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Abstract—There has been significant recent progress in under-
standing approximately optimal relaying strategies for wireless
networks, such as quantize-map-and-forward, noisy network
coding, amplify-and-forward, etc. While one can construct spe-
cific instances of networks, with specific topology and channel
configurations, where each one of these strategies can provide
significant gains over simple strategies such as routing and
direct transmission, it is not clear how much gain these more
sophisticated strategies can provide in generic setups. In this
paper, we follow a scaling law approach and assume that nodes
are randomly distributed over the network area and the channels
between them are governed by a path-loss model. This approach
has been used to demonstrate the benefits of sophisticated
cooperation in networks with multiple unicast flows both in the
high and the low SNR regimes. However, for a single unicast
flow, we show that more sophisticated relaying can not provide
significant gain over simple multi-hop or direct transmission both
in the high and the low-SNR regimes, if the nodes are uniformly
distributed over the network area. More sophisticated relaying
is needed in networks where nodes are clustered in the low
to moderate SNR regimes. We propose a cluster decode-and-
forward strategy that is scaling optimal.

I. I NTRODUCTION

Motivated by the relaying opportunities provided by the
massive proliferation of wireless devices, capacity studyof
Gaussian relay networks has received significant attentionover
the last decade. The work of Avestimehr, Diggavi and Tse [1]
has shown that a compress-and-forward type of strategy at the
relays is universally good for dealing with the broadcast and
superposition of wireless signals and can achieve close to the
capacity of relay networks in the high capacity regime, across
different channel configurations and topologies. Amplify-and-
forward type of strategies have been investigated for the low-
SNR regime in [12]. Can such more sophisticated relaying
strategies provide significant rate gains over the traditional
routing (milti-hop) approach in wireless adhoc networks?
If so, what are the operating regimes and scenarios where
sophisticated relaying is most useful? These are important
questions concerning future communication architecturesfor
such networks.

It is easy to construct specific instances of networks where
each one of these strategies can provide gains over routing.
For example, when the channel gain parametert is large in
the diamond network in Figure 1-(b), a compress-and-forward
type of strategy [1], [2], [3] that employs both the relays can
approximately achieve twice the rate achievable by routing
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Fig. 1. Two instantiations of a diamond relay network.

over a single relay. Ast → ∞, the rate difference between
the two strategies increases unboundedly. However, the ratio of
the rates achieved by the two strategies remains bounded by2.
Indeed, [4] shows that this bound holds even withn-relays and
arbitrary channel configurations: in the high-capacity regime,
the capacity of anyn-relay diamond network is approximately
bounded by twice the rate achieved by routing over the best
relay. Therefore, for the diamond topology, a compress-and-
forward type of strategy employing all then relays can provide
a rather modest multiplicative gain over routing. Moreover,
for most configurations the gain is much smaller than2. For
example, routing over one of the relays approximately achieves
capacity in Figure 1-(a) whent is large. Similarly, one can
construct specific examples of networks where amplify-and-
forward relaying can provide large gains over routing, but
usually such large gains only pertain to very specific channel
configurations [12].

Evaluating the benefits of different relaying strategies not
only requires to understand the gains they provide in specific
network instances, but also the likelihood of each instance.
In this paper, we follow the scaling law approach of Gupta
and Kumar [6]. This approach adopts a random model for
the location of the nodes and assumes that channel gains
are governed by a path loss and fading model which is a
function of the node locations. The scaling law approach
has been used in [7], [8], [9], [10] to show that when there
are multiple source-destination pairs in the network (multiple
unicast traffic), sophisticated cooperation techniques, such as
hierarchical cooperation in [7], can provide a multiplicative
gain as large asΘ(

√
n) in the system capacity in various



operating regimes, wheren is the number of nodes in the
network. The gain follows from the ability of cooperation
to harness interference between different source-destination
pairs. Can sophisticated relaying strategies provide similar
gains when there is only a single-source destination pair in
the network?

This is the question we investigate in this paper. We show
that the answer is no when the wireless nodes are uniformly
distributed over the network area. Direct transmission from the
source node to the destination and multi-hopping are sufficient
to approximately achieve the capacity in both the high and the
low SNR regimes. Sophisticated relaying is needed only when
the nodes in the network are clustered together and the direct
channel between the source and the destination is weak, i.e.the
SNR is not too large. We propose a cluster decode-and-forward
strategy to achieve the optimal scaling of the capacity in this
case. This strategy uses multi-hop communication inside the
clusters to facilitate MIMO communication across clusters.
Information is then routed from one cluster to the next via
successive MIMO transmissions, by being decoded and re-
encoded at each intermediate cluster. The strategy relies on
spatial reuse to divide the end-to-end communication problem
to successive steps. Decoding at each step prevents noise
accumulation and makes the strategy good also in the low-SNR
regime as opposed to compress-and-forward type of strategies
[1], [2], [3] which are only effective at high-SNR.

II. M ODEL

There aren wireless nodes located in a rectangle of area of√
A ×

√
A. We consider two different spatial models for the

distribution of the nodes in the network.
(a) Then nodes are distributed uniformly and independently

over the areaA.
(b) The n nodes are clustered inton/M clusters each of

size M nodes and areaAc. Each cluster ofM nodes
is uniformly distributed over the cluster area, while the
clusters are distributed uniformly over the network area
A. We assume thatAc ≤ MA

n . Note that if then nodes
were uniformly distributed over the areaA, the area
occupied byM nodes would beMA

n on the average.
Ac ≤ MA

n corresponds to assuming that nodes are indeed
clustered together.

The scaling law studies in [6], [7], [8] reveal that whenn is
large the capacity of such a random network is the same as
the capacity of a network where nodes are placed on a regular
grid. See Figure 2. In other words, typical configurations of
the large random network are close to a grid, and typical
deviations from the grid do not significantly impact capacity
while atypical deviations are less and less likely asn increases.
For simplicity in derivations, we will consider the regular
networks corresponding to the random distributions (a) and
(b), as given in Figure 2. A randomly chosen nodes among
the n nodes wants to communicate to a randomly chosen
destinationd at rateR bits/s/Hz.

We assume that communication takes place over a flat
channel of bandwidthW Hz around a carrier frequency of
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Fig. 2. (a) Uniform and (b) clustered network.

fc, fc ≫ W . The complex baseband-equivalent channel gain
between nodei and nodek at timem is given by:

Hik[m] =
√

Gr
−α/2
ik exp(jθik[m]) (1)

where rik is the distance between the nodes,θik[m] is the
random phase at timem, uniformly distributed in [0, 2π]
and {θik[m]; 1 ≤ i ≤ 2n, 1 ≤ k ≤ 2n} is a collection
of independent identically distributed random processes.The
θik[m]’s and therik ’s are also assumed to be independent.
The parametersG andα > 2 are assumed to be constants;α
is called the power path loss exponent.

Note that the channel is random, depending on the location
of the users and the phases. The locations are assumed to be
fixed over the duration of the communication. The phases are
assumed to vary in a stationary ergodic manner (fast fading).
We assume that each node has powerP and the network
is allocated a total bandwidth ofW . While deriving upper
bounds on the best achievable rate betweens andd, we assume
that the phases{θik[m],∀i, k} are known in a casual manner
to all the nodes in the network. However, the strategies we
propose only use receive channel state information, i.e. it
is sufficient for each nodek in the network to know only
the phases of its incoming channels{θik[m],∀i} in a casual
manner. The signal received by nodei at timem is given by

Yi[m] =
∑

k 6=i

Hik[m]Xk[m] + Zi[m]

whereXk[m] is the signal sent by nodek at timem andZi[m]
is white circularly symmetric Gaussian noise of power spectral
densityN0W per symbol.

We define SNRs to be the typical SNR between nearest
neighbor pairs. In the case of a uniform network

SNRs =
GP

N0W (
√

A/n)α
, (2)

since
√

A/n is the nearest neighbor distance in a regular
network of the form in Figure 2-(a) (and the typical nearest
neighbor distance in a network where nodes are uniformly
distributed over the network area). We similarly define the
long-distance SNR in the network to be the SNR of a point-
to-point transmission over the largest scale in the network, the



diameter
√

A,

SNRl =
GP

N0W (
√

A)α
. (3)

Note that SNRs and SNRl are related as SNRs = nα/2SNRl.
In the case of a clustered network with clusters ofM nodes

distributed over an areaAc, the nearest neighbor is instead
given by

SNRs =
GP

N0W (
√

Ac/M)α
, (4)

which we again denote by SNRs by slightly abusing notation.
Ac/M is the separation between nearest neighbors in each
cluster in this case. We also define the inter-cluster SNR
for clustered networks which corresponds to the SNR of
a point-to-point transmission between two nodes located in
neighboring clusters,

SNRc =
GP

N0W (
√

MA/n)α
. (5)

Note that
√

MA/n is the separation between the midpoints
of two neighboring clusters in Figure 2-(b). Finally, the long
distance SNR in the network, SNRl is again given by (3).
SinceAc ≤ MA

n ≤
√

A, we have

SNRs ≥ Mα/2SNRc = nα/2SNRl. (6)

A strategy is called scaling optimal in a certain regimeR,
if for a certain coupling of the system parametersA = nβ1 ,
P = nβ2 , W = nβ3 such that(β1, β2, β3) ∈ R, it achieves
the scaling exponent of the capacity of the network

e(β1, β2, β3) := lim
n→∞

log C(n, β1, β2, β3)

log n
(7)

whereC is the largest reliable communication rateR achiev-
able betweens and d. n, A, P and W are all independent
parameters of a network that can take on a wide range of
values. By considering all possible couplings between these
parameters, we aim to investigate all cases where they can be
large or small with respect to each other. (In the case of a
clustered network, we have the additional parametersAc and
M .) Most often, we will see that the scaling of the capacity
and the performance of a strategy depend onβ1, β2, β3 not
separately but only through a single SNR parameter. Note that
if a strategy is scaling optimal, within logarithmic factors, its
performance exhibits the right dependence to major system
parameters, same as the capacity itself.

III. M AIN RESULT

The main conclusions of this paper are summarized in the
following theorems. The first theorem establishes an upper
bound on the best achievable rate betweens andd in a uniform
network. The second theorem establishes a lower bound on
the rate achieved by multi-hopping in the same network. The
proposition gives the rate achieved with direct transmission
from s to d.

Theorem 3.1:When the nodes are uniformly distributed
over the network area, the largest end-to-end achievable com-
munication rate betweens andd is bounded by

R ≤ log(1 + K1SNRs)

for a positive constant1 K1 ≤ 4(2 + π/2 + π/(2(α − 2))).
Theorem 3.2:When the nodes are uniformly distributed

over the network area, multi-hop achieves a rate given by

R ≥ log

(

1 +
SNRs

1 + K2SNRs

)

betweens andd for a positive constantK2 ≤ 4α/(α − 1).
Proposition 3.3:Direct transmission froms to d achieves

a rate
R ≥ log

(

1 + (2)−α/2SNRl

)

.

Comparing these results, we observe that:
• when SNRs ≪ 0 dB (i.e. in the scaling law sense

SNRs = nγ for γ ≤ 0) the upper and the lower bounds
in Theorem 3.1 and Theorem 3.2 respectively are of the
order of SNRs, therefore multi-hop is scaling optimal.
Note that this is a low-SNR regime; even the nearest
neighbor transmissions in the network are at low-SNR.
For example, this is the case in a network with growing
number of users and fixed density, known as extended
scaling [7]. In this regime, more sophisticated relaying
strategies (such as amplify-and-forward) can not provide
significant gain over multi-hop.

• when SNRs ≫ 0 dB the upper bound in Theorem 3.1 is
of the order oflog n and the lower bound in Theorem 3.2
is constant, the two differing only by a factor oflog n.
Therefore, multi-hop is still (approximately) scaling op-
timal. More sophisticated relaying strategies can only
provide marginal gain over multi-hop. Note that this can
be interpreted as a moderate to high SNR regime for the
network; nearest neighbor transmissions are at low SNR,
while transmissions over larger distances can be in either
high or low SNR. When SNRl ≫ 0 dB, i.e., when all the
channels in the network are at high-SNR, including the
direct channel betweens andd, direct transmission from
s to d becomes scaling optimal. This is, for example, the
case when there are an increasing number of nodes on a
fixed area, known as dense scaling [6].

• although it is not part of our scaling law formulation in
(7), it is instructive to look at the case when SNRs = enγ

for γ > 0, i.e. when the network is in a very high-
SNR regime, the upper bound is now of the order of
nγ while the rate achieved by multi-hop is still con-
stant. At very high-SNR, spatial reuse is not desirable
since interference from simultaneous transmissions in
the network, no matter how far they are, significantly
degrades performance. Since multi-hop is based on spatial
reuse, it is not anymore scaling optimal. Simple direct
transmission froms to d achieves the optimal scaling.

1A constant is independent of the parameters of the network,n,A, P , W ,
N0 etc.



The above discussion shows that in all SNR-regimes, simple
strategies such as multi-hop and direct transmission are suf-
ficient to approximately achieve the capacity of the network.
More sophisticated relaying strategies, such as amplify-and-
forward, quantize-map-forward or noisy network coding, can
not provide significant gains over these simple strategies in
uniform networks.

We next turn to networks where nodes are clustered as in
Figure 2-(b). In Theorem 3.4, we establish an upper bound
on the best achievable rate betweens and d. Proposition 3.5
gives the rate achieved by multi-hop. Theorem 3.6 gives the
rate achieved with a cluster decode-and-forward strategy.

Theorem 3.4:When the nodes are clustered as described in
Section II, the largest end-to-end achievable communication
rate betweens andd is bounded by

R ≤ min
(

log(1 + K1SNRs), K3M
ǫ M2SNRc

)

for the constantK1 in Theorem 3.1, and a constantK3 > 0.
Proposition 3.5: In a clustered network, multi-hop froms

to d achieves a rate

R ≥ log

(

1 +
SNRc

1 + K2SNRc

)

(8)

where K2 is the positive constant in Theorem 3.2. Direct
transmission froms to d achieves a rate

R ≥ log
(

1 + (2)−α/2SNRl

)

. (9)

Theorem 3.6:When the nodes are clustered as described in
Section II, the cluster decode-and-forward strategy described
in the Section VI achieves a rate

min

(

log

(

1 +
SNRs

1 + K3SNRs

)

, K4M log

(

1 +
MSNRc

1 + MSNRc

))

for positive constantsK3 andK4.
Comparing these three results we identify the following

regimes:

• when SNRl ≫ 0 dB, the upper bound in Theorem 3.4
is of the order oflog n and the lower bound in (9) is
constant. Direct transmission froms to d is approximately
scaling optimal. The network is in a high-SNR regime;
even the long-range direct channel froms to d is at high
SNR.

• when SNRl ≪ 0 dB but SNRc ≫ 0 dB, the upper
bound in Theorem 3.4 is of the order oflog n, and
multi-hop in (8) achieves a constant rate. Therefore,
multi-hop is scaling optimal. This is a moderate SNR
regime; while the long-range direct channel betweens
and d is at low-SNR, the channels between nodes in
neighboring clusters are at high-SNR. Both in the earlier
and the current regime, more sophisticated relaying can
not provide significant gains over direct transmission and
multi-hop relaying respectively.

• when SNRc ≪ 0 dB, the rate achieved by multi-
hop is of the order of SNRc while the upper bound
in Theorem 3.4 is either still of the order oflog n or
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Fig. 3. (a) The route froms to d. (b) Spatial Reuse.

min(SNRs,M
2SNRc). In all cases, the cluster decode-

and-forward strategy of Theorem 3.6 is needed to achieve
the optimal scaling. Note that this regime comprises many
sub-regimes: although SNRc ≪ 0 dB, SNRs as well as
MSNRc, the SNR of a MIMO transmission between two
neighboring clusters, can still be larger than0 dB. This
can be interpreted as a moderate SNR regime. On the
other hand, both SNRs andMSNRc can be smaller than
0 dB, in which case the network is at low SNR. We can
also have one of these quantities at high and the other
one at low-SNR. The cluster decode-and-forward strategy
achieves the optimal scaling in all cases.

IV. U NIFORM NETWORKS

In this section, we prove Theorems 3.1 and 3.2 and Propo-
sition 3.3.

Proof of Theorem 3.1:The largest communication rate be-
tweens andd can be bounded by the total mutual information
that can be conveyed froms to the rest of the network. The
capacity of the single-input-multiple-output (SIMO) channel
betweens and the remaining nodes in the network is given by
[11]

R ≤ log



1 +
∑

i,k

|hik|2
P

N0W





≤ log



1 + 4

√
n/2
∑

i=0,k=1

1

(i2 + k2)α/2

GP

N0W (
√

A/n)α





= log (1 + 4B SNRs) ,

where the second inequality follows by observing that the sum
∑

i,k |hik|2 is largest ifs is located in the middle of the grid



in Figure 2-(a).A can be upper bounded as

B =

√
n/2
∑

i=0,k=1

1

(i2 + k2)α/2
(10)

(a)

≤
√

n/2
∑

i=0

(

1

(1 + i2)α/2
+

∫

√
n/2

1

1

(x2 + i2)α/2
dx

)

(b)

≤ 1 +

∫

√
n/2

1

1

xα
dx +

∫

√
n/2

0

1

(1 + y2)α/2
dy

+

∫

√
n/2

0

∫

√
n/2

1

1

(x2 + y2)α/2
dxdy

(c)

≤ (2 + π/2) +

∫ π/2

0

∫

√
n/2

1

1

rα
rdrdθ, (11)

where (a) follows by bounding the area given by the Riemann
sum with the integral, (b) follows by applying the idea in (a)
for the second sum, (c) follows by bounding the two integrals
in (b) by assumingα = 2 and a change of variables for the
last integral. Bounding the last integral in (c), we obtain

B ≤ 2 + π/2 + π/(2(α − 2)). (12)

Proof of Theorem 3.2:In the multi-hop strategy, the packets
betweens and d are relayed by successive point-to-point
transmissions between neighboring nodes. Each intermediate
relay node decodes the packets from the previous node and
forwards them to the next while the interference from simul-
taneous transmissions is treated as additional noise. We assume
that the packets are first routed over a horizontal and then a
vertical path as illustrated in Figure 3-(a). The rate achieved
by this multi-hop strategy depends on two parameters: the
SNR of the nearest neighbor transmissions, given by SNRs,
and the interference from simultaneous transmissions. The
interference-to-noise power ratio (INR) at receiver noder is
given by

INR =
∑

k∈U⊔

GP

N0Wrα
rk

,

whereU⊔ is the set of all transmitters other than the intended
transmittert. The above sum can be bounded as

INR ≤ 4

√
n/2
∑

k=1

GP

N0W (k
√

A/n)α

by assuming the worst case scenario thatr is in the middle of
the horizontal line and loosely upper bounding the interference
from the transmitters on the vertical line by that from the
horizontal line. This yields,

INR ≤ 4

√
n/2
∑

k=1

1

kα
SNRs ≤ 4(1 + 1/(α − 1))SNRs.

Therefore, the rate achieved by multi-hop can be lower
bounded as

R ≥ log

(

1 +
SNRs

1 + (4α/(α − 1))SNRs

)

.

In order to decrease interference one can also consider a partial
spatial reuse strategy where only alternate nodes on the route
are allowed to transmit simultaneously, see Figure 3-(b).

Proof of Proposition 3.3:The proof of the proposition
simply follows from the fact that the separation betweens
andd can be at most

√
2A.

V. CLUSTEREDNETWORKS

In this section, we prove Theorems 3.4 and 3.6. The proof
idea for Proposition 3.5 is given in the next section.

Proof of Theorem 3.4:The first upper bound in the theorem
follows from the SIMO bound in Theorem 3.1. Note that the
SIMO bound only depends on the SNR ofs to its nearest
neighbors, which is SNRs in the case of a uniform network and
SNRc

s in the current case. The number of nodes in the network
is irrelevant to the upper bound as long as nodes are located
on a regular grid of the corresponding minimal distance. Note
that if not every location on the grid is occupied, this can only
decrease the upper bound.

The second term in the upper bound follows by considering
the cut between the source cluster and the rest of the network.
The largest communication rate froms to the d is upper
bounded by the mutual information that can be conveyed over
this cut, i.e. the capacity of theM to n−M MIMO channel.
When the channels are ergodically fading, the capacity of this
MIMO channel is given by [11]

R ≤ max
Q(H)≥0

E(Qkk(H))≤P/N0W, ∀k∈S

E (log det(I + HQ(H)H∗)) , (13)

where

Hik =

√
G ej θik

r
α/2
ik

, k ∈ S, i ∈ N \ S.

under the optimistic assumption that the realizations of the
channels are know at both the transmitter and the receiver.
This allows the transmission covariance matrixQ(·) to be a
function of the channel matrixH. We useS to the denote the
cluster of the source nodes andN \S denotes the remaining
nodes.

The capacity of the MIMO channel in (13) can be upper
bounded in two steps. First, we can show that choosing
Q(H) = P

N0W I is approximately optimal. It has been shown
in [7][Lemma 5.2] that the increase in capacity for any other
choiceQ(H) of the covariance matrix is bounded byM ǫ for
anyǫ > 0. This says that independent signaling at the transmit
nodes is sufficient to achieve the cut-set bound. Beamforming
techniques can provide limited gains, essentially becausethe
phases between different nodes are independent of each other.
The remaining step is to bound the capacity of the MIMO
channel under independent transmissionsQ(H) = P

N0W I.
Note that

E

(

log det(I +
P

N0W
HH∗)

)

≤ E

(

P

N0W
Tr(HH∗)

)

=
P

N0W
Tr(HH∗)



s

Fig. 4. Moving the nodes to upper bound (14).

Note that

P

N0W
Tr(HH∗) =

P

N0W

∑

k∈S,i∈N\S

G

rα
ik

. (14)

The sum is largest ifs is located in the middle of the network.
Assumings is located in the middle of the network, consider
dividing this summation into4 equal terms as was done in
(10) in Theorem 3.1 by considering the nodesN \ S in
each quadrant separately. One simple way to upper bound
this summation is to observe that if we move all theM
nodes in each cluster (including the source cluster) to the
corner of the cluster as indicated by the arrows in Figure 4
we can only increase the summation since we decrease the
inter-node distancesrik, k ∈ S, i ∈ N \ S. This gives us a
regular grid where each grid point containsM nodes and the
minimal distance of the grid is equal to

√

MA/n. The proof
of Theorem 3.1 applies to the current case with SNRs replaced
with SNRc

l and an additional factor ofM2 since there areM
nodes on each grid point (we get a factor ofM from the TX
side and a factor ofM from there RX side). We obtain

P

N0W

∑

k∈S,i∈N\S

G

rα
ik

≤ 4B M2SNRc
l ,

where B is bounded in (12). Combined with the fact that
independent signalling is optimal within a factor ofM ǫ from
[7][Lemma 5.2], this completes the proof of the theorem.

Proof of Proposition 3.5:The proof of the proposition
follows similarly to the proofs of Theorem 3.2 and Propo-
sition 3.3. When the network is clustered, the performance of
multi-hop is limited by the rate achieved over the long hops
across the clusters. Therefore, instead hopping over nearest-
neighbors we can simplify the strategy by hoping over nearest
neighbor clusters since the performance of the strategy is
anyway limited by such hops. For example,s can transmit
directly to a node in its nearest cluster, this node can then
transmit to another node in a neighboring cluster etc. This
yields a multi-hop strategy with the hop distance increasedto
√

MA/n instead of
√

A/n in Theorem 3.2. Since the SNR
over the a distance

√

MA/n is given by SNRc, this gives
the result in (8). The lower bound for the rate achieved by
direct transmission simply follows by noting that the largest
separation betweens andd can be at most

√
A.

ds

Fig. 5. The three phases of the cluster decode-and-forward strategy.

VI. CLUSTER DECODE-AND-FORWARD

In this section, we describe the cluster decode-and-forward
strategy that achieves the performance in Theorem 3.6.

The building block of the strategy is the three phase scheme
illustrated in Figure 5. Let us first focus on the case wheres
and d are located in neighboring clusters. Assumes hasM
bits to communicate tod. These bits can be communicated in
three successive steps.

• s can first distribute itsM bits among itsM neighbors
by using a multi-hop strategy, one bit for each node.

• These nodes together can then form a distributed transmit
antenna array, sending the bits simultaneously to the
neighboring cluster whered lies.

• Each node in the destination cluster obtained one obser-
vation from the MIMO transmission. It can quantize and
ship the observation to the destination noded, which can
then do joint MIMO processing of all the observations
and decode the transmitted bits. The shipping of the
quantized observations can be again handled by multi-
hop.

We next give a back of the envelope calculation of the rate
achieved by this strategy. Note that the bottleneck in the first
stage is the output rate from the source node. Following the
lines of the proof of Theorem 3.2, it can be shown thats can
output bits at a rate

log

(

1 +
SNRs

1 + K3SNRs

)

for a constantK3. Therefore, th phase can be completed in a
total amount of time bounded by

T1 =
M

log
(

1 + SNRs

1+K3SNRs

) . (15)

Following the lines of [7, Lemma 4.3], it can be show that
the MIMO transmissions in the second phase achieve a rate
K4M log (1 + MSNRc) for a constantK4, i.e. the rate is of
the order ofM at high-SNR and of the order ofM2SNRc

l at
low-SNR. This gives a completion time

T2 =
M

K4M log (1 + MSNRc)

for the second phase. The traffic in the third phase is symmet-
rical to the first phase. If each observation is quantized into Q
bits, it takesT3 = QT1 time. Assuming thatd is able to decode
the transmitted bits from its source node from the quantized



signals it gathers by the end of the third phase, the end-to-end
communication rate achieved by the scheme is given by

M

T1 + T2 + T3

which is of the order of

min

(

log

(

1 +
SNRs

1 + K3SNRs

)

, K4 M log (1 + MSNRc)

)

.

When s and d are not neighboring clusters the bits ofs can
be relayed tod in multiple hops, where the above three phase
scheme is repeated at each hop. We can designate a node in
each intermediate relay cluster to serve as the destinationnode
for the previous hop and the source node for the next hop.
This relay node will collect the MIMO observations from the
previous hop, process them to decode the transmitted block of
M bits, then re-distribute them over the cluster so that they can
be relayed by a new MIMO transmission to the next cluster.
The operation at the network level can be again organized in
three successive phases:

• In a first phase, the “source node” in each cluster on
the relaying path froms to d distributesM bits among
the M nodes in its cluster. The “source node” iss in
the source cluster, and it is the designated relay node
in each of the intermediate clusters. Whiles distributes
a new set ofM bits among its neighbors, each of the
intermediate “source nodes” distribute the bits recovered
from the previous hop. All clusters operate at the same
time.

• In a second phase, simultaneous MIMO transmissions are
performed between neighboring clusters. The picture is
similar to the one in Figure 3-(a) and (b), but individual
nodes are replaced by clusters ofM nodes, and the point-
to-point transmissions are replaced by MIMO transmis-
sions between clusters.

• In a third phase, the MIMO observations from the previ-
ous hop are collected to the “destination node” in each
cluster for joint decoding. The “destination node” isd
in the actual destination cluster and it is the designated
relay node in each intermediate cluster. All clusters again
operate at the same time.

At the end of the these three phases, each of theM bit blocks
from s proceed one hop tod. The completion time of the first
phase is again given by (15) since all clusters operate at the
same time and the boundK3SNRs can be made to account
for the total interference. The rate of the MIMO transmissions
in the second phase is modified as

K4M log

(

1 +
MSNRc

1 + MSNRc

)

due to the interference between simultaneous MIMO trans-
missions which as in Theorem 3.2 is of the order of the
SNR between neighboring clusters. The details of the proof of
Theorem 3.6 can be made precise by following similar lines
to [7].
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[8] A. Özg̈ur, R. Johari, O. Ĺevêque, D. Tse,Information Theoretic Oper-
ating Regimes of Large Wireless Networks, IEEE Trans. on Information
Theory 56 (1), pp.427-437, 2010.

[9] U. Niesen, P. Gupta, D. Shah,On Capacity Scaling in Arbitrary Wireless
Networks, IEEE Trans. on Information Theory 55 (9), 3959–3982,
September 2009.

[10] U. Niesen, P. Gupta and D. Shah,The Balanced Unicast and Multicast
Capacity Regions of Large Wireless Networks, IEEE Transactions on
Information Theory, 56(5), 2249 - 2271, May 2010.

[11] D. Tse and P. Viswanath. Fundamentals of Wireless Communication.
Cambridge University Press, 2005.

[12] U. Niesen, S. Diggavi,The Approximate Capacity of the GaussianN -
Relay Diamond Network, IEEE Int. Symposium on Information Theory
(ISIT), St Petersburg, 2011.


