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Abstract—Given an independent and identically distributed
source X = {Xi}∞i=1 with finite Shannon entropy or differen-
tial entropy (as the case may be) H(X), the non-asymptotic
equipartition property (NEP) with respect to H(X) is estab-
lished, which characterizes, for any finite block length n, how
close − 1

n
ln p(X1X2 · · ·Xn) is to H(X) by determining the

information spectrum of X1X2 · · ·Xn, i.e., the distribution of
− 1
n

ln p(X1X2 · · ·Xn). Non-asymptotic equipartition properties
(with respect to conditional entropy, mutual information, and
relative entropy) in a similar nature can also be established [3].
These non-asymptotic equipartition properties are instrumental
to the development of non-asymptotic coding (including both
source and channel coding) results in information theory in
the same way as the asymptotic equipartition property to all
asymptotic coding theorems established so far in information
theory. As an example, the NEP with respect to H(X) is used
to establish a non-asymptotic fixed rate source coding theorem,
which reveals, for any finite block length n, a complete picture
about the tradeoff between the minimum rate of fixed rate coding
of X1 · · ·Xn and error probability when the error probability
is a constant, or goes to 0 with block length n at a sub-
polynomial n−α, 0 < α < 1, polynomial n−α, α ≥ 1, or
sub-exponential e−n

α

, 0 < α < 1, speed. In particular, it is
shown that for any finite block length n, the minimum rate (in
nats per symbol) of fixed rate coding of X1X2 · · ·Xn with error
probability Θ

(
n−α√
lnn

)
is H(X) +

√
σ2
H(X)(2α)

√
lnn
n

+O( lnn
n

),
where α > 0 and σ2

H(X) = E[− ln p(X1)]2 − H2(X) is the
information variance of X . With the help of the NEP with respect
to other information quantities, non-asymptotic channel coding
theorems of similar nature will be established in a separate paper.

Index Terms—Asymptotic equipartition property (AEP), con-
ditional entropy, entropy, fixed rate coding, information spec-
trum, mutual information, non-asymptotic equipartition property
(NEP).

I. INTRODUCTION

Consider an independent and identically distributed (IID)
source X = {Xi}∞i=1 with source alphabet X and finite
entropy H(X), where H(X) is the Shannon entropy of Xi

if X is discrete, and the differential entropy of Xi if X is the
real line and each Xi is a continuous random variable. Let p(x)
be the probability mass function (pmf) or probability density
function (pdf) (as the case may be) of Xi. The asymptotic
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equipartition property (AEP) for X is the assertion that

− 1

n
ln p(X1X2 · · ·Xn)→ H(X) (1.1)

either in probability or with probability one as n goes to ∞.
It implies that for sufficiently large n, with high probability,
the outcomes of X1X2 · · ·Xn are approximately equiprobable
with their respective probability ranging from e−n(H(X)+ε) to
e−n(H(X)−ε), where ε > 0 is a small fixed number. Here and
throughout the rest of the paper, ln stands for the logarithm
with base e, and all information quantities are measured in
nats.

The AEP is fundamental to information theory. It is not
only instrumental to lossless source coding theorems, but
also behind almost all asymptotic coding (including source,
channel, and multi-user coding) theorems through the concepts
of typical sets and typical sequences [1].

However, in the non-asymptotic regime where one wants
to establish non-asymptotic coding results for finite block
length n, the AEP in its current form can not be applied in
general. In this paper, we aim to establish the non-asymptotic
counterpart of the AEP, which is broadly referred to as the non-
asymptotic equipartition property (NEP), so that the NEP can
be applied to finite block length n. Specifically, with respect to
H(X), we first characterize, for any finite block length n, how
close − 1

n ln p(X1X2 · · ·Xn) is to H(X) by determining the
information spectrum of X1X2 · · ·Xn, i.e., the distribution of
− 1
n ln p(X1X2 · · ·Xn); such a property is referred to as the

NEP with respect to H(X). NEP can be also established in
a similar manner with respect to conditional entropy, mutual
information, and relative entropy; for details, please refer to
the full version of this paper [3].

In the same way as the AEP plays an important role in
establishing the asymptotic coding (including source, channel,
and multi-user coding) results in information theory, our
established NEP is also instrumental to the development of
non-asymptotic source and channel coding results. Using the
NEP with respect to H(X), we further establish a non-
asymptotic fixed rate source coding theorem, which reveals,
for any finite block length n, a complete picture about the
tradeoff between the minimum rate of fixed rate coding of
X1 · · ·Xn and error probability when the error probability is a



constant, or goes to 0 with block length n at a sub-polynomial
n−α, 0 < α < 1, polynomial n−α, α ≥ 1, or sub-exponential
e−n

α

, 0 < α < 1, speed. In particular, it is shown that for any
finite block length n, the minimum rate (in nats per symbol)
of fixed rate coding of X1X2 · · ·Xn with error probability
Θ
(
n−α√
lnn

)
is H(X) +

√
σ2
H(X)(2α)

√
lnn
n +O( lnn

n ), where
α > 0 and σ2

H(X) = E[− ln p(X1)]2 − H2(X) is the
information variance of X . In a separate paper [4], non-
asymptotic channel coding theorems of similar nature will be
established with the help of the NEP with respect to other
information quantities; in particular, it is shown [4] that for
any binary input memoryless channel with uniform capacity
achieving input X , random linear codes of block length n can
reach within

√
σ2
H(X|Y )(2α)

√
lnn
n +O( lnn

n ) of the channel
capacity while maintaining word error probability O(n−α),
where α > 0 and σ2

H(X|Y ) = E[− log p(X|Y )]2−H2(X|Y )
is the conditional information variance of X given Y with Y
being the output of the channel in response to the input X .

The rest of the paper is organized as follows. Section II is
devoted to the NEP with respect to H(X). And in Section III,
we apply the NEP with respect to H(X) to investigate the
performance of optimal fixed rate coding of X1X2 · · ·Xn.

II. NEP WITH RESPECT TO ENTROPY

Define

λ∗(X)
∆
= sup

{
λ ≥ 0 :

∫
p−λ+1(x)dx <∞

}
(2.1)

where
∫
dx is understood throughout this paper to be the

summation over the source alphabet of X if X is discrete.
Suppose that

λ∗(X) > 0 . (2.2)

Let
σ2
H(X)

∆
=

∫
p(x)[− ln p(x)]2dx−H2(X) (2.3)

which will be referred to as the information variance of X . It
is not hard to see that under the assumption (2.2),∫

p−λ+1(x)[∫
p−λ+1(y)dy

] |− ln p(x)|k dx <∞ (2.4)

and ∫
p−λ+1(x)dx <∞

for any λ ∈ [0, λ∗(X)) and any positive integer k, and hence
σ2
H(X) is finite in particular. Further assume that

σ2
H(X) > 0 . (2.5)

Then we have the following result, which will be referred to
as the weak right NEP with respect to H(X).

Theorem 1 (Weak Right NEP). For any δ ≥ 0, let

rX(δ)
∆
= sup
λ≥0

[
λ(H(X) + δ)− ln

∫
p−λ+1(x)dx

]
.

Then the following hold:

(a) For any positive integer n,

Pr

{
− 1

n
ln p(Xn) ≥ H(X) + δ

}
≤ e−nrX(δ)

(2.6)
where Xn = X1X2 · · ·Xn.

(b) Under the assumptions (2.2) and (2.5), there exists a
δ∗ > 0 such that for any δ ∈ (0, δ∗] and any positive
integer n,

rX(δ) =
1

2σ2
H(X)

δ2 +O(δ3) (2.7)

and hence

Pr

{
− 1

n
ln p(Xn) ≥ H(X) + δ

}
≤ e
−n( δ2

2σ2
H

(X)
+O(δ3))

. (2.8)

Proof of Theorem 1: The inequality (2.6) follows from
the Chernoff bound. To see this is indeed the case, note that

Pr

{
− 1

n
ln p(X1X2 · · ·Xn) ≥ H(X) + δ

}
= Pr {− ln p(X1X2 · · ·Xn) ≥ n(H(X) + δ)}

≤ inf
λ≥0

E[e−λ ln p(X1X2···Xn)]

enλ(H(X)+δ)

= inf
λ≥0

e−n[λ(H(X)+δ)−lnE[p−λ(X1)]]

= inf
λ≥0

e−n[λ(H(X)+δ)−ln
∫
p−λ+1(x)dx]

= e−nrX(δ) . (2.9)

To show (2.7) and (2.8), we first analyze the property of
rX(δ) as a function of δ over the region δ ≥ 0. It is easy
to see that rX(δ) is convex and non-decreasing. For any λ ∈
[0, λ∗(X)), define

δ(λ)
∆
=

∫
p−λ+1(x)[∫
p−λ+1(y)dy

] [− ln p(x)] dx−H(X) (2.10)

which, in view of (2.4), is well defined. Using a similar
argument as in [5, Properties 1 to 3], it is not hard to show
that under the assumption (2.2), δ(λ) as a function of λ is con-
tinuously differentiable up to any order over λ ∈ [0, λ∗(X)).
Taking the first order derivative of δ(λ) yields

δ′(λ) =

∫
p−λ+1(x)[∫
p−λ+1(y)dy

] [− ln p(x)]
2
dx

−

[∫
p−λ+1(x)[∫
p−λ+1(y)dy

] [− ln p(x)] dx

]2

> 0 (2.11)

where the last inequality is due to (2.5). It is also easy to
see that δ(0) = 0 and δ′(0) = σ2

H(X). Therefore, δ(λ) is
strictly increasing over λ ∈ [0, λ∗(X)). On the other hand,
it is not hard to verify that under the assumption (2.2), the
function λ(H(X) + δ) − ln

∫
p−λ+1(x)dx as a function of



λ is continuously differentiable over λ ∈ [0, λ∗(X)) with its
derivative equal to

δ − δ(λ) . (2.12)

To continue, we distinguish between two cases: (1) λ∗(X) =
∞, and (2) λ∗(X) < ∞. In case (1), since δ(λ) is strictly
increasing over λ ∈ [0,∞), it follows that for any δ = δ(λ)
for some λ ∈ [0, λ∗(X)), the supremum in the definition of
rX(δ) is actually achieved at that particular λ, i.e.,

rX(δ(λ)) = λ(H(X) + δ(λ))− ln

∫
p−λ+1(x)dx . (2.13)

In case (2), we have that for any δ = δ(λ) for some λ ∈
[0, λ∗(X)) ,

β(H(X) + δ(λ))− ln

∫
p−β+1(x)dx

< λ(H(X) + δ(λ))− ln

∫
p−λ+1(x)dx (2.14)

for any β ∈ [0, λ∗(X)) with β 6= λ. In view of the definition
of λ∗(X), (2.14) remains valid for any β > λ∗(X) since then
the left side of (2.14) is −∞. What remains to check is when
β = λ∗(X). If ∫

p−λ
∗(X)+1(x)dx =∞

it is easy to see that (2.14) holds as well when β = λ∗(X).
Suppose now ∫

p−λ
∗(X)+1(x)dx <∞ .

In this case, it follows from the dominated convergence
theorem that

lim
β↑λ∗(X)

∫
p−β+1(x)dx =

∫
p−λ

∗(X)+1(x)dx

and hence by letting β go to λ∗(X) from the left, we see
that (2.14) holds as well when β = λ∗(X). Putting all cases
together, we always have that for any δ = δ(λ) for some
λ ∈ [0, λ∗(X)),

rX(δ(λ)) = λ(H(X) + δ(λ))− ln

∫
p−λ+1(x)dx . (2.15)

Let

∆∗(X)
∆
= lim
λ↑λ∗(X)

δ(λ) .

Since both δ(λ) and ln
∫
p−λ+1(x)dx are continuously dif-

ferentiable with respect to λ ∈ [0, λ∗(X)) up to any order, it
follows from (2.15) that rX(δ) is also continuously differen-
tiable with respect to δ ∈ [0,∆∗(X)) up to any order. Taking
the first and second order derivatives of rX(δ) with respect to

δ, we have

r′X(δ) =
drX(δ)

dδ

=
drX(δ(λ))

dλ

dλ

dδ

=
drX(δ(λ))

dλ

1

δ′(λ)

=
1

δ′(λ)

[
H(X) + δ(λ) + λδ′(λ)

−
∫

p−λ+1(x)[∫
p−λ+1(y)dy

] [− ln p(x)] dx

]
= λ (2.16)

and

r′′X(δ) =
dλ

dδ

=
1

δ′(λ)
(2.17)

where δ = δ(λ). Therefore, rX(δ) is convex, strictly in-
creasing, and continuously differentiable up to any order over
δ ∈ [0,∆∗(X)). Note that from (2.16) and (2.17), we have
r′X(0) = 0 and r′′X(0) = 1/σ2

H(X). Expanding rX(δ) at
δ = 0 by the Taylor expansion, we then have that there exists
a δ∗ > 0 such that

rX(δ) =
1

2σ2
H(X)

δ2 +O(δ3) (2.18)

for δ ∈ (0, δ∗]. The inequality (2.8) now follows immediately
from (2.6) and (2.18). This completes the proof of Theorem 1.

0 t

Pr

1 Pr
{
e−λ ln p(Xn) ≥ t

}

enλ(H(X)+δ)

Fig. 1. Graphical interpretation of the weak right NEP

Graphical interpretation of the weak right NEP: Figure 1
provides a graphical interpretation of the weak right NEP,



where

E[e−λ ln p(Xn)] =

∫
Pr
{
e−λ ln p(Xn) ≥ t

}
dt︸ ︷︷ ︸

area underneath the red curve

≥ enλ(H(X)+δ) Pr {− ln p(Xn) ≥ n(H(X) + δ)}︸ ︷︷ ︸
area of the yellow rectangle

which immediately gives us (2.6) by further optimizing λ.
Having analyzed the function rX(δ), we are now ready for

a stronger version of the right NEP. For any λ ∈ [0, λ∗(X)),
define

fλ(x)
∆
=

p−λ(x)∫
p−λ+1(y)dy

(2.19)

σ2
H(X,λ)

∆
=

∫
fλ(x)p(x) |− ln p(x)− (H(X) + δ(λ))|2 dx

(2.20)

MH(X,λ)
∆
=

∫
fλ(x)p(x) |− ln p(x)− (H(X) + δ(λ))|3 dx

(2.21)
and

fλ(xn)
∆
=

n∏
i=1

fλ(xi) (2.22)

where δ(λ) is defined in (2.10). Write MH(X, 0) as MH(X).
It is easy to see that σ2

H(X, 0) = σ2
H(X), σ2

H(X,λ) = δ′(λ),
and

MH(X) =

∫
p(x) |− ln p(x)−H(X))|3 dx . (2.23)

Then we have the following stronger result.

Theorem 2 (Strong Right NEP). Under the assumptions (2.2)
and (2.5), the following hold:

(a) For any δ ∈ (0,∆∗(X)) and any positive integer n

Pr

{
− 1

n
ln p(Xn) ≥ H(X) + δ

}
≤ 1

1− e−λ

[
1√

2πσH(X,λ)
+

2CMH(X,λ)

σ3
H(X,λ)

]
× e−nrX(δ)− 1

2 lnn (2.24)

and

Pr

{
− 1

n
ln p(Xn) ≥ H(X) + δ

}

≥ e−λd

 de− d2

2nσ2
H

(X,λ)

√
2πσH(X,λ)

− 2CMH(X,λ)

σ3
H(X,λ)


× e−nrX(δ)− 1

2 lnn (2.25)

for any d > 0, where λ = r′X(δ) > 0, and C < 1
is the universal constant in the central limit theorem
of Berry and Esseen.

(b) For any δ ≤ c
√

lnn
n , where c < σH(X) is a

constant,

Q

(
δ
√
n

σH(X)

)
− CMH(X)√

nσ3
H(X)

≤ Pr

{
− 1

n
ln p(Xn) ≥ H(X) + δ

}
≤ Q

(
δ
√
n

σH(X)

)
+
CMH(X)√
nσ3

H(X)
(2.26)

where Q(t) = 1√
2π

∫∞
t
e−u

2/2du.

Proof of Theorem 2: From (2.15), it follows that with
λ = r′X(δ)

rX(δ) = λ(H(X) + δ)− ln

∫
p−λ+1(x)dx . (2.27)

Define for any integer k ≥ 0

Bk
∆
=

{
xn :

k

n
≤ − 1

n
ln p(xn)− (H(X) + δ) <

k + 1

n

}
.

Then it is not hard to verify that

Pr

{
− 1

n
ln p(Xn) ≥ H(X) + δ

}
=

∫
− 1
n ln p(xn)≥H(X)+δ

p(xn)dxn

=

∞∑
k=0

∫
xn∈Bk

p(xn)dxn

=

∞∑
k=0

∫
xn∈Bk

f−1
λ (xn)fλ(xn)p(xn)dxn

=

∞∑
k=0

∫
xn∈Bk

fλ(xn)p(xn)

× exp

{
−n
[
− 1

n
λ ln p(xn)− ln

∫
p−λ+1(y)dy

]}
dxn

≤
∞∑
k=0

∫
xn∈Bk

fλ(xn)p(xn)dxn

× exp

{
−n
[
λ(H(X) + δ +

k

n
)− ln

∫
p−λ+1(y)dy

]}
= e−nrX(δ)

∞∑
k=0

e−λk
∫

xn∈Bk

fλ(xn)p(xn)dxn (2.28)

where the last equality is due to (2.27). At this point, we invoke
the following central limit theorem of Berry and Esseen [2,
Theorem 1.2].

Lemma 1. Let V1, V2, · · · be independent real random vari-
ables with zero means and finite third moments, and set

σ2
n =

n∑
i=1

EV 2
i .



Then there exists a universal constant C < 1 such that for
any n ≥ 1,

sup
−∞<t<+∞

|Pr{
n∑
i=1

Vi ≤ σnt} − Φ(t)| ≤ Cσ−3
n

n∑
i=1

E|Vi|3,

where Φ(t) = (2π)−1/2
∫ t
−∞ e−u

2/2du.

Note that with λ = r′X(δ), we have δ = δ(λ) and hence∫
fλ(x)p(x)[− ln p(x)]dx = H(X) + δ .

Consider now an IID random variables Z1, Z2, · · · , Zn with
pmf or pdf fλ(z)p(z) (as the case may be). Applying Lemma 1
to the IID sequence {− ln p(Zi)− (H(X) + δ)}ni=1, we then
have ∫

xn∈Bk

fλ(xn)p(xn)dxn

≤ 1√
2π

∫ 1√
nσH (X,λ)

0

e−
t2

2 dt+ 2C
1√
n

MH(X,λ)

σ3
H(X,λ)

≤ 1√
n

(
1√

2πσH(X,λ)
+

2CMH(X,λ)

σ3
H(X,λ)

)
(2.29)

for any k ≥ 0. Combining (2.29) with (2.28) yields

Pr

{
− 1

n
ln p(Xn) ≥ H(X) + δ

}
≤

(
1√

2πσH(X,λ)
+

2CMH(X,λ)

σ3
H(X,λ)

) ∞∑
k=0

e−λk

× e−nrX(δ)− 1
2 lnn

=
1

1− e−λ

(
1√

2πσH(X,λ)
+

2CMH(X,λ)

σ3
H(X,λ)

)
× e−nrX(δ)− 1

2 lnn . (2.30)

This completes the proof of (2.24).
To prove (2.25), note that for any d > 0

Pr

{
− 1

n
ln p(Xn) ≥ H(X) + δ

}
≥

∫
0≤− 1

n ln p(xn)−(H(X)+δ)< d
n

p(xn)dxn

=

∫
0≤− 1

n ln p(xn)−(H(X)+δ)< d
n

f−1
λ (xn)fλ(xn)p(xn)dxn

≥ e−nrX(δ)−λd

×
∫

0≤− 1
n ln p(xn)−(H(X)+δ)< d

n

fλ(xn)p(xn)dxn .(2.31)

Applying Lemma 1 to the IID sequence {− ln p(Zi) −

(H(X) + δ)}ni=1 again, we have

∫
0≤− 1

n ln p(xn)−(H(X)+δ)< d
n

fλ(xn)p(xn)dxn

≥ 1√
2π

∫ d√
nσH (X,λ)

0

e−
t2

2 dt− 2C
1√
n

MH(X,λ)

σ3
H(X,λ)

≥ 1√
n

(
d√

2πσH(X,λ)
e
− d2

2nσ2
H

(X,λ) − 2CMH(X,λ)

σ3
H(X,λ)

)
(2.32)

which, combined with (2.31), implies (2.25). This completes
the proof Part (a) of Theorem 2.

Applying Lemma 1 directly to the IID sequence
{− ln p(Xi) −H(X)}ni=1, we get (2.26). This completes the
proof of Theorem 2.

0 t

Pr

1

CuE[e−λ ln p(Xn)]√
n

Pr
{
e−λ ln p(Xn) ≥ t

} ∆
=f(t)

enλ(H(X)+δ) enλ(H(X)+δ+ k
n )

(a) Upper Bound

0 t

Pr

1

ClE[e−λ ln p(Xn)]√
n

Pr
{
e−λ ln p(Xn) ≥ t

} ∆
=f(t)

enλ(H(X)+δ+ d
n )

(b) Lower Bound

Fig. 2. Graphical interpretation of the strong right NEP

Graphical interpretation of the strong right NEP: Figure 2
provides a graphical interpretation of the upper and lower
bounds in the strong right NEP. For the upper bound (2.24),



as illustrated in Figure 2(a), we have

Pr
{
e−λ ln p(Xn) ≥ enλ(H(X)+δ)

}
=

∞∑
k=0

(
Pr
{
e−λ ln p(Xn) ≥ enλ(H(X)+δ+ k+1

n )
}

− Pr
{
e−λ ln p(Xn) ≥ enλ(H(X)+δ+ k

n )
})

∆
=

∞∑
k=1

hk

and

hke
nλ(H(X)+δ+ k

n )︸ ︷︷ ︸
area of the kth rectangle

≤
enλ(H(X)+δ+ k

n
)∫

enλ(H(X)+δ+ k+1
n

)

tdf(t)

︸ ︷︷ ︸
area of the kth slice under the curve

=

enλ(H(X)+δ+ k
n

)∫
enλ(H(X)+δ+ k+1

n
)

t

− ∫
xn:e−λ ln p(xn)=t

p(xn)dxn

 dt

=

enλ(H(X)+δ+ k+1
n

)∫
enλ(H(X)+δ+ k

n
)

 ∫
xn:p−λ(xn)=t

p−λ(xn)p(xn)dxn

 dt

=

∫
xn∈Bk

p−λ(xn)p(xn)dxn

= E[e−λ ln p(Xn)]

∫
xn∈Bk

fλ(xn)p(xn)dxn

≤ CuE[e−λ ln p(Xn)]√
n

where Cu =
(

1√
2πσH(X,λ)

+ 2CMH(X,λ)
σ3
H(X,λ)

)
. In a similar man-

ner, for the lower bound (2.25), as illustrated in Figure 2(b),
we have

Pr
{
e−λ ln p(Xn) ≥ enλ(H(X)+δ)

}
≥ Pr

{
e−λ ln p(Xn) ≥ enλ(H(X)+δ)

}
− Pr

{
e−λ ln p(Xn) ≥ enλ(H(X)+δ+ d

n )
}

∆
= hd

and

hde
nλ(H(X)+δ+ d

n )︸ ︷︷ ︸
area of the rectangle

≥
enλ(H(X)+δ)∫

enλ(H(X)+δ+ d
n

)

tdf(t)

︸ ︷︷ ︸
area of the slice marked in yellow

=

∫
0≤− 1

n ln p(xn)−(H(X)+δ)< d
n

p−λ(xn)p(xn)dxn

= E[e−λ ln p(Xn)]

×
∫

0≤− 1
n ln p(xn)−(H(X)+δ)< d

n

fλ(xn)p(xn)dxn

≥ ClE[e−λ ln p(Xn)]√
n

where Cl =

(
d√

2πσH(X,λ)
e
− d2

2nσ2
H

(X,λ) − 2CMH(X,λ)
σ3
H(X,λ)

)
.

Remark 1. In view of the proof of Theorem 2, it is easy to
see that the upper bound in (2.24) can be replaced with the
following improved version:[ ∞∑

k=0

e−λk√
2πσH(X,λ)

e
− k2

2nσ2
H

(X,λ)

+
1

1− e−λ
2CMH(X,λ)

σ3
H(X,λ)

]
× e−nrX(δ)− 1

2 lnn (2.33)

The probability that − 1
n ln p(Xn) is away from H(X) to

the left can be bounded similarly. Define

λ∗−(X)
∆
= sup

{
λ ≥ 0 :

∫
pλ+1(x)dx <∞

}
. (2.34)

Suppose that
λ∗−(X) > 0 . (2.35)

Define for any δ ≥ 0

rX,−(δ)
∆
= sup
λ≥0

[
λ(δ −H(X))− ln

∫
pλ+1(x)dx

]
and for any λ ∈ [0, λ∗−(X))

δ−(λ)
∆
=

∫
pλ+1(x)[∫
pλ+1(y)dy

] [ln p(x)] dx+H(X) .

Then under the assumption (2.5), δ−(λ) is strictly increasing
over λ ∈ [0, λ∗−(X)) with δ−(0) = 0. Let

∆∗−(X) = lim
λ↑λ∗−(X)

δ−(λ) .

Following the proof of Theorem 1, we have that rX,−(δ) is
strictly increasing, convex, and continuously differentiable up
to any order over δ ∈ [0,∆∗−(X)), and furthermore

rX,−(δ) = λ(δ −H(X))− ln

∫
pλ+1(x)dx

with λ = r′X,−(δ) satisfying

δ−(λ) = δ .



Define

σ2
H,−(X,λ)

∆
=

∫
pλ+1(x)[∫
pλ+1(y)dy

] |− ln p(x)− (H(X)− δ−(λ))|2 dx

and

MH,−(X,λ)

∆
=

∫
pλ+1(x)[∫
pλ+1(y)dy

] |− ln p(x)− (H(X)− δ−(λ))|3 dx .

In parallel with Theorems 1 and 2, we have the following
result, which is referred to as the left NEP with respect to
H(X) and can be proved similarly.

Theorem 3 (Left NEP). For any positive integer n,

Pr

{
− 1

n
ln p(Xn) ≤ H(X)− δ

}
≤ e−nrX,−(δ) . (2.36)

Furthermore, under the assumptions (2.35) and (2.5), the
following also hold:

(a) There exists a δ∗ > 0 such that for any δ ∈ (0, δ∗]
and any positive integer n,

rX,−(δ) =
1

2σ2
H(X)

δ2 +O(δ3) (2.37)

and hence

Pr

{
− 1

n
ln p(Xn) ≤ H(X)− δ

}
≤ e

−n( δ2

2σ2
H

(X)
+O(δ3))

. (2.38)

(b) For any δ ∈ (0,∆∗−(X)) and any positive integer n

Pr

{
− 1

n
ln p(Xn) ≤ H(X)− δ

}
≤ 1

1− e−λ

[
1√

2πσH,−(X,λ)

+
2CMH,−(X,λ)

σ3
H,−(X,λ)

]
× e−nrX,−(δ)− 1

2 lnn (2.39)

and

Pr

{
− 1

n
ln p(Xn) ≤ H(X)− δ

}

≥ e−λd

 de
− d2

2nσ2
H,−(X,λ)

√
2πσH,−(X,λ)

− 2CMH,−(X,λ)

σ3
H,−(X,λ)


× e−nrX,−(δ)− 1

2 lnn (2.40)

for any d > 0, where λ = r′X,−(δ) > 0.

(c) For any δ ≤ c
√

lnn
n , where c < σH(X) is a

constant,

Q

(
δ
√
n

σH(X)

)
− CMH(X)√

nσ3
H(X)

≤ Pr

{
− 1

n
ln p(Xn) ≤ H(X)− δ

}
≤ Q

(
δ
√
n

σH(X)

)
+
CMH(X)√
nσ3

H(X)
. (2.41)

Remark 2. In parallel with (2.33), the upper bound in (2.39)
can be replaced with the following improved version:[ ∞∑

k=0

e−λk√
2πσH,−(X,λ)

e
− k2

2nσ2
H,−(X,λ)

+
1

1− e−λ
2CMH,−(X,λ)

σ3
H,−(X,λ)

]
× e−nrX,−(δ)− 1

2 lnn (2.42)

III. NEP APPLICATION TO FIXED RATE SOURCE CODING

Assume that the source alphabet X is finite. In this section,
we make use of the NEP with respect to H(X) to establish
a non-asymptotic fixed rate source coding theorem, which
reveals, for any finite block length n, a complete picture about
the tradeoff between the minimum rate of fixed rate coding of
X1 · · ·Xn and error probability when the error probability is a
constant, or goes to 0 with block length n at a sub-polynomial
n−α, 0 < α < 1, polynomial n−α, α ≥ 1, or sub-exponential
e−n

α

, 0 < α < 1, speed. We begin with the definition of fixed
rate source code.

Definition 1. Given a source from alphabet X , a fixed rate
source code with coding length n is defined as a mapping
i : Sn → {1, 2, . . . , |Sn|}, where Sn is a subset of Xn.
The performance of the code is measured by the rate Rn =
1
n ln |Sn| (in nats) and error probability εn = Pr {Xn /∈ Sn}.

As can be seen from the definition, the design of a fixed
rate source code is equivalent to picking a subset of Xn. Given
the source statistics p(x), one can easily show that the optimal
way to pick Sn is to order xn in the non-increasing order of
p(xn), and include those xn with rank less than or equal to
|Sn|. Then we have the following non-asymptotic fixed rate
source coding theorem, the proof of which can be found in
[3].

Theorem 4. Let Rn denote the minimum rate (in nats) of fixed
rate coding of X1X2 · · ·Xn subject to the error probability
εn. Under the assumptions (2.2) and (2.5), we have for any
n,

δ ≥ Rn −H(X) ≥ δ − rX(δ)− lnn

2n
−O(n−1) (3.1)

whenever ∣∣∣∣ ln εnn + rX(δ) +
lnn

2n
+

lnλ

n

∣∣∣∣ ≤ O(n−1) (3.2)



for Ω
(

1√
n

)
= δ ≤ ln |X | − H(X), where λ = r′X(δ). In

particular, the following hold, depending on whether εn is a
constant, or how fast εn goes to 0.

(a) Let δ be a constant with respect to n. Then

r
(inv)
X

(
− ln εn

n
− lnn

2n

)
+O(n−1)

≥ Rn −H(X)

≥ r
(inv)
X

(
− ln εn

n
− lnn

2n

)
+

ln εn
n
−O(n−1)

(3.3)

whenever εn decreases exponentially with respect to n,
where r(inv)

X (·) is the inverse function of rX(·).

(b) Let δ = σH(X)
√

2α lnn
n for some α > 0. Then

σH(X)

√
2α lnn

n
≥ Rn −H(X)

≥ σH(X)

√
2α lnn

n
−
(

1

2
+ α

)
lnn

n
−O(n−1)

(3.4)

whenever
εn = Θ

(
n−α√
lnn

)
. (3.5)

(c) Let δ = c√
n

for a constant c. Then

c√
n
≥ Rn −H(X) ≥ c√

n
− lnn

2n
−O(n−1) (3.6)

whenever ∣∣∣∣εn −Q( c

σH(X)

)∣∣∣∣ ≤ CMH(X)√
nσ3

H(X)
(3.7)

where Q(t) = 1√
2π

∫∞
t
e−u

2/2du, and C < 1 is the
universal constant in the central limit theorem of Berry
and Esseen.

Remark 3. To show Theorem 4 provides a non-trivial bound,
we claim that

δ > rX(δ)

for 0 < δ < ln |X | − H(X). Indeed, recall the definition of
δ(λ) and

0 ≤ rX(δ(1)) = H(X) + δ(1)− ln |X |

which implies that δ(1) ≥ ln |X | − H(X) or r′X(δ) < 1 for
0 < δ < ln |X | −H(X). The claim then follows immediately
from the fact that rX(0) = 0.

Remark 4. In Part (c) of Theorem 4, we can see that if c <
0 is selected, then Rn could be less than H(X) while εn

approaches a constant Q
(

c
σH(X)

)
! This means that if the error

probability is allowed to be a little larger than 0.5, the rate of
source code can be even less than the entropy rate. For an IID
binary source with p = Pr{X1 = 1} = 0.12, Figure 3 shows
the tradeoff between the error probability and block length

when the code rate is 0.21% below the entropy rate, where
in Figure 3, both the entropy rate and code rate are expressed
in terms of bits. As can be seen from Figure 3, at the block
length 1000, the error probability is around 0.65, and the code
rate is 0.21% below the entropy rate. Similar phenomenon can
be seen for channel coding shown in [4].

Remark 5. Related to Part (c) of Theorem 4 is the second
order source coding analysis in [6] with a fixed error proba-
bility 0 < ε < 1. Both results are concerned with the scenario
where the rate is around the entropy rate in the order of 1√

n
and the error probability is a constant. However, the work
in [6] is asymptotic, while Part (c) of Thereom 4 part (c) is
non-asymptotic and valid for any block length n. Moreover,
Thereom 4 also shows the tradeoff between the rate and error
probability when the error probability approaches 0 with block
length n at an exponential (part (a)), a polynomial (part (b)),
or other (e.g. sub-exponential, sub-polynomial) speed, which
can be derived directly from (3.1) and (3.2).
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Fig. 3. Tradeoff between the error probability and block length when the
rate is below the entropy rate with p = 0.12
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