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Abstract—We describe Information Forests, an approach to
classification that generalizes Random Forests by replacing the
splitting criterion of non-leaf nodes from a discriminative one –
based on the entropy of the label distribution – to a generative
one – based on maximizing the information divergence between
the class-conditional distributions in the resulting partitions. The
basic idea consists of deferring classification until a measure
of “classification confidence” is sufficiently high, and instead
breaking down the data so as to maximize this measure. In
an alternative interpretation, Information Forests attempt to
partition the data into subsets that are “as informative as
possible” for the purpose of the task, which is to classify
the data. Classification confidence, or informative content of
the subsets, is quantified by the Information Divergence. Our
approach relates to active learning, semi-supervised learning,
mixed generative/discriminative learning.

I. INTRODUCTION

We introduce Information Forests (IFs), a family of part-
based classifiers designed for problems that are not easily
solvable as a whole. In IFs there is a hidden location or
selection variable that is key to performing classification:
While there may be no distinguishing characteristic between
the positive and negative samples considered as a whole,
one can find “informative subsets” (regions, parts, or groups)
where classification is simple to carry out. However, IFs are
not restricted to these problems, and can be interpreted as
a generic family of classifiers that includes Random Forests
(RFs) as a special case.

The motivation comes from problems such as detection of
people in images, where the distribution of intensity or color
values in the region occupied by a person is not discriminative,
and could be identical to the distribution of intensity or color
values outside the same region. However, when the problem
is restricted to smaller regions, or “parts,” the problem may
be more easily solved.

A. Intuition

The key idea of Information Forests is to defer attempts
to classify data points, and focus first on grouping them in
a way that makes classification as simple as possible. In
other words, the goal at the outset is not to partition the
data into clusters that are as “pure” as possible (belonging
to the same class). Instead, the goal is to partition the data
into clusters that are as simple as possible to classify down
the line, and only perform the classification when it becomes
sufficiently simple. In other words yet, the focus is to break
down the original classification problem (for the entire dataset)
into smaller subsets that are as simple as possible to classify.

Only when the classification problem is “simple enough” it is
actually carried out. Otherwise, the grouping process proceeds
in a recursive, hierarchical fashion. In this divide-et-impera
scheme, the goal is to determine groups of data that are as
informative as possible for the purpose of the task, which is
the determination of the class label λ. Such groups can be
considered “regions” or “parts” or “subsets” depending on the
application. This is illustrated in Fig. 1
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Fig. 1. Random Forest vs. Information Forest. A sequence of n groups
alternating positive/negative/positive/negative etc. partitioned using a Random
Forests with linear stumps requires a number of levels that grows linearly with
n (left). An Information Forest using the same stumps (right) does not try to
classify samples immediately, but instead tries to partition them into groups that
are simple to classify, and defers the decision until confidence τ is sufficiently
high and information gain δ sufficiently small.

B. Formalization
Let λ ∈ {0, 1} be a binary class label, x ∈ D ⊂ Rk,

with k = 2, 3 a location variable, and y : D → Y, x 7→
y(x) a measurement (or “feature”) associate to location x,
that takes values in some vector space Y . When the domain
D is discretized (e.g., the planar lattice), x can be identified
with an index i ∈ Λ | xi ∈ D. In that case, we indicate y(x)
simply by yi.

A (binary1) segmentation problem consists of partitioning
the spatial domain D into two regions, Ω and D\Ω, accord-
ing to the value of the feature y(x). This can be done by
considering the posterior probability

P (λ|y) ∝ p(y|λ)P (λ), (1)

where the first term on the right hand side indicates the
likelihood, and the second term the location prior. It should
be clear that meaningfully solving this problem hinges on the
two likelihoods, p(y|λ = 1) and p(y|λ = 0) being different:

p(y|λ = 1) 6= p(y|λ = 0). (2)

1Extension to multi-class segmentation, where λ ∈ {1, 2, . . . ,M} is
straightforward and will therefore not be considered here.



If this is the case, we can infer λ and, from it, Ω = {x | λ(x) =
1}. However, there are plenty of examples where where (2)
is violated. We refer to problems where the condition (2)
is violated as problems that “are not solvable as whole”, in
the sense that we cannot segment the spatial domain simply by
comparing statistics inside Ω to statistics outside. Nevertheless,
it may be possible to determine parts, or local regions Si ⊂ D,
within which the likelihoods are different:

∃ {Sj}Nj=1 | p(y|x ∈ Sj , λ = 1) 6= p(y|x ∈ Sj , λ = 0),

Sj ⊂ D, j = 1, . . . , N. (3)

Note that the collection {Sj} is not unique, does not need to
form a partition of D, as there is no requirement that Si∩Sj 6=
∅ for i 6= j, so long as the union of these regions cover2 D.
The regions Sj do not even need to be simply connected.
In some applications, one may want to impose these further
conditions.

In the discrete-domain case, we identify the index i with the
location xi, so the regions become subsets of the data. With
an abuse of notation, we write

Sj = {i1, i2, . . . , inj}. (4)

Therefore, we write the two conditions (2)-(3) as

p(yi|λi = 1) = p(yi|λi = 0),

p(yi|i ∈ Sj , λi = 1) 6= p(yi|i ∈ Sj , λi = 0). (5)

Assuming these conditions are satisfied, we can write the
posteriors by marginalizing over the sets Sj ,

p(λ|yi) ∝
∑
j

p(yi | i ∈ Sj , λ)P (i ∈ Sj |λ)P (λ) (6)

or by maximizing over all possible collections of sets {Sj}.
In either case, the sets Sj are not known, so the segmentation
problem is naturally broken down into two components: One
is to determine the sets Sj , the other is to determine the class
labels within each of them:

Given a training set of labeled samples {yi, λi}Mi=1,
Find a collection of sets {Sj}Nj=1 such that Sj ⊂ D and

D ⊂ ∪jSj , that are “as informative as possible” for
the purpose of determining the class label λ.

If the sets are “sufficiently informative” of Ω, perform
the classification; that is, determine the label λ within
these sets.

The key condition translates to the restricted likelihoods
p(yi|i ∈ Sj , λ = 1) and p(yi|i ∈ Sj , λ = 1) being “as different
as possible” in the sense of relative entropy (information
divergence, of Kullback-Liebler divergence). When they are
sufficiently different, the set is sufficiently informative of
Ω, and classification can be easily performed by comparing
likelihood or posterior ratios.

2Indeed, even this condition can be relaxed to assuming that these regions
cover the boundary of Ω, ∪jSj ⊃ ∂Ω, by making suitable assumptions on
the prior p(λ|x).

This problem relates to active learning, in the sense that the
classifier has to select, among all possible subsets, the ones
that are informative in the sense of enabling the classification
λ. A possible approach would be to select Si at random.
However, an active learner would want to choose, among all
possible Si, the ones that are most informative towards solving
the original classification problem, that is to determine λ. It
also relates to semi-supervised learning with model selection,
since – in addition to determining the discrete variable λ for
which supervision is provided via the training set – one has
to determine the sets Sj , that can be interpreted as groupings,
or collections, or subsets of the training data. However, no
supervision is given as to which point x ∈ D belongs to which
group Si. In addition, the number of such regions N is not
known and has to be inferred (model selection). This problem
also touches on the issue of generative/discriminative models,
since the groups Sj can be interpreted as generative (latent
mixture model), while the ultimate goal is classification.

Information Forests implement the program above using the
machinery of boosting and decision trees, as we describe next.

II. DERIVATION OF INFORMATION FORESTS

Information Forests are a family of classifiers that accom-
plish the goals described in the previous sections using the
tools of randomized trees.

The groups (“clusters”, or “regions”) Sj ⊂ D are chosen
within a class S defined by a family of simple classifiers
(decision stumps). For convenience, we expand the index j
into two indices, one relating to the “features” fj and one
relating to a threshold θk. We then define, for a continuous
location parameter x

Sjk
.
= {x ∈ D | fj(x, y) ≥ θk} (7)

where the feature f : D × Y → R; (x, y) 7→ f(x, y) is
any scalar-valued statistic and the threshold θ ∈ R is chosen
within a finite set. We call the set of features F .

= {fj} and
the set of thresholds Θ = {θk}. The complement of Sjk in D
is indicated with Scjk

.
= {x ∈ D | fj(x, y) < θk} = D\Sjk.

In the simplest case, for a grayscale image, we could have
f(x, y) = y(x) where y(x) is the intensity value at pixel x.
More in general, f can be any (scalar) function of y in a
neighborhood of x. For the discrete case, where i is identified
with the location xi, with an abuse of notation we write

Sjk = {i ∈ Λ | fj(yi) ≥ θk} (8)

and again Scjk = {i ∈ Λ | fj(yi) < θk}. Here the features f
are f : Λ × Y → R; (i, y) 7→ f(yi). Specifying the feature
and threshold (fj , θk) is equivalent to specifying the set Sjk
and its complement Scjk.

We are interested in building informative sets using recur-
sive binary partitions, so at each stage we only select one
pair {Sjk, Scjk}. Among all features in F and thresholds in
Θ, Information Forests choose the one that makes the set Sjk
“as informative as possible” for the purpose of classification.
From (5) it can be seen that the quantity that measures the
“information content” of a set Sjk (or a feature fj , θk) for the



purpose of classification is the Information Divergence (Rel-
ative Entropy, or Kullback-Liebler Divergence) between the
distributions p(yi|i ∈ Sjk, λi = 1) and p(yi|i ∈ Sjk, λi = 0).
In short-hand, we write p(yi| · · · , λi = 1) as p1(yi| · · · ) and
p(yi| · · · , λi = 0) as p0(yi| · · · ) and

KL(fj , θk) =
|S|
|D|

KL(p1(yi|i ∈ S) ‖ p0(yi|i ∈ S))+

+
|Sc|
|D|

KL(p1(yi|i ∈ Sc) ‖ p0(yi|i ∈ Sc)). (9)

From the characterization of the sets Sjk, i ∈ Sjk is equivalent
to fj(yi) ≥ θk, so we write Sjk = S(fj , θk). Therefore,
a decision stump (“KL-node”) chooses among features and
thresholds one (of the possibly many) that

f̂j , θ̂k
.
= arg max

fj ,θk

|S(fj , θk)|
|D|

KL (p1(yi|fj ≥ θk)||p0(yi|fj ≥ θk))

+
|Sc(fj , θk)|
|D|

KL (p1(yi|fj < θk)||p(yi|fj < θk)) . (10)

Here KL(p||q) = Ep
[
ln p

q

]
=

∫
ln p

qdP denotes the
Kullback-Liebler divergence.3 The normalization factors
|S|/|D| and |Sc|/|D| count the cardinality of the set S and
its complement relative to the size of the domain D.

If the divergence value is sufficiently large, KL(fj , θk) > τ ,
the positive and negative distributions are sufficiently different,
and therefore the classification problem is easily solvable. To
actually solve it, one could use the same decision stumps
(features) F , but now chosen to minimize the entropy of the
distribution of class labels, p(λi|i ∈ Sjk) = p(λi|fj ≥ θk),
and its complement:

H(fj , θk)
.
=
|S(fj , θk)|
|D|

H(λi|fj ≥ θk)+

+
|Sc(fj , θk)|
|D|

H(λi|fj < θk) (11)

where H(p) = Ep[ln p] =
∫

ln pdP is the entropy of
the distribution p. If the quantity (10) is sufficiently large,
KL(fj , θk) > τ , (11) can be solved. If not, the process
can be iterated, and the data further split according to the
same criterion, the maximization of KL(fj , θk). The value τ
can therefore be interpreted as measuring the least tolerable
confidence in the classification.

A. Implementation

Information Forests perform hierarchical grouping (mixture
modeling) and classification by recursive binary partitioning.
During training, starting from a the entire dataset {1, . . . , N},
each node S is passed through a Divergence Test:

KL(p1(yi|i ∈ S) ‖ p0(yi|i ∈ S)) > τ. (12)

3Several alternate divergence measures can be employed instead of
Kullback-Leibler’s, for instance symmetrized versions of it, or more general
Jeffrey divergence.

If this condition is satisfied, the node is designated as an H-
node that solves

f̂j , θ̂k = arg min
f∈F,θinΘ

H(f, θ) (13)

If the Information Gain is below a minimum threshold δ > 0,

H(λi|i ∈ S)−H(f̂j , θ̂k) ≤ δ, (14)

the node is re-designated as a terminal node (“leaf”) and the
classes are determined via

λ̂ = arg max
λi∈{0,1}

p(λi|i ∈ S). (15)

If the condition (12) is violated, the two classes are difficult
to separate, so we look to partition the data into new clusters
via a KL-node that solves

f̂j , θ̂k = arg max
f,θ∈F

KL(f, θ) (16)

In either case, so long as the node is not a leaf, the selected
f̂j , θ̂k generates two sets, S(f̂j , θ̂k) and its complement, where

S(f̂j , θ̂k) = {i ∈ S |f̂j(yi) ≥ θ̂k}. (17)

The two sets S = S(f̂j , θ̂k) and S = Sc(f̂j , θ̂k) are fed each to
one of the two children of the current node as the tree grows.
Like in a Random Forest, the process is repeated multiple
times, for random subsets of the data points. During testing,
each datum yi is run through the cascade of tests f̂j(yi) ≥ θ̂k,
on multiple trees, and then voting is performed.

B. Approximation and lower bound

While testing consists of repeated scalar tests that have
trivial computational complexity, training requires multiple
iterations of exhaustive optimization at each node, where each
step entails computing KL(f, θ), that is a relative entropy
between distributions in high-dimensional space (the feature
space Y ). Therefore, efficient approximations are needed.

One could employ several proxies of relative entropy, in-
cluding Fisher scores. Or, one could compute relative entropy
between scalar components (projections) of feature space. We
approximate the Information Divergence with a lower bound

KL(p1(yi|fj ≥ θj) ‖ p0(yi|fj ≥ θj)) ≥
≥ KL(p1(Π(yi)|fj ≥ θj) ‖ p0(Π(yi)|fj ≥ θj)) (18)

where Π(yi) is any 1-D projection of yi. For ease of compu-
tation, we choose Π(yi) = f(yi) from our feature pool. Since
the previous inequality holds for any Π, we have

KL(p1(yi|fj ≥ θj) ‖ p0(yi|fj ≥ θj)) ≥
≥ max
f∈F,θ

KL(p1(f(yi)|fj ≥ θj) ‖ p0(f(yi)|fj ≥ θj)). (19)

This process is repeated according to the same schedule of
conventional Random Forests.



C. Analysis

Information Forests are a superset of Random Forest, as
the former reduces to the latter when τ = 0 is chosen. While
it has been argued [1] that RF produce balanced trees, this is
true only when the class F is infinite. In practice, F is always
finite, and typically RFs produce heavily unbalanced trees, as
the example in Fig. 1 illustrates. That example also shows
that, when the dataset is not separable by the class of decision
stumps, IFs produce more balanced and shallower trees when
the set of classifiers is restricted.

More thorough analysis of the properties of IFs and the class
of problems they are well matched to solve is forthcoming.

III. DISCUSSION

Random Forests as a boosting variety of randomized de-
cision trees, have been employed with a variety of splitting
criteria, mostly related to entropy of the label distributions or
mutual information between the features and the labels [5],
[6], [2]. Breiman analyzes some of the properties of entropy
and compares it with the Gini index in [1]. However, to
the best of our knowledge, all of these approaches choose
discriminative splitting criteria, where the goal is to produce
partitions that are as pure as possible at each node, and there
is no differentiation between leaf nodes and non-leaf nodes.

Several choices of decision stumps have also been applied,
mostly depending on the application, with the simplest choices
consisting of linear classifiers [3]. We have used simple
linear scalar stumps for simplicity, but there is nothing in
the derivation of IFs that precludes the use of more complex
classifiers (other than computational considerations).

Since our approach mixes divergence measures and classi-
fication measures, the analysis of Nguyen et al. [4] could shed
some light on the properties of the scheme proposed.

In forthcoming work, we intend to characterize the perfor-
mance of IFs both empirically, as well as analytically.
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