv : v ∈
V } of probabilities to the nodes is said to be a valid distribu-

tion if there exists a probability distribution {β(I) : I ∈ I }
such that for each v ∈ V , αv =

∑
I∈I :v∈I β(I).

Definition 3 (Mean Valid Graph): We refer to a graph G =
(V,E) as mean valid if:

1) Its vertex set can be partitioned into d disjoint maxi-

mal 10 I.S. for some integer d ≥ 2: V = I1∪I2∪. . .∪Id,

where Ij , j ∈ {1, . . . , d}, is a maximal I.S. and

Ij ∩ Im = ∅, j 6= m.

Let |Ij | =Mj , Ij = {aj,l : l = 1, . . . ,Mj} and:

M1 ≥M2 ≥ . . . ≥Md. (17)

2) For every valid distribution 11 in which a primary who

has unused bandwidth offers it at node aj,l w.p. αj,l,

10Recall that an I.S. I is said to be maximal if for each node v /∈ I , I∪{v}
is not an I.S. [3].

11Note that we write αj,l in place of αaj,l
to simplify the notation.

j = 1, . . . , d, l = 1, . . . ,Mj ,

d∑

j=1

αj ≤ 1, where αj =

∑Mj

l=1 αj,l

Mj

, j ∈ {1, . . . , d}.

(18)

The first condition in Definition 3 says that G is a d-

partite graph 12 and has the additional property that each of

I1, . . . , Id is a maximal I.S.. Next, let {αj,l : j = 1, . . . , d; l =
1, . . . ,Mj} be an arbitrary valid distribution. Consider the

distribution α′
j,l = αj , with αj as in (18), i.e. for each

j and l = 1, . . . ,Mj , α′
j,l is set equal to the mean of

αj,m,m = 1, . . . ,Mj . If (18) is true, then this distribution

of means is a valid distribution because it corresponds to

the I.S. distribution {β(Ij) = αj , j = 1, . . . , d;β(I∅) =

1 −
∑d

j=1 αj ;β(I) = 0, I 6= I1, . . . , Id, I∅}. Thus, Condition

2 in Definition 3 says that in G, the distribution of means

corresponding to every valid distribution is valid– a fact that

we extensively use in the proofs of the characterization of a

NE in Section IV-C.

2) Examples: Technical as Definition 3 may seem, it turns

out that several conflict graphs that commonly arise in practice

are mean valid. For example, consider the following graphs:

1) Let Gm denote a graph that is a linear arrangement of

m ≥ 2 nodes as shown in part (a) of Fig. 2, with an edge

between each pair of adjacent nodes. As an example,

this would be the conflict graph for locations along a

highway or a row of roadside shops.

2) We consider two types of m×m grid graphs, denoted by

Gm,m (see part (b) of Fig. 2) and Hm,m (see part (a) of

Fig. 3). In both these graphs, m2 nodes (locations) are

arranged in a square grid. In Gm,m, there is an edge only

between each pair of adjacent nodes in the same row

or column. In Hm,m, in addition to these edges, there

are also edges between nodes that are neighbors along

a diagonal as shown in part (a) of Fig. 3. For example,

Gm,m or Hm,m may represent a shopping complex, with

the nodes corresponding to the locations of shops with

WiFi Access Points (AP) for Internet access. Depending

on the proximity of the shops to each other and the

transmission ranges of the APs, the conflict graph could

be Gm,m or Hm,m. Hm,m is also the conflict graph of a

cellular network with square cells as shown in part (b)

of Fig. 3.

3) Let Tm,m,m be a three-dimensional grid graph (see

Fig. 4), which may, for example, be the conflict graph

for offices in a corporate building or rooms in a hotel.

4) The conflict graph (Fig. 6) of a cellular network with

hexagonal cells (Fig. 5).

5) Consider a clique 13 of size e, where e ≥ 1 is any integer.

This is the conflict graph for any set of e locations that

are close to each other.

All of the above are mean valid graphs:

12Recall that a graph G = (V, E) is said to be d-partite if V can be
partitioned into d disjoint I.S. I1, . . . , Id [3]. For example, when d = 2, G
is a bipartite graph.

13Recall that a clique or a complete graph of size e is a graph with e nodes
and an edge between every pair of nodes [3].
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Theorem 3: The following graphs are mean valid, with d,

the number of disjoint maximal I.S., indicated in each case:

1) a clique of size e ≥ 1 (d = e),
2) a line graph Gm (d = 2),

3) a two-dimensional grid graph Gm,m (d = 2),

4) a two-dimensional grid graph Hm,m (d = 4),

5) a three-dimensional grid graph Tm,m,m (d = 8).

6) a cellular network with hexagonal cells (d = 3)14.

Fig. 2. Part (a) shows a linear graph, Gm, with m = 8 and part (b) shows
a grid graph, Gm,m, with m = 5. Both graphs are mean valid with d = 2
and I1 and I2 being disjoint maximal I.S. (in the notation of Definition 3),
where the darkened and un-darkened nodes constitute I1 and I2 respectively.

Fig. 3. Part (a) shows a grid graph Hm,m with m = 7. It is mean valid
with d = 4 and the disjoint maximal I.S. I1, . . . , I4 (in the notation of
Definition 3), where the nodes labelled j, j ∈ {1, 2, 3, 4}, constitute I.S.
Ij . Part (b) shows a tiling of a plane with squares, e.g. cells in a cellular
network. Transmissions at neighboring cells interfere with each other. The
corresponding conflict graph is H6,6.

C. Existence and computation of a NE in Mean Valid Graphs

Let G be a mean valid graph with d disjoint maximal I.S.

I1, . . . , Id. We start by considering a class of simple strategy

14This holds under the following assumption that eliminates problems
arising due to boundary effects: There are an even number of rows of nodes,
each containing 3δ nodes, for some integer δ ≥ 1.

Fig. 4. Part (a) shows a three-dimensional grid graph Tm,m,m for m = 5.
It consists of periodic repetitions of the graph shown in part (b). Tm,m,m is
mean valid with d = 8 and disjoint maximal I.S. I1, . . . , I8 (in the notation
of Definition 3). In part (b), the node labels show the I.S. the nodes are in,
i.e. a node with the label j is part of the I.S. Ij , j ∈ {1, . . . , 8}.

Fig. 5. The figure shows a tiling of a plane with hexagons, e.g. cells in a
cellular network. Transmissions at neighboring cells interfere with each other.

Fig. 6. The figure shows the conflict graph of a hexagonal tiling of a plane.
It is mean valid with d = 3 and the disjoint maximal I.S. I1, I2, I3 (in the
notation of Definition 3), where the nodes labelled j, j ∈ {1, 2, 3}, constitute
I.S. Ij . There are four rows of nodes.

profiles. Every primary selects I.S. Ij with probability tj where

{tj : j = 1, . . . , d} represents a p.m.f., i.e,
∑d

j=1 tj = 1
and tj ≥ 0 for each j. Interestingly enough, it turns out that

a NE strategy profile belongs in this class, and furthermore,

the corresponding p.m.f {tj : j = 1, . . . , d} constitutes the

unique solution of a set of equations that we provide, and can

therefore be explicitly computed by solving them.

We first evaluate the expected payoff of a primary under an

NE in the above class. We introduce some notations towards

that end. Since primary i has unused bandwidth w.p. qi and

offers it at node v ∈ Ij w.p. tj , it offers bandwidth at node

v ∈ Ij w.p. qitj . Analogous to the wjs that we introduced

in Section III-A, we introduce wi(tj) that represents the

probability that Kv or more out of primaries {1, . . . , n}\i
offer bandwidth at a given node v ∈ Ij under the above I.S.

p.m.f. {tj : j = 1, . . . , d}. Under this p.m.f, by Lemma 2,



8

and similar to (15) in the single location case, the primaries

choose the price at each node in Ij as per the single-node NE

strategy with q1tj , . . . , qntj in place of q1, . . . , qn respectively

throughout, and each primary obtains an expected payoff of

W (tj) at that node, where

W (x) = (1− w1(x))(ν − c).

Now, for simplicity, we normalize ν − c = 1. Then:

W (x) = (1− w1(x)). (19)

Since I.S. Ij has Mj nodes, each primary receives a total

expected payoff of MjW (tj) if it chooses Ij .

We now state the main result of this section, which estab-

lishes the existence of a NE and also shows how it can be

explicitly computed.

Theorem 4: In a mean valid graph, the following strat-

egy profile constitutes a NE: each primary who has unused

bandwidth selects I.S. Ij , j ∈ {1, . . . , d}, w.p. tj , where

(t1, . . . , td) is the unique distribution satisfying the following

conditions. There exists an integer d′ such that 1 ≤ d′ ≤ d
and15

tj = 0 if j > d′, and (20)

M1W (t1) = . . . =Md′W (td′) > Md′+1r. (21)

Also, t1 ≥ t2 . . . ≥ td.

We first explain the result: (20) states that under the above

NE, each primary selects with positive probability only some

or all I.S. out of the I.S. I1, I2, . . . , Id. Since the total number

of I.S. is exponential in the number of nodes in most graphs,

it is surprising that an NE exists in which primaries offer

bandwidth at only a small number of I.S. with positive

probability. In addition, note that among I1, . . . , Id, primaries

do not select Id′+1, . . . Id. Recall that by (17), I1, . . . , Id are

in decreasing order of size. So primaries do not choose I.S.

smaller than a certain size (out of I1, . . . , Id). Similarly, the

fact that t1 ≥ t2 . . . ≥ td is consistent with the intuition

that primaries offer bandwidth at the larger I.S. with a larger

probability. Next, since ν − c = 1 and at each location, there

exists at least one secondary w.p. r, whenever a primary offers

bandwidth at a location, its expected payoff at that location is

r or less. Thus, by (17), if it would have selected an I.S. in

Id′+1, . . . Id, it would have earned a payoff of at most Md′+1r.
As discussed above, a primary earns an expected payoff of

MjW (tj) if it selects Ij . Thus, (21) states that a primary earns

equal expected payoffs by choosing I.S. in I1, I2, . . . , Id′ and

this payoff exceeds the maximum payoff it could have earned

by selecting an I.S. in Id′+1, . . . Id– hence it never opts for

the latter choice. Interestingly, although different primaries

have different bandwidth availability probabilities, there exists

at least one NE where all use the same I.S. selection p.m.f.

They will however use different price distributions at the same

node: primary i selects the d.f. ψi(.) in Section III, with

q1tj , . . . , qntj in place of q1, . . . , qn throughout at each node

in Ij (Lemma 2).

Theorem 4 implies that every mean valid graph has a NE,

which can be explicitly computed by solving the system of

15For notational simplicity, let Mj = 0 if j > d.

equations (20) and (21). Note that this is a system of non-

linear equations in the variables t1, . . . , td and d′. It can be

solved using a standard solver for non-linear equations (e.g.,

fsolve in Matlab) in combination with a search procedure to

find d′.
Since there is only one probability distribution (t1, . . . , td)

that satisfies (20) and (21), and t1 ≥ . . . ≥ td, it follows that:

ti = tj if Mi =Mj . (22)

We now illustrate the NE in Theorem 4 using an example.

Example: Suppose there are n = 2 primaries with probabil-

ities of having unused bandwidth q1 and q2, where q1 ≥ q2,

and Kv = 1 secondary w.p. 1 at every node v. Consider a

grid graph Hm,m, which was introduced in Section IV-B2,

with m = 7 (see part (a) of Fig. 3). By part 4 of Theorem 3,

this is a mean valid graph and, in the notation of Definition 3,

d = 4, the I.S. I1, I2, I3 and I4 are as shown in part (a) of

Fig. 3, and M1 = 16, M2 = M3 = 12, M4 = 9. In the

NE characterized in Theorem 4, it turns out that d′, t1, t2, t3
and t4 are independent 16 of q1, and their values for different

q2 ∈ (0, 1) are as follows:

1) For 0 < q2 <
1
4 , d′ = 1, t1 = 1, t2 = t3 = t4 = 0.

2) For 1
4 ≤ q2 <

15
16 , d′ = 3, t1 = 1

11

(
3 + 2

q2

)
, t2 = t3 =

1
11

(
4− 1

q2

)
t4 = 0.

3) For 15
16 ≤ q2 < 1, d′ = 4, t1 = 1

49

(
9 + 13

q2

)
, t2 = t3 =

1
49

(
1
q2

+ 12
)
t4 = 1

49

(
16− 15

q2

)
.

Note that t1 ≥ t2 ≥ t3 ≥ t4 for each value of q2, consistent

with Theorem 4. Also, t2 = t3 for all q2, which is consistent

with (22). Fig. 7 plots t1, t2 and t4 versus q2. For small q2,

primaries offer bandwidth at the largest I.S. I1 with probability

1; but as q2 increases, the competition at I1 increases, inducing

the primaries to shift probability mass from I1 to the other I.S.

So t1 decreases in q2. However, note that for all values of q2,

t1 ≥ t2 ≥ t4 and t4 is very small (less than 0.02).
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Fig. 7. The figure shows the NE probabilities t1, t2 and t4 for the example
in Section IV-C.

Finally, at the beginning of this section we showed that

a system with multiple locations may have multiple NE. In

fact, the example chosen was one where the conflict graph is

linear, and is therefore mean valid by part 2 of Theorem 3.

16This, in fact, holds in general because d′, t1, . . . , td are the solution of
(20) and (21), which contain terms in the function W (α) = 1−w1(α) and
w1(.) is independent of q1 by definition. However, the price distributions in
the NE do depend on q1.
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Nevertheless, the NE in Theorem 4 turns out to be the unique

one in a large class of strategy profiles, which we define next.

Definition 4: Let S be the class of strategy profiles in which

every primary uses the same distribution (p.m.f.) to select the

independent set at which to offer bandwidth.

Lemma 3: The NE characterized in Theorem 4 is unique in

class S.
Note that in a strategy profile in class S, primaries may

choose I.S. other than I1, . . . , Id. The above lemma rules out

the choice of any such I.S. under an NE.

D. Threshold behavior

We first define the efficiency, η, of a NE as η =
RNE
ROPT

, where

RNE is the expected sum of payoffs of the n primaries at the

NE and ROPT is the maximum possible (optimal) expected

sum of payoffs, attained when all primaries jointly select

the independent sets and prices to maximize their aggregate

revenue. Clearly, η ≤ 1 quantifies the loss in aggregate revenue

incurred owing to lack of cooperation among primaries. Also,

since the above NE is unique (overall for the single location

game and in class S for multiple locations), η quantifies

fundamental limits on the performance of NE in the respective

categories.
Let limn→∞

∑n

i=1
qi
n

= q for some q ∈ (0, 1). Here, q
represents the “average” bandwidth availability probability of

the primaries. For simplicity, we assume that each secondary

from a given pool independently seeks bandwidth, and let kn
be the expected number of secondaries at any given location17.

Then, the NE structure exhibits interesting threshold behavior

as n → ∞; in particular, η switches from 1 to 0 depending

on the relations between nq (availability) and kn (demand).

Lemma 4: When 18 there are n primaries, let p̃jn denote

the common lower endpoint of the price distributions of the

primaries who have unused bandwidth in the NE at nodes in

I.S. Ij (if they select I.S. Ij ). Also, let d′n and tmn, m ∈
{1, . . . , d}, denote d′ and tm respectively in Theorem 4.

1) If there exists an ǫ > 0 such that for all large n, q <
kn/(n − 1) − ǫ, then η → 1 as n → ∞. Also, for all

large n, d′n = 1, t1n = 1, t2n = t3n = . . . tdn = 0,

p̃1n → ν.

2) Let l < d. If there exists an ǫ > 0 such that for all large

n, lkn/(n − 1) + ǫ < q < (l + 1)kn/(n− 1)− ǫ, then

for all large n, d′n ≥ l + 1, and tjnq → kn/(n− 1) for

all j ≤ l.
3) If there exists an ǫ > 0 such that for all large n, q >

knd/(n − 1) + ǫ, then η → 0 as n → ∞. Also, for all

large n, d′n = d and p̃jn → c, j = 1, . . . , d.

Intuitively, if availability is less than demand, then owing to

limited competition, primaries with available bandwidth select

only the maximum-sized I.S. among I1, . . . , Id, and choose

prices in a neighborhood of ν. Thus, η → 1, since no other

strategy can enhance any primary’s payoff. As availability in-

creases, under NE, primaries diversify their choices among the

17We allow (but do not require) the number (rather statistics) of the
secondaries to scale with increase in n.

18For simplicity, we state this lemma under the assumption that
M1, . . . ,Md are distinct. Our technical report [23] provides the lemma with
this assumption relaxed.

I.S. I1, . . . , Id and are more likely to select low prices as well

(the lower limits of the price distributions hover around c once

availability exceeds demand), thereby drastically reducing the

efficiency of the NE.

V. NUMERICAL STUDIES

In this section, we describe numerical computations that

are directed towards assessing the impact of price competi-

tion among the primaries on the aggregate revenue of the

primaries and the affordability of spectrum for the secondaries.

We consider the specific case of a grid graph Hm,m (see

Section IV-B2). By part 4 of Theorem 3, this is a mean valid

graph and, in the notation of Definition 3, d = 4 and the I.S.

I1, I2, I3 and I4 are as shown in part (a) of Fig. 3. Throughout,

we use the parameter values ν = 1 and c = 0, and a constant

number of secondaries k at each node. Also, q1, . . . , qn are

uniformly spaced in [qL, qH ] for some parameters qL and qH .

Let q = qL+qH
2 be the mean bandwidth availability probability

of the primaries.

In Hm,m, the NE is of the form in Theorem 4 and the

plot on the left in Fig. 8 reveals, as expected, that price

competition significantly reduces the aggregate revenue of the

primaries under this NE relative to OPT, the optimal scheme in

which the primaries collaborate to attain ROPT, the maximum

aggregate revenue of the primaries (Note that under OPT,

the I.S. I1, . . . , I4 are selected in order of size and all the

primaries always select the highest price ν). Also, overall, the

efficiency (η) decreases as q increases since the competition

increases. The plot on the right in Fig. 8 shows that the trends

are similar for a larger topology (larger m). The plot on the

left in Fig. 9 shows that η improves as k increases. This is

because, for small values of k, demand for bandwidth is scarce

at each node. Under the NE, bandwidth is wasted at several

nodes since k+1 or more primaries offer bandwidth at those

nodes, resulting in a shortage of bandwidth at other nodes.

On the other hand, since all primaries cooperate in OPT, it

judiciously supplies bandwidth precisely where it is needed.

So OPT outperforms the NE by a large margin for small values

of k. For large values of k, the demand is high and so is the

tolerable margin of error in assigning the primaries to I.S.; and

hence the performance of the NE improves relative to OPT.

The plot on the right in Fig. 9 shows that η increases as m
increases, which is because the four I.S. I1, . . . , I4 become

closer to each other in size as m increases and hence the loss

in revenue resulting from choosing a smaller I.S. is lower.

Fig. 10 shows that under price competition, the expected

price per unit of bandwidth is lower at the nodes in the larger

I.S. This is because primaries prefer larger I.S. and hence the

competition is more intense there, driving down the prices.

VI. CONCLUSIONS

We analyzed price competition among primaries in a CRN

with a random number of secondaries taking into account

bandwidth uncertainty and spatial reuse. For the game at a

single location, we explicitly computed a NE and showed its

uniqueness in the class of all NE. Also, for the game with

spatial reuse, we computed a NE in mean valid graphs and

showed its uniqueness in the class of NE with symmetric



10

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

500

600

q

R
N

E
, 

R
O

P
T
, 

E
ff

ic
ie

n
c
y
 η

 

 

Efficiency η

R
OPT

R
NE

0 0.2 0.4 0.6 0.8 1
0

500

1000

1500

q

R
N

E
, 

R
O

P
T
, 

E
ff

ic
ie

n
c
y
 η

 

 

Efficiency η

R
OPT

R
NE

Fig. 8. Both figures plot the aggregate revenues of the primaries, RNE and
ROPT , under the NE and OPT respectively, and the efficiency of the NE,

η = RNE
ROPT

, versus q. In both figures, n = 10, k = 5 and qH − qL = 0.2
are used. Also, m = 15 (respectively, m = 25) for the figure on the left
(respectively, right). η is scaled by a factor of 500 (respectively, 1000) in the
figure on the left (respectively, right) in order to show it on the same figure
as the other plots.
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the NE versus k (respectively, m). For both figures, n = 10, qL = 0 and
qH = 1 are used. Also, m = 15 for the figure on the left and k = 5 for the
figure on the right.
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Fig. 10. The figure shows the mean price of bandwidth quoted by primary
1, given that it is offered, at a (fixed) node in each of I1, I2 and I4 under
the NE vs q. Note that since |I3| = |I2|, the mean price of bandwidth at
nodes in I3 is the same as that at nodes in I2. The parameter values used are
m = 15, n = 8 and k = 3. Also, qH − qL = 0.2.

independent set selection strategies of the primaries. Our

analysis provides several insights, e.g., there is randomization

in the selection of prices by the primaries in the NE, and there

exists a NE of simple form in mean valid graphs, in which

primaries select only a small number of independent sets with

positive probability. An open problem for future research is to

investigate the existence, computation and uniqueness of NE

in general graphs, i.e. graphs that need not be mean valid.
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