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Abstract—This paper derives a tight asymptotic upper bound
on the maximum volume M∗(n, ε) of length-n codes for memo-
ryless channels subject to an average decoding error probability
ε: M(n, ε) = exp{nC − √

nV Φ−1(ε) + 1
2
log n + An,ε + o(1)}

where C is Shannon capacity, V is channel dispersion, Φ is the
tail probability of the normal distribution, and An,ε is a bounded
sequence that can be explicitly identified and reduces to a con-
stant in the nonlattice case. A matching lower bound is presented,
differing from the upper bound by a small multiplying constant.
These expressions hold under certain regularity assumptions on
the channel.

I. INTRODUCTION

Shannon’s seminal paper [1] introduced the fundamental
capacity limits for memoryless communication channels. For
any channel code of length n and tolerable decoding error
probability ε, the maximum volume of the code is given by
M∗(n, ε) = enC+o(n). The o(n) is significant for practical
values of n, hence much effort went into characterizing it
in the early 1960’s [2], [3], [4], [5]. In particular, Strassen
[5] discovered that, under regularity assumptions, the o(n)
term is of the form −√

nV Φ−1(ε) + O(log n) where Φ is
the tail probability of the normal distribution and V is the
channel dispersion, or second-order coding rate. This line of
research seemed forgotten until new ideas revived it, almost
half a century later [6], [7]. The sharpest general result to date
is

M∗(n, ε) = exp{nC −
√
nV Φ−1(ε) +O(log n)} (1)

subject to some regularity conditions on the channel law.
The appeal of asymptotic expansions such as (1) is that (i)

they convey significant insights into the essence of the problem
and (ii) they are practically useful as the remainder O(·) term
can be bounded and often neglected for moderate values of n,
as demonstrated in [6].

Still there remains much mystery regarding the third term in
(1), which has been characterized only for the binary symmet-
ric channel (BSC) where it is 1

2 logn [6]. For the additive white
Gaussian channel, the third term is sandwiched between O(1)
and 3

2 logn + O(1). For the binary erasure channel (BEC),
the third term is O(1). For discrete memoryless channels
with finite input alphabet X , under regularity assumptions
on the channel law, the third term can be upper-bounded
by 1

2 (|X | − 1) logn. The third term is often significant for
moderate values of n.

This motivates a more refined analysis of the problem, in
which asymptotic equalities for the relevant error probabilities
are obtained using strong large-deviations analysis, which are
closely related to Laplace’s method for asymptotic expansion
of integrals. A strong large-deviations analysis provides an
asymptotic expansion for the probability of rare events such
as
∑n

i=1 Ui ≥ na where {Ui, 1 ≤ i ≤ n} are independent and
identically distributed (iid) random variables, and a is strictly
larger than the mean of U1 [9], [10]. In contrast, the classi-
cal (“weak”) large-deviations analysis merely states that the
aforementioned probability vanishes as exp{−nΛ(a) + o(n)}
where Λ(·) denotes the large-deviations function for U 1.

Using this approach, we establish that the third term in
the asymptotic expansion of (1) is 1

2 logn in a very general
setting. To do so, we derive a new result on conditional
strong large-deviations analysis. We even obtain the fourth
term in the expansion, which is a constant when the underlying
loglikelihood random variables are of the nonlattice type and a
bounded oscillating function of n otherwise. The quest for that
term requires a precise characterization of the asymptotics of
channel fluctuations. To this end we use two-term Edgeworth
expansions [13], [14], [15], [16] in this regime and more
specifically in work by Cramér [17] and Esseen [12] during the
1930’s and 1940’s. The Berry-Esseen theorem [14] was used in
[5], [6] and provides a bound for deviation from Gaussianity,
but that bound is not sharp enough for our purposes.

All the analysis and results in this paper are based on
asymptotics. Only two inequalities are used. The first is the
classical union-of-events bound, which is used for analysis
of our random-coding scheme and turns out to be remark-
ably tight. The second inequality is one introduced in [6]
for proving converse theorems: it provides an upper bound
for M ∗(n, ε) in terms of a maxmin optimization problem
involving the power of a Neyman-Pearson test at significance
level 1− ε. This is a remarkably powerful idea which can be
traced back to Strassen [5, pp. 711, 712].

In order to keep the presentation focused, we assume broad
regularity conditions on the channels of interest and exclude
among others channels with zero dispersion and channels for
which the capacity-achieving distribution is not (essentially)
unique. Due to space limitations, only sketches of the proofs
are given here; complete derivations are given in the full paper
[8].

Notation. We use uppercase letters for random variables,



lowercase letters for their individual values, calligraphic letters
for alphabets, and boldface letters for sequences. The set of
all probability distributions over a finite set X is denoted
by P(X ). Mathematical expectation with respect to proba-
bility distribution P is denoted by the symbol EP . Given a
distribution P on the random variable X and a conditional
distribution W on another random variable Y given X , we
denote by P × W the joint distribution on (X,Y ) and by
(PW ) the marginal distribution on Y . The indicator function
of a set A is denoted by 1{x ∈ A}. All logarithms are
natural logarithms. The probability density function (pdf) of
the normal random variable is denoted by φ(x), x ∈ R and
its cdf by Φ(x) =

∫ x

−∞ φ.
The symbol f(n) ∼ g(n) denotes asymptotic equality:

limn→∞
f(n)
g(n) = 1. The notations f(n) = o(g(n)) (small oh)

and f(n) = O(g(n)) (big oh) indicate that limn→∞
f(n)
g(n) is

zero and finite, respectively.

A. Definitions

Let X and Y be two finite alphabets. Consider a memo-
ryless channel (W,X ,Y) characterized by input and output
alphabets X and Y and by a conditional probability den-
sity function {W (y|x), x ∈ X , y ∈ Y}. Given an input
probability distribution P on X , denote by (PW )(y) =∑

x∈X P (x)W (y|x), ∀y ∈ Y the output probability distri-
bution. Given X = x, the conditional pdf above will often
be denoted by Wx ∈ P(Y). Kullback-Leibler divergence
between two distributions P and Q on a common alphabet
is denoted by D(P‖Q) � EP [ln

P (X)
Q(X) ], divergence variance

by V (P‖Q) � EP [ln
P (X)
Q(X) ]

2 − D2(P‖Q), and divergence

third moment by T (P‖Q) � EP [ln
P (X)
Q(X) − D(P‖Q)]3.

Given two alphabets X and Y , a X -valued random variable
X distributed as P , and two conditional distributions W
and Q on a Y-valued random variable Y given X , we
denote by D(W‖Q|P ) = EP×W ln W (Y |X)

Q(Y |X) the conditional
KL divergence between W and Q given P , and likewise
by V (W‖Q|P ) and T (W‖Q|P ) the conditional divergence
variance and the conditional divergence third moment.

A real random variable L is said to be of the lattice type
if there exists numbers d and l0 such that L belongs to the
lattice {l0 + kd, k ∈ Z} with probability 1. The largest d for
which this holds is called the span of the lattice, and l0 is the
offset.

The empirical distribution (n-type) on X of a sequence x ∈
Xn is defined by P̂x(x) � 1

n

∑n
i=1 1{xi = x}, x ∈ X . We

denote by T [P ] the set of all sequences of type P (type class),
by UX|P the uniform distribution over type class T [P ], and
by Pn(X ) ⊂ P(X ) the set of n-types over X .

Following Gallager [20, p. 17], define the mutual informa-
tion between the events X = x and Y = y as

l(x, y) = log
W (y|x)
(PW )(y)

, x ∈ X , y ∈ Y. (2)

For some DMCs with capacity-achieving distribution, the
random variable l(X,Y ) is of the lattice type. For instance

l(X ;Y ) ∈ {log(2λ), log(2−2λ)} for the BSC with crossover
probability λ 
= {0, 12 , 1} and uniform input distribution;
the span of the lattice is log | λ

1−λ |. However for almost
every asymmetric binary channel, as well as for almost every
nonbinary channel (symmetric or not), l(X ;Y ) is not of the
lattice type. We refer to capacity problems where l(X,Y ) is
of the lattice type as the lattice case. The lattice case is not
considered in this paper.

Let Wx � {W (·|x)} ∈ P(Y) for each x ∈ X . We define
the following moments of the random variable l(X,Y ) with
respect to the joint distribution P×W : the unconditional mean
(= mutual information)

I(P,W ) = EP×W [l(X,Y )]

= D(P ×W‖P × (PW )), (3)

the conditional mean (given X)

D(Wx‖PW ) = EWx [l(x, Y )], x ∈ X ,
the unconditional information variance

Vu(P,W ) = VarP×W [l(X,Y )]

= V (P ×W‖P × (PW )), (4)

the conditional information variance (given X)

V (P,W ) = VarP×W [l(X,Y )|X ]

=
∑
x

P (x)V (Wx‖PW ), (5)

the conditional third central moment (given X)

T (P,W ) =
∑
x

P (x)T (Wx‖PW ), (6)

and the conditional skewness

S(P,W ) =
T (P,W )

[V (P,W )]3/2
. (7)

We also define the nonnegative definite Fisher information
matrix J whose components are

Jxx′(P,W ) � − ∂2I(P,W )

∂P (x)∂P (x′)
, ∀x, x′ ∈ X . (8)

Its rank is at most |X | − 1 but will be equal to |X | − 1 at the
capacity-achieving P under the assumptions of our theorems.
Also define the weighted quadratic norm for zero-mean vectors
h ∈ RX

‖h‖J �
√ ∑

x,x′∈X
Jxx′(P,W )h(x)h(x′). (9)

We also use denote by J † the pseudo-inverse of J and use the
nonnegative quantity

A(P,W ) � 1

V (P,W )

∑
x,x′

∂V (P,W )

∂P (x)

∂V (P,W )

∂P (x′)
J†
xx′(P,W ).

(10)
We denote by ∇V (P,W ) ∈ R|X | the gradient of V (P,W )
with respect to P .



Next, let the triple (X ′, X, Y ) ∈ X 2 × Y be distributed
according to the joint probability law PX′XY (x

′, x, y) =
P (x′)P (x)W (y|x). Define the tilted joint distribution

P̃X′XY (x
′, x, y) � W (y|x′)W (y|x)P (x)P (x′)

(PW )(y)
, (11)

which has the same X ′ and (X,Y ) marginals as PX′XY

but is symmetric in X ′ and X . The random variables A �
ln W (Y |X′)

(PW )(Y ) and B � ln W (Y |X)
(PW )(Y ) are generally dependent

but have the same marginal owing to the symmetry property
above. Denote by

ρ(P ;W ) =
CovP̃ (A,B)√

VarP̃ (A)VarP̃ (B)
∈ [−1, 1] (12)

the normalized correlation coefficient between A and B under
P̃X′XY . For an additive-noise channel, ρ(P ∗,W ) = 0 for the
(uniform) capacity-achieving distribution P ∗. For the Binary
Erasure Channel (BEC), ρ(P ∗,W ) = 1 [8].

B. Shannon Capacity

The message m to be transmitted is drawn uniformly from
the message set Mn = {1, 2, · · · ,Mn}. A code is a pair of
encoder mapping fn : Mn → F ⊂ Xn, x(m) = fn(m), and
decoder mapping gn : Yn → Mn, m̂ = gn(y). The code
has volume (or size) Mn and rate Rn = 1

n logMn. We denote
by M ∗(n, ε) � max{Mn : ∃(fn, gn) : Pe(fn, gn,W ) ≤ ε}
the maximum possible value of Mn for (n, ε) codes under the
average error probability criterion

Pe(fn, gn,W ) � 1

Mn

∑
m∈Mn

∑
y

Wn(y|fn(m))1{gn(y) 
= m}.

Shannon capacity is given by

C = max
P∈P(X )

I(P ;W ) (13)

Problems involving cost constraints on the codewords require
a different treatment and are not considered in this paper.

C. Main Result

Assume the following:
(A1) The maximzer P ∗ of the mutual information in (13)

is unique and X is its support set.
(A2) 0 < V (P ∗;W ) <∞
(A3) |S(P ∗;W )| <∞
(A4) |ρ(P ∗;W )| < 1.

Let

tε � Φ−1(ε), V = V (P ∗,W ), S = S(P ∗;W ),

ρ = ρ(P ∗,W ), A = A(P ∗,W ), (14)

(hence tε > 0 for ε < 1/2) and

Aε =
t2ε
8
A− S

√
V

6
(t2ε − 1) +

1

2
t2ε +

1

2
log(2πV ). (15)

Theorem 1.1: Assume (A1)—(A4) hold. Then logM ∗(n, ε)
satisfies

logM(n, ε)+ log
√
1− ρ2− 1 ≤ logM∗(n, ε) ≤ logM(n, ε)

where in the nonlattice case

M(n, ε) = nC −
√
nV tε +

1

2
logn+Aε + o(1). (16)

The lower bound is achieved by iid random codes drawn from
the distribution

P ∗
n = P ∗ − n−1/2 tε

2
√
V
J(P ∗,W )† · ∇V (P ∗,W ) +O(1/n).

(17)
Here P ∗

n achieves the maximum of the functional

ζn,ε(P,W ) � nI(P ;W )−
√
nV (P ;W )tε (18)

over P ∈ P(X ).

The result applies to a broad variety of channels but not to
all. For instance, we have mentioned below (12) that ρ = 1
for the binary erasure channel (BEC), hence Assumption (A4)
is not satisfied.

A sketch of the derivation of the lower and upper bounds
is presented in Secs. III and IV, respectively. It is unclear
whether the gap 1 − log(1 − ρ2) between lower and upper
bounds should be attributed to the use of random codes, or
to the union bound, or both. Either way, the gap can easily
be computed explicitly via (12) and may be as small as one
nat. Hence random codes perform well, and the union bound
is quite tight.

D. Special Cases

Given a finite input alphabet X , a channel is said to
be cyclic-symmetric if for any input distribution P , the
mutual information I(P ;W ) is invariant to permutations of
{P (x), x ∈ X}. This is the case when for instance, X = Y
and the matrix W (y|x) is circulant Toeplitz [18].

The first two properties below is well known, and the next
three are immediate.

Proposition 1.2: For a cyclic-symmetric channel, the fol-
lowing hold:

(i) The capacity-achieving distribution P ∗ is uniform on
X .

(ii) If |X | = |Y|, the output distribution (P ∗W ) is also
uniform.

(iii) The variance V (Wx‖PW ) and third central moment
T (Wx‖PW ) are independent of x.

(iv) The partial derivatives ∂V (P )
∂p(x)

∣∣∣
P=P∗

are independent

of x. Equivalently, the gradient vector ∇V (P ∗) has
identical components.

(v) P ∗
n = P ∗ + O(1/n) and Δ = 0 in (17) and (??),

respectively.

II. REFINED ASYMPTOTICS

In this section we present three results that are used to
prove the direct coding theorem and the converse. The first
is a known refinement on the Central Limit Theorem (CLT)
[14]. The second is a new strong large-deviations result for
Neyman-Pearson tests. The third is a new conditional strong
large-deviations result.



A. Central Limit Asymptotics

Under some conditions, a normalized sum of independent
random variables converges in distribution to a normal pdf.
Consider first iid random variables Ui, 1 ≤ i ≤ n with
common cdf FU , finite mean μ, variance σ2 > 0, and skewness
S � E[(U − μ)3]/

√
V 3. The normalized random variable

Tn =

∑n
i=1 Ui − nμ√

nσ2

has zero mean and unit variance and converges in distribution
to N (0, 1). Denote by Fn the cdf of Zn. The Cramér-Esséen
theorem [12] [14, p. 538] for non-lattice random variables
states that

Fn(t) = Φ(t)− S

6
√
n
(1− t2)φ(t) + o(1/

√
n) (19)

uniformly in t. Higher-order expansions in terms of successive
powers of n−1/2 can also be derived (Edgeworth expansions
[13], [14], [15], [16]) but a two-term expansion suffices for our
purposes. The Berry-Esseen formula |Fn(t)−Φ(t)| ≤ ζ/V 3/2

6
√
n

(where ζ = E[|U − μ|3] is the absolute third central moment
of U ) which was used in [5], [6] is not sufficiently refined to
yield the sharper asymptotics of interest here.

Let tε and tε,n be the ε-quantiles of Φ and Fn respectively,
i.e.,

Φ(tε) = Fn(tε,n) = ε. (20)

Then the Cornish-Fisher inversion formula [13], [16], [15]
yields

tε,n = tε +
S

6
√
n
(t2ε − 1) + o(n−1/2). (21)

In case Ui, 1 ≤ i ≤ n are independent but have different
distributions, with respective means μi and variances σ2

i such
that Vn � 1

n

∑n
i=1 σ

2
i is bounded away from 0 and ∞ as

n→ ∞, let

Sn =
1
n

∑n
i=1 E[(Ui − μi)

3]

V
3/2
n

. (22)

Then (19) holds with S replaced by Sn [14, pp. 546, 547]. 1

B. Strong Large Deviations for Binary Hypothesis Testing

Lemma 2.1: (Second-order Taylor series expansion of
large-deviations function for binary hypothesis testing.) Con-
sider two probability measures P and Q over a common space
and assume that P is dominated by Q (P � Q). Assume
D = D(P‖Q) and V = V (P‖Q) are positive and finite, and
T = T (P‖Q) is finite. Let Λ(a) = sups[as − κ(s)] where
the cumulant generating function (cgf) κ(s) = lnEQ[(

dP
dQ )s].

Then

Λ(a) = a+
(a−D)2

2V
+O((a−D)3) as a ↑ D. (23)

Proof: see [8].

1Note a typo in [14, Eqn (6.1)], where s2n should be replaced with s3n.

Now let Yi, 1 ≤ i ≤ n be independent random variables
with respective distributions Pi and Qi under hypotheses
H1 and H0, respectively. Write Pn �

∏n
i=1 Pi and Qn �∏n

i=1Qi. Assume the following holds:
(A1) For each i ≥ 1: Pi � Qi (Pi is dominated by Qi),

and Pi and Qi have respective densities pi and qi
with respect to a dominating measure ν.

(A2) Under Pi, the loglikelihood ratio Li �
ln pi(Yi)/qi(Yi) has finite mean Di = D(Pi‖Qi),
positive and finite variance Vi = V (Pi‖Qi), and
finite third central moment Ti = T (Pi‖Qi). Let

Dn =
1

n

n∑
i=1

Di, V n =
1

n

n∑
i=1

Vi,

Tn =
1

n

n∑
i=1

Ti, Sn =
Tn

[V n]3/2
.

Proposition 2.2: Let t > 0 and B ∈ R be arbitrary
constants. Assume (A1)—(A2) hold.
(i) If

∑n
i=1 Li is is not a lattice random variable, then

Qn

[
n∑

i=1

ln
pi(Yi)

qi(Yi)
≥ nDn −

√
nV n t+B

]

=
exp{−nDn +

√
nV n t− ( t

2

2 +B) + o(1)}√
2πnV n

as n→ ∞. (24)

(ii) If
∑n

i=1 Li is is a lattice random variable, denote by dn its
span and by Ωn its range. Then (24) holds if the right side is
multiplied by a sequence γn that can be explicitly identified, is
bounded from above and below, and takes the value dn/(1−
e−dn) for nDn −

√
nV n t+B ∈ Ωn.

Proof. For each i ≥ 1, the random variable L i = ln pi(Yi)
qi(Yi)

has cgf κi(s) = ln
∫
q1−s
i psi dν (negative Chernoff distance)

under Qi. Since {Li} are mutually independent, the cgf for∑n
i=1 Li is

nκn(s) =

n∑
i=1

κi(s).

Since
κi(1) = 0, κ′i(1) = Di, κ′′i (1) = Vi,

Averaging over i = 1, 2, · · · , n yields

κn(1) = 0, κ′n(1) = Dn, κ′′n(1) = V n.

Denote by
Λn(a) = sup

s∈R

[as− κn(s)] (25)

the large-deviations function for
∑n

i=1 Li. Assume the supre-
mum defining Λn(an) is achieved at sn, hence an = κ′n(sn).

Applying Lemma 2.1 with P =
∏n

i=1 Pi, Q =
∏n

i=1Qi,
evaluating (23) at a equal to

an = Dn − t

√
V n/n+B/n (26)

and multiplying by n, we obtain

nΛn(an) = nDn −
√
nV n t+

(
B +

t2

2

)
+O(n−1/2).



Moreover sn → 1 as an → Dn.
(i) Nonlattice case: From [11, Theorem 3.3] (with an, sn,

κn and Λn respectively playing the roles of mn, τn, ψn and
γn in [11]), we have

Qn

[
n∑

i=1

Li ≥ nan

]
∼ e−nΛn(an)

sn
√
2πnκ′′n(sn)

as n→ ∞

where Li = ln pi(Yi)
qi(Yi)

for 1 ≤ i ≤ n. Since sn → 1 as n→ ∞,
this proves (24).

(ii) Lattice case: From [11, Theorem 3.5] we have, for
nan ∈ Ωn,

Qn

[
n∑

i=1

Li ≥ nan

]
∼ dn

1− e−sndn

e−nΛn(an)

sn
√
2πnκ′′n(sn)
as n→ ∞.

This proves the second part of the claim. �

C. Conditional Strong Large Deviations

Fix P and define PX′XY (x
′, x, y) =

PX(x′)PX(x)W (y|x)), thus X ′ is independent of (X,Y ).
The joint distribution PX′XY has the same X ′ and (X,Y )
marginals as PX′XY but is symmetric in X ′ and X . The
random variables L′ � ln W (Y |X′)

(PW )(Y ) and L � ln W (Y |X)
(PW )(Y ) are

generally dependent but have the same marginal owing to
the symmetry property above. Denote by ρ = ρ(P ;W ) the
normalized correlation coefficient of (12) between L and L ′

under P̃X′XY . Let D = I(P ;W ) and V = V (P ;W ).
Analogously to Lemma 2.1, we have

Lemma 2.3: (Second-order Taylor series expansion of
large-deviations function.) Assume D = I(P ;W ) and Vu =
Vu(P ;W ) are positive and finite, and T = T (P ;W ) is finite.
Let

Λ(α) = sup
s,t

[αs+Dt− κ(s, t)] (27)

where

κ(s, t) = lnEP

[(
W (Y |X ′)
(PW )(Y )

)s(
W (Y |X)

(PW )(Y )

)t
]
.

Then

Λ(D− η) = D− η+
η2

2(1− ρ2)Vu
+O(η3) as η ↓ 0. (28)

The supremum is achieved by

s(η) = 1− η

(1− ρ2)Vu
+O(η2)

t(η) =
ηρ

(1− ρ2)Vu
+O(η2). (29)

Now let

Zn =

n∑
i=1

ln
W (Yi|Xi)

(PW )(Yi)
, Tn � −Zn + nI(P ;W )

nVu(P ;W )
, (30)

Z ′
n =

n∑
i=1

ln
W (Yi|X ′

i)

(PW )(Yi)
, T ′

n � −Z ′
n + nI(P ;W )

nVu(P ;W )
. (31)

Proposition 2.4: If |ρ| 
= 1 then for any t ∈ R,

Pn
X′XY

[
Z ′
n ≥ nD −

√
nVut

∣∣∣∣ Zn − nD√
nVu

∈ [t, t+ dt)

]

=
exp{−nD+

√
nVut− t2

2 + o(1)}√
2π(1− ρ2)nVu

as n→ ∞. (32)

Notes.
(i) The event on the left of (32) is a rare event but the
conditioning event is in the central regime.
(ii) If L′ and L are independent, the conditioning can be
removed, ρ = 0, and thus the expression (32) reduces to that
given by Prop. 2.2 (with iid {Li}, and B = 0).
(iii) When L′ and L are dependent, that dependency only
affects the multiplying constant (1 − ρ2)−1/2 ≥ 1 in the
asymptotic expression (32).

Sketch of the Proof: Let αn = D−√Vu/n t. By application
of Lemma 2.3 with η =

√
Vu/n t, we obtain from (28)

nΛ(αn) = snαn + tnD − κ(sn, tn)

= nD −
√
nVut+

t2

2(1− ρ2)
(33)

where from (29)

sn = 1− t

(1− ρ2)
√
nVu

+O(1/n),

tn =
ρt

(1− ρ2)
√
nVu

+O(1/n). (34)

Denote by ∇κ(s, t) ∈ R2 and ∇2κ(s, t) ∈ R2×2 the gradi-
ent and the Hessian of κ at (s, t). By our assumption, for
αn in a neighborhood of the limit point α, the supremum
defining Λ(αn) = sups,t[sαn + tD − κ(s, t)] is achieved
at (sn, tn) satisfying ∇κ(sn, tn) = (αn, D). Since κ(·, ·) is
twice continuously differentiable, (sn, tn) converges to (1, 0)
and ∇2κ(sn, tn) converges to R as αn → D. Define the
exponentially tilted distribution

P̃L′L(dl
′, dl) � esnl

′+tnl−κ(sn,tn)PLL′(dl′, dl) (35)

on B(R2). We have

• EP̃ (L
′, L) = ∇κ(sn, tn) = (αn, D).

• CovP̃ (L
′, L) = ∇2κ(sn, tn). Denote by ρn the normal-

ized correlation coefficient for L ′ and L under P̃ .

As n→ ∞, (sn, tn) converges to (1, 0) and thus ∇2κ(sn, tn)

converges to ∇2κ(1, 0) = Vu

(
1 ρ
ρ 1

)
and ρn to ρ given in

the statement of the proposition.
Define the normalized random variables

T ′
n =

∑n
i=1 L

′
i − nαn√

n(∇2κ(sn, tn))11
and Tn =

∑n
i=1 Li − nD√

nVu
.

(36)
Under P̃ , both T ′

n and Tn have zero mean and unit variance,
and their correlation coefficient is ρn. By the Central Limit
Theorem, their joint distribution PT ′

nTn converges to a normal
distribution, and the conditional distribution PT ′

n|Tn=w to
N (ρw, 1 − ρ2), for any w in the range of Tn. The value of



that Gaussian pdf at zero is 1√
2π(1−ρ2)

exp{− w2ρ2

2(1−ρ2)}. Then

we have

Pn
L [Tn ∈ [β, β + dβ)] →

∫ β+dβ

w=β

PTn(dt) (37)

and

Pn
L′L

[
n∑

i=1

L′
i ≥ nαn,

∑n
i=1 Li − nD√

nVu
∈ [β, β + dβ)

]

= EPX′XY
1

{
n∑

i=1

L′
i ≥ nαn,

∑n
i=1 Li − nD√

nVu
∈ [β, β + dβ)

}

(a)
= exp{−n[snαn + tnD − κ(sn, tn)]}

EP̃X′XY
exp

{
−sn

[
n∑

i=1

L′
i − nαn

]
− tn

[
n∑

i=1

Li − nD

]}

×1

{
n∑

i=1

L′
i ≥ nαn,

∑n
i=1 Li − nD√

nVu
∈ [β, β + dβ)

}

(b)
= e−nΛ(αn)

∫ ∞

v=0

∫ β+dβ

w=β

PT ′
nTn(dv, dw)

exp{−sn
√
n(∇2κ(sn, tn))11 v − tn

√
nVu w}

(c)
=

exp{−nD+
√
nVut− t2

2 + o(1)}√
2πnVu(1− ρ2)

(∫ β+dβ

w=β

PTn(dw)

)
.

(38)

where (a) follows from (35), (b) from (36), and (c) after some
manipulations. Combining (37) and (38) establishes the claim.
�

III. ACHIEVABILITY: SKETCH OF THE PROOF

The number of codewords is Mn = �enRn� where
Rn = logM(n, ε) + log

√
1− ρ2 − 1.

Random coding scheme. The codewords {x(m), 1 ≤ m ≤
Mn} are drawn iid P ∗

n where P ∗
n is given in (17). Define the

random variables

Zm,n � ln
Wn(Y|X(m))

(P ∗
nW )n(Y)

, 1 ≤ m ≤Mn. (39)

Hence Zm,n is a loglikelihood score minus the constant
ln(P ∗

nW )n(Y). The ML decoding rule can be written as

m̂ = arg max
1≤m≤Mn

Zm,n. (40)

In case of a tie, an error is declared.

Overview of error probability analysis. By symmetry of
the codebook construction and the decoding rule, the error
probability for message m is independent of m. For the
calculation below, we assume without loss of generality that

m = 1 was sent. We use the bound

Pr[Error] = Pr

[
max
m≥2

Zm,n ≥ Z1,n

]

=

∫
PZ1,n(dz) Pr

[
max
m≥2

Zm,n ≥ z|Z1,n = z

]

≤
∫
PZ1,n(dz) min{1, (Mn − 1)Pr[Z2,n ≥ z|Z1,n = z]}

= PZ1,n [Z1,n ≤ z∗n] + (Mn − 1)

×
∫
z>z∗

n

PZ1,n(dz)PZ2,n|Z1,n
[Z2,n ≥ z|Z1,n = z](41)

where the inequality follows from the union bound. In the last
line, z∗n is derived so that (Mn−1)Pr[Z2,n ≥ z∗n|Z1,n = z∗n] =
1. We then use precise asymptotics for PZ1,n and PZ2,n|Z1,n

to derive the desired result.
The statistics of Z1,n are obtained from (20) (21). Defining

Tn = (Z1,n − E[Z1,n])/
√
Var(Z1,n) as in (30), we obtain

FTn(tε,n) = 1 − ε + o(n−1/2). The conditional probability
PZ2,n|Z1,n

[Z2,n ≥ z|Z1,n = z] in (41) is evaluated using
Prop. 2.4. The threshold z∗n is selected as z∗n = E[Z1,n] −√
Var[Z1,n]t

∗
n where t∗n = tε,n + 1√

nV
. Then the two

terms in the right side of (41) are respectively given by
ε− φ(tε)√

nV
+o(n−1/2) and φ(tε)√

nV
(1+o(1)). The O(n−1/2) terms

cancel out and the desired result follows.

IV. CONVERSE: SKETCH OF THE PROOF

A. Background

Some background from [6] is presented here.
Theorem 4.1: [6, Theorem 27 p. 2318] Every (M, ε) code

with codewords in F ⊆ X n satisfies

M ≤ sup
PX

inf
QY

1

β1−ε(PXY, PX ×QY)

where the supremum is over all probability distributions over
F, and the infimum is over all probability distributions over
Yn.

In some cases βα(PY|X=x, QY) is constant for all
x ∈ F, e.g., when QY = Qn

Y is the n-fold product
of a distribution QY over Y , and when the empirical
distribution of the codewords over the alphabet X is the
same for all x ∈ F. With some abuse of notation, we write
βα(P̂x, Q

n
Y ) = βα(PY|X=x, Q

n
Y ). Then the following result

holds.

Theorem 4.2: Fix a distribution QY over Y and a type
P ∈ P(X ). Then every (M, ε) code with codewords in T [P ]
satisfies

M(n, ε) ≤ 1

β1−ε(P,Qn
Y )
.

This result is used in [6] to derive a converse theorem for
constant-composition codes. Denote by M ∗

cc(n, ε) the maximal
number of codewords for any constant-composition code over
the DMC W , with maximal error probability ε. The following
result holds.



Theorem 4.3: [6, Theorem 48 p. 2331]. Fix a DMC W . If
0 < ε ≤ 1/2, there exists a constant F > 0 such that

logM∗
cc(n, ε) ≤ nC −

√
nV Φ−1(ε) +

1

2
lnn+ F.

We have combined Theorem 4.2 and strong large-deviations
analysis to refine Theorem 4.3 as follows:

logM∗
cc(n, ε) ≤ nC−

√
nV tε+

1

2
logn+Aε−Δcc+o(1) (42)

where Δcc is a positive constant.

B. General Codes

Each codeword x ∈ X n has a type P̂x ∈ P(X ). For the
constant-composition codes of the previous section, P̂x is the
same for all codewords. For a more general code, P̂x is not
fixed but has a (nondegenerate) empirical distribution πn over
P(X ). That is,

πn(A) =
1

Mn

∑
1≤m≤Mn

1{P̂x(m) ∈ A}

for all collections A of types. We refer to πn as the type
distribution of the code.

Denote by Pp.i.(Xn) the set of all permutation-invariant
distributions over X n. Define UX|θ as the uniform distribu-
tion over the type class T [θ]. Clearly UX|θ is permutation-
invariant for each θ, and so is any convex combination
PX =

∫
πn(dθ)UX|θ . With some abuse of notation, define

the error probability

β1−ε(π) = β1−ε(PXW
n, PXQ

π)

with PX =

∫
π(dθ)UX|θ ∈ Pp.i.(Xn).

Here Qπ denotes a strategy function, i.e., a choice of Q ∈
P(Yn) that may depend on π.

The NP test is a randomized likelihood ratio test. For
PX = (P ∗

n )
n and Q = (P ∗

nW )n, where P ∗
n is given by

(17), application of Prop. 2.2 and refined CLT asymptotics
of Sec. II-A yield the optimal threshold and the asymptotic
type-II error probability

β1−ε(π) = 1/ exp{nC−
√
nV tε+

1

2
lnn+Aε+o(1)}. (43)

One difficulty with Theorem 4.1 [6] is that the minimization
over all probability distributions PX over X n is apparently
intractable. However the minimization problem can be con-
siderably simplified, as stated in the lemma below.

Proposition 4.4: Fix a permutation-invariant strategy Qπ.
Then

inf
PX∈P(Xn)

β1−ε(PXW
n, PX ×Qπn)

= inf
PX∈Pp.i.(Xn)

β1−ε(PXW
n, PX ×Qπn)

≥ inf
π∈P(Θ)

β1−ε(π)

Proof. Consider a random variable Ω that is uniformly
distributed over the set of all n! permutations of the set
{1, 2, · · · , n}. Denote by ωx the sequence obtained by ap-
plying permutation ω to a sequence x ∈ X n. Given any
distribution PX on X n, the permutation-averaged distribution
PΩX is permutation-invariant.

Since Q is permutation-invariant, the error probability
β1−ε(PωXW

n, PωX ×Q) is independent of ω. Hence, by the
same arguments as in [6, Lemma 29], we have

∀ω : β1−ε(PωXW
n, PωX×Q) = β1−ε(PΩXW

n, PΩX×Q)

The claim follows by taking the infimum over PX ∈ P(Xn).
�

Proposition 4.5: Every (M, ε) code with type distribution
π satisfies

M(n, ε) ≤ 1

β1−ε(π)
. (44)

Proof. By Theorem 4.1,

M ≤ sup
PX

1

β1−ε(PXWn, PX ×Qπn)

By Prop. 4.4, the supremum may be taken over the set
Pp.i.(Xn) of permutation-invariant distributions. Then

β1−ε(PXW
n, PX ×Qπn) = β1−ε(πn)

≥ inf
π
β1−ε(π).

�

Given some πn, the derivations of the asymptotics of the
NP test is not straighforward because the loglikelihood ratio
test statistic is generally not the sum of independent random
variables, an exception being the product case PX = Pn,
which lead to (43). To prove the converse for general codes,
we separate the proof into different cases, where the type dis-
tribution πn does not concentrate near the capacity-achieving
distribution P ∗ (Class I), where πn concentrates near P ∗ but
slowly (Classes II, III, IV) and where πn concentrates near
P ∗
n at the O(n−1/2) scale (Class V). A different strategy Qπ

is chosen in each case, and strong large-deviation analysis is
used to prove the claims. Then

Class I (First-order suboptimal codes). There exists δ > 0
such that

lim sup
n→∞

πn [‖θ − P ∗‖J ≥ δ] > 0.

Class II (Second-order suboptimal codes). There exists c >
0 and a sequence δn such that n−1/4 ≤ δn � 1 and

lim sup
n→∞

πn[‖θ − P ∗‖J ≥ δn] = c > 0.

Class III (Third-order suboptimal codes). There exists c >

0 and a sequence δn such that
√

logn
n ≤ δn � n−1/4 and

lim sup
n→∞

πn[‖θ − P ∗‖J ≥ δn] = c > 0.

Class IV (Fourth-order suboptimal codes). There exists c >

0 and a sequence δn such that
√

1
n � δn ≤

√
log n
n and

lim sup
n→∞

πn[‖θ − P ∗‖J ≥ δn] = c > 0.



Class V (Fourth-order suboptimal codes). PX 
= (P ∗
n )

n and

lim
c→∞ lim sup

n→∞
πn[‖θ − P ∗

n‖J ≥ cn−1/2] = 0

where P ∗
n is given by (17).

Theorem. Assume P ∗ is unique. The following upper
bounds on M(n, ε) hold.

Class I : M(n, ε) ≤ exp{n(C − δ2/2 + o(δ)) −O(
√
n)}

Class II : M(n, ε) ≤ exp{nC − 1− c

2
nδ2n −

√
nV tε

+o(
√
n)}

Class III : M(n, ε) ≤ exp{nC −
√
nV tε − 1− c

2
nδ2n

+
1

2
lnn+O(1)}

Class IV : M(n, ε) ≤ exp{nC −
√
nV tε +

1

2
lnn

−1− c

2
nδ2n +O(1)}

Class V : M(n, ε) ≤ exp{nC −
√
nV tε +

1

2
lnn

+Aε +B}, B ≤ 0.

Proof: see [8].
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