
Error Correction on an Insertion/Deletion Channel
Applying Codes From RFID Standards

Guang Yang†, Ángela I. Barbero‡, Eirik Rosnes†, and Øyvind Ytrehus†
†Department of Informatics, University of Bergen, N-5020 Bergen, Norway

(e-mail:{guang.yang,eirik,oyvind}@ii.uib.no)
‡Department of Applied Mathematics, University of Valladolid, 47011 Valladolid, Spain

(e-mail: angbar@wmatem.eis.uva.es)

Abstract—This paper1 investigates how to improve the perfor-
mance of a passive RFID tag-to-reader communication channel
with imperfect timing, by using codes mandated by international
RFID standards.

I. SHORTCUT

This brief section is intended for those who want to skip
the practical motivation and jump directly to the theoretical
problem setting.

Essentially, we have a binary channel which transmits
information in terms of the length of runs of identical symbols.
The valid runlengths are one or two, and if the receiver
can determine exactly the time of each transition, she can
also acquire the transmitted information sent. Due to a noisy
process and with probability p, a given length-one run is
detected as a length-two run, in which case a symbol has
been inserted. Vice versa, with probability p, a given length-
two run is detected as a length-one run, in which case a
symbol has been deleted. Thus, this is a special case of an
insertion/deletion channel.

The uncoded information is totally vulnerable to the noise
of this channel. In order to protect the information, an error
correction code is applied. In this paper, the error correcting
code is actually a CRC-CCITT code, mandated by many inter-
national standard protocols (but intended for error detection).

Now, if you also know about cyclic redundancy check
(CRC) codes, you can go to Section VI if you want to skip
the introduction.

II. INTRODUCTION

Inductive coupling is a technique by which energy from
one circuit is transferred to another without wires. This is a
fundamental technology for near-field passive radio frequency
identification (RFID) applications as well as lightweight sensor
applications. In the passive RFID application, a reader, con-
taining or attached to a power source, controls and powers a
communication session with a tag; a device without a separate
power source. The purpose of the communication session
may be, for examples, object identification, access control, or
acquisition of sensor data.

1This work was supported by NFR through the ICC:RASC project, and by
the project MTM2010-21580-C02-02.

The operating range of a reader-tag pair is determined by
communications requirements as well as by power transfer
requirements. To meet the communications requirements, the
reader-to-tag and the tag-to-reader communication channels
satisfy specified demands on communication transfer rate
and reliability. To meet the power transfer requirements, the
received power at the tag must be sufficiently large as to
provide operating power at the tag.

In [1], a discretized Gaussian shift channel is proposed as
a modified bit-shift channel to model synchronization loss.
In this paper, we will apply the same model to the tag-to-
reader channel. In terms of coding, the practical difference is
that the tag-to-reader channel allows more elaborate decoding
schemes, especially since the volume of data transmitted and
the transmission rates are modest.

We will investigate the performance of Manchester coding,
which is a standardized modulation technique for RFID appli-
cations. As a stand-alone code this code was studied in [1].
Here, we will consider the performance when the Manchester
code is used together with a CRC code, which is also mandated
by many RFID standards for use in automatic-repeat-request
(ARQ) protocols.

III. SYSTEM MODEL OF THE TAG-TO-READER CHANNEL

A coding strategy for the communication from a tag to a
reader is depicted in Figure 1. The encoder structure of the
tag is a serial concatenation of a CRC code as the outer
code and a modulation code as the inner code. In more
detail, an information source generates k bits of information
u = (u1, . . . , uk), which are first encoded by a CRC outer
code to a codeword v = (v1, . . . , vm). We use the CRC-
CCITT code for the outer CRC code, since it is mainly used
in RFID standards. The codeword v = (v1, . . . , vm) of the
outer code is then passed through the modulation encoder to
produce a coded frame c = (c1, . . . , cn) of the overall serially
concatenated code. In this paper, we use the Manchester
code as the inner modulation code, since it is popular in
many communication protocols. The Manchester code is a
very simple block code that maps 0 into 01 and 1 into 10.
Since the Manchester code is a rate-1/2 code, it follows that
n = 2m. Finally, the encoded frame c is transmitted through
the discretized Gaussian shift channel. This channel model

Tag

Reader

Modulation !
Encoder

v cu

zu'

CRC!
Encoder

c'

Joint Trellis!
Based Decoder

CRC!
Demapper

Modulation!
Demapper

Discretized !
Gaussian!
Shift Channel

Fig. 1. System model.

was used to model synchronization errors in the reader-to-tag
channel in a recent paper [1] and will be explained in detail
in Section V below.

At the receiver side, the received binary sequence, denoted
by z, is decoded using a joint trellis for the overall serially
concatenated code. In particular, the decoder uses a stack al-
gorithm to estimate the most likely transmitted frame c′ based
on the joint trellis structure of the overall code. Finally, the
most likely transmitted frame c′ is mapped to an information
sequence u′ (the estimate of u) using the encoder mapping of
the Manchester code and that of the CRC code.

IV. THE CRC-CCITT CODE

CRC codes are shortened cyclic codes that, due to the
existence of simple and efficient encoders, gained popularity
and entrance into standard ARQ protocols, i.e., error detection.
The CRC-CCITT code is used in HDLC (or ISO/IEC 13239),
ISO 14443 (proximity RFID), and other RFID standards like
ISO/18000-7 (DASH 7) and ISO 11784/5. In more detail,
the CRC-CCITT code is a shortened cyclic code [2, p. 183]
generated by the polynomial

g(x) = x16 + x12 + x5 + 1.

For the theoretically inclined, the code is a shortened even-
weight subcode of a cyclic Hamming code. The natural length
N of the cyclic code corresponding to g(x) is 215−1, but the
CRC is usually used with much shorter block lengths (in which
case it turns out [3, 4] that the generator polynomials are not
the best possible with respect to the probability of undetected
error).

The use of the CRC-CCITT code as an error correcting code
on the binary erasure channel was considered in [5]. Here, we
will use it for dealing with insertions/deletions.

V. THE DISCRETIZED GAUSSIAN SHIFT CHANNEL

We introduced the discretized Gaussian shift channel in [1]
in order to model a practical channel where performance is
limited by incorrect timing. Such behavior has been observed
in some inductively coupled channels.

Consider a binary channel with input x = (x1, . . . , xL),
where by assumption the value of x1 is known to the receiver,
and binary output z = (z1, . . . , zl′), where l′ is related to but
not necessary equal to l.

The binary input sequence x can be viewed as a sequence
of phrases, where each phrase is a consecutive sequence of
equal bits. Please observe that this parsing of x is done
by the channel (and not by an encoder). Then, the integer
sequence of phrase lengths x̃ is transmitted over a channel.
For instance, x = (0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1) is transformed
into the integer sequence x̃ = (2, 3, 3, 4) of phrase lengths.

Suppose the tag transmits a run of x̃ consecutive equal
symbols (or bits). This corresponds to an amplitude modulated
signal of duration x̃. At the reader, we assume that this is
detected (according to the reader’s internal clock) as having
duration

ỹ = x̃ ·K

where K is a random variable with, in general, a Gaussian
distribution N (α, ε2) with mean α and variance ε2. Consecu-
tive samplings of K are assumed to be independent. If α 6= 1,
it means that the reader has a systematic drift, which may
affect the reader’s ability to function at all. Thus, we will
focus on the case α = 1. With this definition, the input to the
demodulator will be a sequence of alternating runs of high
and low amplitude values; the detected duration ỹ of each run
being a real-valued number.

As a simplification, and to deal with the fact that ỹ may
become negative (K has a Gaussian distribution), which of
course does not have any physical interpretation, the timing
is discretized and K is truncated. The optimal choice for the
quantization thresholds, i.e., the thresholds when mapping the
real-valued numbers ỹ to positive integers z̃ , will depend on
the code under consideration.

In general, let Q(A, T) denote a quantization scheme with
quantization values A = {a1, . . . , a|A|}, where 1 ≤ a1 <
· · · < a|A| ≤ L, and L is some positive integer, and quantiza-
tion thresholds T = {t2, . . . , t|A|}, where al ≤ tl+1 ≤ al+1,
l = 1, . . . , |A| − 1. The quantization scheme works in the
following way. Map a received real-valued number ỹ to an
integer z̃ in A using quantization thresholds in T , i.e., if
the received real-valued number ỹ is in the range [tl, tl+1),
l = 2, . . . , |A| − 1, map it to z̃ = al, if it is in the range
[t|A|,∞), map it to z̃ = a|A|, and, otherwise, map it to z̃ = a1.
Now, we define the discretized Gaussian shift channel with
quantization scheme Q(A, T) as the cascade of the Gaussian
shift channel and the quantization scheme Q(A, T), where
the quantization scheme Q(A, T) is applied to the real-valued
sequence at the output of the Gaussian shift channel.

In [1], two different quantization schemes were proposed,
denoted by Qrounding and Q(A). The quantization scheme
Qrounding is based on rounding the received values to the
nearest positive integer values, while the second quantization
scheme has quantization thresholds tl = 2al−1al/(al−1 + al),
l = 2, . . . , |A|. Here, A will be the positive integers. The
reason to choose this quantization scheme will be evident later

on, during the proof of Theorem 1.

A. The Discretized Gaussian Shift Channel as an Inser-
tion/Deletion Channel

When Manchester encoding with hard-decision decoding
is applied on top of the discretized Gaussian shift channel,
we get a special case of an insertion/deletion channel. In the
following, we will use the quantization scheme Q([1, 2]) with
the Manchester code. Then, received runlengths are either 1
or 2, and a single quantization threshold of 4/3 is used. The
specialization occurs in that the information is transmitted in
terms of the times of transitions between runs of zeros and
runs of ones. Thus, an insertion of a symbol happens only
when a run of length one is detected as having length two,
and a deletion of a symbol happens only when a run of length
two is detected as having length one.

The general Levenshtein distance [6] between two sequences
of symbols over the same alphabet is defined as the number of
insertions and/or deletions required to transform one sequence
into the other. Decoding using the Levenshtein distance metric
has been considered in several papers in the literature, for
instance, [7] and [8], which address trellis based decoding
approaches. Also, in [9], the performance of linear and cyclic
codes under insertion/deletion channels has been considered.
In this paper, however, we will use a slightly different ap-
proach.

VI. DECODING STRATEGY

The obvious decoding strategy is to decode to the modulated
codeword with smallest Levenshtein distance to the received
sequence. In order to do this efficiently, we shall need a
metric table for the Manchester code on the insertion/deletion
channel.

A. Metric Table for the Manchester Code

The reader receives a sequence z = (z1, . . . , zl′). This
sequence is a channel corrupted version of the transmitted
sequence of bit pairs 01 and 10. Due to the discretized Gaus-
sian shift channel, z may contain some insertion/deletion bits.
For example, the transmitted sequence 01 10 10 is received as
01 10 01 0 if there is an insertion after the fourth bit, while if a
deletion happens at the third bit, 01 01 0 will be received. The
decoder works in the following manner. It checks a previous
bit and estimates a received pair to be either 01 or 10. In
particular, if the previous bit is 1 and 01 is received, 01 could
have been transmitted with no insertion or deletion. On the
other hand, 10 could also have been transmitted and because
of a deletion, 1 01 is received (next bit pair must be 10). The
decoder processes the whole received frame in this manner. In
particular, for each bit pair, the two possible decoding results
lead to different conditions (previous bit and time offset) for
the next bit pair decoding. Thus, combining this decoding
scheme with the outer code’s trellis structure can produce an
efficient decoding procedure.

Fig. 2. Metrics for computing the Levenshtein distance, assuming that the
previous symbol was a 1. The case of 0 as the previous symbol is symmetric
and is omitted. Colour green represents the received symbols that we have
already past decoding. Blue represents the symbols in the decoded sequence
that were received with insertion. Red represents the symbols in the decoded
sequence that were received with deletion. X means that it does not matter
whether the next symbol is 1 or 0.

VII. STACK DECODER

A. Exhaustive Decoding

The goal of the exhaustive decoder is to pick the legal code-
word with the smallest Levenshtein distance to the received
sequence. This can be achieved by computing the Levenshtein
distance between the received sequence and all codewords, and
then choose the one corresponding to the smallest value. Such
a decoder is a maximum-likelihood (ML) decoder.

Theorem 1: In the discretized Gaussian shift channel with
quantization scheme Q([1, 2]) and quantization threshold 4/3,
ML decoding corresponds to picking the legal codeword with
the smallest Levenshtein distance to the received sequence.

Proof: As stated in Section V, a binary sequence x can
be transformed into the integer sequence x̃ of phrase lengths.

In this particular case, a sequence produced by the Manch-
ester code will have only two possible values of phrase
lengths, namely 1 or 2, and the only possible errors are either
insertions, in the case of a phrase length 1 that transforms
into one of length 2, or deletions in case a run of length 2
is perceived as one of length 1. Hence, we can represent the
vector of errors as a binary vector, where 0 represents that the
corresponding runlength in x̃ has not been modified, while
1 represents an insertion in case the corresponding element
in x̃ was 1, but was received as 2, or a deletion in case the
corresponding element in x̃ was 2, but was received as 1.

For example, if the transmitted sequence is x =
(0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0), then x̃ = (1, 2, 1, 2, 2, 1, 2)
and an error vector e = (0, 1, 1, 0, 0, 1, 0) will give
as a result a received sequence of runlengths z̃ =
(1, 1, 2, 2, 2, 2, 2), or equivalently, the received sequence is
z = (0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0), meaning the second run of
bits experienced a deletion, the third run an insertion, and the
sixth run an insertion.

In this context, the Levenshtein distance between the sent
and the received sequences equals the Hamming weight of the
binary error vector e.

In order to prove the theorem we will establish that the
probability of a given error vector decreases with its weight,
hence the error vectors with smaller weight are more probable.

We need to introduce some notation. Let PI(ε) be the
probability of insertion (which depends of course on the
variance ε2), that is, the probability that a runlength x̃i = 1
is perceived as a runlength z̃i = 2. Since ỹi = x̃i · K
with K following a Gaussian distribution N (α, ε2), and the
quantization threshold is t2 = 4/3, we have

PI(ε) = P (z̃i = 2|x̃i = 1) = P (ỹi ≥ 4/3|x̃i = 1)

= P (ỹi = 1 ·K ≥ 4/3) = P (K ≥ 4/3).

Note that since consecutive samplings of K are independent,
the insertion probability does not depend on the index i.

In the same way, let PD(ε) be the probability that a given
runlength x̃i = 2 experiences a deletion. Again, it can be
computed as

PD(ε) = P (z̃i = 1|x̃i = 2) = P (ỹi < 4/3|x̃i = 2)

= P (ỹi = 2 ·K < 4/3) = P (K < 2/3).

Because of the symmetry of the normal distribution we have
PI(ε) = PD(ε) = p < 1/2.

Finally,

P (error vector = e) = pw(e)(1− p)l−w(e)

where l is the length of the runlength sequence x̃ and w(·) is
the Hamming weight of its argument.

Hence, given a received sequence, ML decoding corre-
sponds to picking the most likely codeword which, according
to the last last formula, will be the codeword at shortest
Levenshtein distance from the received sequence (error vector
e with smallest Hamming weight).

Please observe that the proof uses the fact that PD(ε) =
PI(ε), which is guaranteed by the choice of the quantization
threshold. A different choice of threshold will unbalance the
two probabilities and the result might not be true. For example,
suppose PI(ε) = 0.49 and PD(ε) = 0.01 and the received
sequence is z = (0, 0, 1, 1, 0), so that the quantized runlength
sequence is z̃ = (2, 2, 1). Suppose also that x = (0, 1, 0) and
x′ = (0, 0, 1, 1, 0, 0) are two legal codewords.

In this case

P (sent = x|received = z) = PI · PI · (1− PI)

= 0.122

P (sent = x′|received = z) = (1− PD) · (1− PD) · PD

= 0.009.

Thus, ML decoding will prefer x even when its Levenshtein
distance to the received sequence is larger than the distance
from the received sequence to the codeword x′.

B. Viterbi Decoding

Inspired by [7–10], we could try to design a Viterbi decoder
for this decoding problem. However, the states of such a
decoder would have to be labelled by 1) the trellis state
corresponding to the CRC code, 2) the previous symbol at the

depth of a path (to determine current runlengths), and 3) the
offset into the received sequence (determined by the number
of assumed preceding insertions-deletions for each path). A
trellis decoder for the CRC code alone has 216 states, so the
total trellis complexity can be very very large (maybe because
of 3) it will be just as bad as exhaustive search).

A further problem with the Viterbi approach is that, at least
in a straightforward implementation, it requires expanding all
states at a given depth before we can proceed to the next one.
This creates a problem if, e.g., 1.001 is received (see the metric
table in Figure 2).

C. Reduced Complexity Stack Decoder

Start with state 0. At each time step, maintain a set of states
with information 1), 2), and 3) above. Expand all of these as
determined by the full trellis (or limited by other constraints).
Heuristic step: Discard those with metrics value exceeding
some predetermined D. This will be a stack decoder, with
D + 1 stacks (one for each metrics value). We proceed by
explaining the algorithm (although some details are omitted).

Let state S be described by 1) a CRC trellis state S.crc, 2)
an input symbol (to determine current runlengths) S.p, 3) an
offset into the received sequences (determined by the number
of preceding insertions-deletions) S.o, 4) a path metric value
S.m, 5) a trellis depth S.d, 6) a back pointer S.b, and 7) a
stack pointer S.s.

Algorithm 1 Stack Decoder
1: /∗ Stack decoder for a systematic code on the discretized

Gaussian shift channel with Manchester inner code. ∗/
2: Start with initial state S and put it on top of stack 0. All

other stacks are empty.
3: while there is a nonempty stack do
4: Let S be the first element of the stack with lowest

number which is not empty. Remove it from the stack.
5: if S.i = the information block length then
6: Add the tail according to S.crc, and compute the

overall Levenshtein metric as S.m + L(tail), where
L(tail) is the additional Levenshtein distance be-
tween the tail and the remaining part of the received
sequence. If better than the record, save it for later.
If less than D, reduce D.

7: else
8: Create two new states S0 and S1 according to:

S0.crc = S.crc and S1.crc = S.crc xored with the
remainder of the division xS.d+16/g(x), Si.p = i,
i = 0, 1, S0.o and S1.o are updated to S.o in addition
to extra offset from metric table, S0.m and S1.m are
updated to S.m plus 0, 1, 2 as given by the metric
tables, Si.d = S.d + 1, i = 0, 1, Si.p = S, i = 0, 1,
and if Si.m ≤ D, store in stack number Si.m by
pushing Si onto that stack.

9: end if
10: end while

In order to simplify the description, the sketch of the

algorithm does not include the case of received sequence 1.100
or 0.011 (see Figure 2). If these cases are not implemented,
they will be the predominant cause of error, so it is essential
to include them in the implementation.

VIII. DISCUSSION: DECODING PERFORMANCE,
COMPLEXITY, CHOICE OF CODES, AND OTHER ISSUES

The CRC code and the Manchester code are not sophisti-
cated code constructions, neither is the concatenation of them.
However, the codes are mandated by standard protocols, so it
is interesting to see how they perform.

Theorem 2: The coded system under study is single error
correcting for any valid information block length.

Proof: Let v1 and v2 be two different codewords in
the CRC code, and let c1 = (c1,1, . . . , c1,n) and c2 =
(c2,1, . . . , c2,n) be their respective Manchester encoded ver-
sions. Assume that there exists a single error that will trans-
form c1 into some received vector z, and another single error
that will transform c2 into the same received vector z. In this
case, if z is received, the decoder will not be able to determine
which codeword was transmitted.

We will assume that both errors are insertions and that
z = (z1, . . . , zn+1); the proof in the case where both are
deletions is similar and will be omitted. Suppose the error that
converts c1 into z is an insertion of a symbol after position
p. More precisely, c1,i = c2,i = zi for 1 ≤ i ≤ p, and
due to the insertion of a symbol, zp+1 = c1,p also. But
c2,p+1 must coincide with zp+1 (otherwise there is already
another insertion error occurring). Since c2,p = c2,p+1, these
symbols must belong to different “Manchester pairs”, and
c2,p+2 = 1 − c2,p+1. But zp+2 = c2,p+2 while c1,p+1 =
zp+2 = 1 − c2,p+1. Thus, by induction, for p < j < q where
q is the position of the other single insertion, we have that
c1,j = 1− c2,j .

For this to happen, we need the subsequences of c1 and
c2 between positions p and q to be alternating sequences,
while c1 and c2 coincide before position p and after position
q. Thus, the CRC codeword v = v1 + v2 is on the form
(0 . . . 01 . . . 10 . . . 0).

Now, the codeword v of the CRC code corresponds to the
polynomial v(x) = xi

∑k
j=0 x

j , for some i and k related to
p and q. v(x) is a codeword in the CRC-CCITT code if and
only if g(x) is a factor of v(x). However, g(x) = (x+1)p(x),
where p(x) is a primitive polynomial. Thus, p(x) (and g(x))
divide x32767+1 = (x+1)

∑32766
i=0 xi, but p(x) (and g(x)) do

not divide xN +1 for N < 32767. Also, g(x) does not divide∑32766
i=0 xi, since the latter polynomial has an odd number of

terms. Hence, there are no codewords in the CRC-CCITT code
on the form (0 . . . 01 . . . 10 . . . 0).

A. Decoding Performance

Figure 3 shows the simulated performance of the coded
system under investigation. The three upper curves correspond
to a stand-alone Manchester code, while the three lower curves
correspond to the concatenated system with the stack decoder

with a maximum selected distance of 4 (i.e., if more than four
errors occur the decoder will always make a decoding error).

As Theorem 2 shows, P (Frame error|single error) =
0. Furthermore, empirically, the simulation indicates that
P (Frame error|two errors occur in frame) is on the order of
10−4.

In Figure 4 we show how the parameter D affects perfor-
mance.

0.08 0.085 0.09 0.095 0.1 0.105 0.11 0.115 0.12
10 10

10 8

10 6

10 4

10 2

100

fra
m

e
er

ro
r r

at
e

Stand alone Manchester code (k=50)
Stand alone Manchester code (k=100)
Stand alone Manchester code (k=200)
Concatenated system (k=50, D=4)
Concatenated system (k=100, D=4)
Concatenated system (k=200, D=4)

Fig. 3. Decoding results for different short frame lengths k, using either
only the Manchester code, or also the CRC code for error correction.

0.08 0.085 0.09 0.095 0.1 0.105 0.11 0.115 0.12
10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

fra
m

e
er

ro
r r

at
e

BDDD = 4
BDDD = 3
BDDD = 2
BDDD = 1

Fig. 4. Decoding results for information frame length k = 200, depending
on Bounded Distance Decoding threshold D (BDDD).

B. Complexity

The stack decoder’s decoding performance is limited by the
maximum distance D. Because of ordering of the stacks, the
number of states per symbol is determined by the number of

errors that actually occurs. Empirically, the average number
A(i, k) of states (created and put on the stack) per decoded bit
with i errors occurring and with an information block of k bits
increases very slightly with k for i = 1, approximately as

√
k

for i = 2, and at a rate slower than k for i = 3. For k = 200,
we have A(0, 200) = 1, A(1, 200) = 3.8, A(2, 200) ≈ 66,
A(3, 200) ≈ 435, and A(4, 200) ≈ 4000, if the line 1.100 of
Figure 2 is not implemented. Otherwise, A(2, 200) ≈ 90.

C. Alternative Choices of Modulation Codes
At ITA 2011 [1], we discussed a similar channel model

but applied for the reader-to-tag channel. In that setting, the
receiver (the tag) has strictly limited computational power.
Thus, it makes sense to protect the information by choosing
a modulation code that limits the amount of errors, rather
than allowing many errors that the receiver can decode (at
a considerable computational effort).

Some of the modulation codes described in [1] might be
candidates also for a tag-to-reader channel, as alternatives to
the Manchester code mandated by most standards. However,
the concatenated decoder structure might be messier than what
is described in this paper.

D. Alternative Choices of Error Correcting Codes
There are recent code constructions targeted specifically

at insertion/deletion channels (see, e.g., [9, 11]). However,
such codes have much lower code rates than the CRC codes.
Finding better codes in this case is an open problem.

E. Soft Decoding
A similar decoding can in principle be applied to a channel

output quantized to more levels, at the expense of bigger

decoding tables and an increase in decoder complexity. It is
an open question whether or how much this could improve the
decoding performance.

REFERENCES

[1] A. I. Barbero, E. Rosnes, G. Yang, and Ø. Ytrehus, “Constrained codes
for passive RFID communication,” in Proc. Inf. Theory Appl. Workshop
(ITA), San Diego, CA, Feb. 2011, pp. 496–504.

[2] S. Lin and D. J. Costello, Jr., Error Control Coding, Second Edition.
Upper Saddle River, NJ: Pearson Prentice Hall, 2004.

[3] T. Kløve, Codes for Error Detection. Singapore: World Scientific
Publishing Co., 2007.

[4] K. Witzke and C. Leung, “A comparison of some error detecting CRC
code standards,” IEEE Trans. Commun., vol. 33, no. 9, pp. 996–998,
Sep. 1985.

[5] E. Rosnes, G. Yang, and Ø. Ytrehus, “Exploiting the CRC-CCITT code
on the binary erasure channel,” in Proc. 6th Int. Symp. Turbo Codes and
Iterative Information Processing, Brest, France, Sep. 2010, pp. 344–348.

[6] V. I. Levenshtein, “Binary codes capable of correcting deletions, inser-
tions and substitutions of symbols,” Dokl. Akad. Nank. SSSR, vol. 163,
pp. 845–848, 1965.

[7] L. Cheng and H. C. Ferreira, “Rate-compatible pruned convolutional
codes and Viterbi decoding with the Levenshtein distance metric applied
to channels with insertion, deletion, and substitution errors,” in Proc.
7th IEEE AFRICON Conf., vol. 1, Gaborone, Botswana, Sep. 2004, pp.
137–143.

[8] L. Cheng, H. C. Ferreira, and T. G. Swart, “Bidirectional Viterbi
decoding using the Levenshtein distance metric for deletion channels,”
in Proc. Inf. Theory Workshop (ITW), Chengdu, China, Oct. 2006, pp.
254–258.

[9] K. A. S. Abdel-Ghaffar, H. C. Ferreira, and L. Cheng, “Correcting
deletions using linear and cyclic codes,” IEEE Trans. Inf. Theory, vol. 56,
no. 10, pp. 5223–5234, Oct. 2010.

[10] T. Mori and H. Imai, “Viterbi decoding considering insertion/deletion
errors,” in Proc. Int. Symp. Inf. Theory (ISIT), Whistler, BC, Canada,
Sep. 1995, p. 145.

[11] Ø. Ytrehus, “On codes for error correction and block synchronization,”
in Proc. 39th Annual Allerton Conf. Commun., Control, and Computing,
Monticello, IL, Oct. 1997, pp. 432–439.

