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Abstract—There has been significant recent progress in under-
standing approximately optimal relaying strategies for wireless Case (a) @
networks, such as quantize-map-and-forward, noisy network
coding, amplify-and-forward, etc. While one can construct spe- ¢ @/2
cific instances of networks, with specific topology and channel 14
configurations, where each one of these strategies can provide
significant gains over simple strategies such as routing and o
direct transmission, it is not clear how much gain these more 3
sophisticated strategies can provide in generic setups. In this
paper, we follow a scaling law approach and assume that nodes Case (b) @
are randomly distributed over the network area and the channels
between them are governed by a path-loss model. This approach 2 t
has been used to demonstrate the benefits of sophisticated
cooperation in networks with multiple unicast flows both in the Fig. 1. Two instantiations of a diamond relay network.
high and the low SNR regimes. However, for a single unicast
flow, we show that more sophisticated relaying can not provide
significant gain over simple multi-hop or direct transmission both . .
in the high and the low-SNR regimes, if the nodes are uniformly OVer a single relay. As — oo, the rate difference between
distributed over the network area. More sophisticated relaying the two strategies increases unboundedly. However, theeatt

is needed in networks where nodes are clustered in the low the rates achieved by the two strategies remains bounded by
to moderate SNR re_gimes._ We propose a cluster decode-and-mdeed, [4] shows that this bound holds even withelays and
forward strategy that is scaling optimal. arbitrary channel configurations: in the high-capacityimeg
the capacity of any:-relay diamond network is approximately
bounded by twice the rate achieved by routing over the best
Motivated by the relaying opportunities provided by theelay. Therefore, for the diamond topology, a compress-and
massive proliferation of wireless devices, capacity stofly forward type of strategy employing all therelays can provide
Gaussian relay networks has received significant attentien a rather modest multiplicative gain over routing. Moregver
the last decade. The work of Avestimehr, Diggavi and Tse [1§r most configurations the gain is much smaller tizarFor
has shown that a compress-and-forward type of strategyeat é&xample, routing over one of the relays approximately agsie
relays is universally good for dealing with the broadcast arcapacity in Figure 1-(a) when is large. Similarly, one can
superposition of wireless signals and can achieve closketo tonstruct specific examples of networks where amplify-and-
capacity of relay networks in the high capacity regime, ssroforward relaying can provide large gains over routing, but
different channel configurations and topologies. Ampéfyd- usually such large gains only pertain to very specific chiinne
forward type of strategies have been investigated for the loconfigurations [12].
SNR regime in [12]. Can such more sophisticated relaying Evaluating the benefits of different relaying strategie$ no
strategies provide significant rate gains over the tramftio only requires to understand the gains they provide in specifi
routing (milti-hop) approach in wireless adhoc networksifetwork instances, but also the likelihood of each instance
If so, what are the operating regimes and scenarios whenethis paper, we follow the scaling law approach of Gupta
sophisticated relaying is most useful? These are importamd Kumar [6]. This approach adopts a random model for
guestions concerning future communication architectéoes the location of the nodes and assumes that channel gains
such networks. are governed by a path loss and fading model which is a
It is easy to construct specific instances of networks whefnction of the node locations. The scaling law approach
each one of these strategies can provide gains over routihgs been used in [7], [8], [9], [10] to show that when there
For example, when the channel gain parametes large in are multiple source-destination pairs in the network (iplgt
the diamond network in Figure 1-(b), a compress-and-fodwaunicast traffic), sophisticated cooperation techniquaesh saas
type of strategy [1], [2], [3] that employs both the relays cahierarchical cooperation in [7], can provide a multiplicat
approximately achieve twice the rate achievable by routirgain as large a®©(y/n) in the system capacity in various
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operating regimes, where is the number of nodes in the d
network. The gain follows from the ability of cooperation
to harness interference between different source-déistina
pairs. Can sophisticated relaying strategies provide laimi
gains when there is only a single-source destination pair in
the network?

This is the question we investigate in this paper. We show g
that the answer is no when the wireless nodes are uniformly

distributed over the network area. Direct transmissiomftbe a)
source node to the destination and multi-hopping are seiffici
to approximately achieve the capacity in both the high aed th Fig. 2. (a) Uniform and (b) clustered network.

low SNR regimes. Sophisticated relaying is needed only when

the nodes in the network are clustered together and thetdirec

channel between the source and the destination is Weathé.e.fc, fe>W. The Comp|ex baseband-equiva|ent channel gain
SNRis not too large. We propose a cluster decode-and-fdrwayetween node and nodek at timem is given by:

strategy to achieve the optimal scaling of the capacity is th

case. This strategy uses multi-hop communication inside th H;plm] = Vér;,f/? exp(j8ik[m]) Q)
clusters to facilitate MIMO communication across clusters

Information is then routed from one cluster to the next vigherer;; is the distance between the nodés,[m] is the
successive MIMO transmissions, by being decoded and fahdom phase at timen, uniformly distributed in [0, 27
encoded at each intermediate cluster. The strategy retiesa@d {0ix[m];1 < i < 2n,1 < k < 2n} is a collection
spatial reuse to divide the end-to-end communication rabl Of independent identically distributed random proces3és.

to successive steps. Decoding at each step prevents néisénl’s and ther;'s are also assumed to be independent.
accumulation and makes the strategy good also in the low-SNIRe parameter&’ anda > 2 are assumed to be constants;

regime as opposed to compress-and-forward type of stested called the power path loss exponent.

[1], [2], [3] which are only effective at high-SNR. Note that the channel is random, depending on the location

of the users and the phases. The locations are assumed to be

fixed over the duration of the communication. The phases are
There aren wireless nodes located in a rectangle of area aksumed to vary in a stationary ergodic manner (fast fading)

VA x v/A. We consider two different spatial models for thave assume that each node has poderand the network

II. MODEL

distribution of the nodes in the network. is allocated a total bandwidth dfi’. While deriving upper
(a) Then nodes are distributed uniformly and independentlyounds on the best achievable rate betweandd, we assume
over the aread. that the phase$6;.[m], Vi, k} are known in a casual manner

(b) The n nodes are clustered into/M clusters each of to all the nodes in the network. However, the strategies we
size M nodes and areal.. Each cluster ofM nodes propose only use receive channel state information, i.e. it
is uniformly distributed over the cluster area, while thés sufficient for each nodé& in the network to know only
clusters are distributed uniformly over the network areile phases of its incoming channglg;;[m],Vi} in a casual
A. We assume thatl, < MTA. Note that if then nodes manner. The signal received by nodat timem is given by
were uniformly distributed over the ared, the area

occupied byM nodes would be’.4 on the average. Yi[m] = ZHik[m]Xk[m] + Zi[m]
A, < % corresponds to assuming that nodes are indeed ki

clustered together. where X [m] is the signal sent by nodeat timem and Z;[m]

The scaling law studies in [6], [7], [8] reveal that whenis s white circularly symmetric Gaussian noise of power sgect
large the capacity of such a random network is the same @hsity NoW per symbol.

the capacity of a network where nodes are placed on a regulawe define SNR to be the typical SNR between nearest

grid. See Figure 2. In other words, typical configurations Q'Teighbor pairs. In the case of a uniform network
the large random network are close to a grid, and typical

deviations from the grid do not significantly impact capacit GP
. : e ) . SNRy = —————,
while atypical deviations are less and less likely:dacreases. NOW(JTM)&
For simplicity in derivations, we will consider the regular
networks corresponding to the random distributions (a) asthce /A/n is the nearest neighbor distance in a regular
(b), as given in Figure 2. A randomly chosen nadamong network of the form in Figure 2-(a) (and the typical nearest
the n nodes wants to communicate to a randomly chos@eighbor distance in a network where nodes are uniformly
destinationd at rate R bits/s/Hz. distributed over the network area). We similarly define the
We assume that communication takes place over a flahg-distance SNR in the network to be the SNR of a point-
channel of bandwidti? Hz around a carrier frequency ofto-point transmission over the largest scale in the netyibdk

)



diameterv/A4, Theorem 3.1:When the nodes are uniformly distributed
GP 3) over the network area, the largest end-to-end achievalote co

NoW (V/A)> munication rate betwees andd is bounded by

Note that SNR and SNR are related as SNR= n®/2SNR,. R <log(1 4+ K1SNR,)

In the case of a clustered network with clustersiénodes  for a positive constahtk; < 424 7/2+7/(2(a — 2))).
distributed over an ared., the nearest neighbor is instead Theorem 3.2:When the nodes are uniformly distributed
given by ap over the network area, multi-hop achieves a rate given by

" SNR;
N()W(\/A(/M) RZlOg <1+1+I{QSNF\)S)
which we again denote by SNRy slightly abusing notation. betweens and d for a positive constanis < 4a/(a — 1).

Ac/M is the separation between nearest neighbors in eaclp,,qgition 3.3: Direct transmission froms to d achieves
cluster in this case. We also define the inter-cluster S rate

for clustered networks which corresponds to the SNR of
a point-to-point transmission between two nodes located in
neighboring clusters,

SNR =

SNR, = 4)

R>log (1 + (2)‘“/QSNRl) .

Comparing these results, we observe that:
GP « when SNR « 0 dB (i.e. in the scaling law sense
. (5) SNR, = n” for v < 0) the upper and the lower bounds
NoW (v/MA/n)* 7 = 0) the upp

in Theorem 3.1 and Theorem 3.2 respectively are of the
Note that/M A/n is the separation between the midpoints order of SNR, therefore multi-hop is scaling optimal.
of two neighboring clusters in Figure 2-(b). Finally, thendp

Note that this is a low-SNR regime; even the nearest
distance SNR in the network, SNRs again given by (3). neighbor transmissions in the network are at low-SNR.
Since A, < M4 < /A, we have

SNR, =

For example, this is the case in a network with growing
number of users and fixed density, known as extended
scaling [7]. In this regime, more sophisticated relaying
strategies (such as amplify-and-forward) can not provide
significant gain over multi-hop.

o when SNR > 0 dB the upper bound in Theorem 3.1 is
of the order oflog n and the lower bound in Theorem 3.2
is constant, the two differing only by a factor tfgn.
Therefore, multi-hop is still (approximately) scaling op-

@) timal. More sophisticated relaying strategies can only

provide marginal gain over multi-hop. Note that this can
where(' is the largest reliable communication rageachiev- be interpreted as a moderate to high SNR regime for the
able betweers andd. n, A, P and W are all independent network; nearest neighbor transmissions are at low SNR,
parameters of a network that can take on a wide range of while transmissions over larger distances can be in either
values. By considering all possible couplings betweenehes high or low SNR. When SNR> 0 dB, i.e., when all the
parameters, we aim to investigate all cases where they can be channels in the network are at high-SNR, including the
large or small with respect to each other. (In the case of a direct channel betweenandd, direct transmission from

SNR, > M“/?2SNR. = n®/?SNR. (6)

A strategy is called scaling optimal in a certain regifde
if for a certain coupling of the system parametets= n"1,
P = nP, W = nf such that(3, 3, 33) € R, it achieves
the scaling exponent of the capacity of the network

e(f1, B2, B3) == lim log C(n, B1, B2, 33)

n—o00 10g n

clustered network, we have the additional parameterand

M.) Most often, we will see that the scaling of the capacity

and the performance of a strategy dependsen3,, 83 not

separately but only through a single SNR parameter. Note thae

if a strategy is scaling optimal, within logarithmic facsoiits

s to d becomes scaling optimal. This is, for example, the
case when there are an increasing number of nodes on a
fixed area, known as dense scaling [6].

although it is not part of our scaling law formulation in
(7), it is instructive to look at the case when SNR ¢"’

performance exhibits the right dependence to major system for v+ > 0, i.e. when the network is in a very high-
parameters, same as the capacity itself. SNR regime, the upper bound is now of the order of
nY while the rate achieved by multi-hop is still con-
stant. At very high-SNR, spatial reuse is not desirable
since interference from simultaneous transmissions in
the network, no matter how far they are, significantly
degrades performance. Since multi-hop is based on spatial
reuse, it is not anymore scaling optimal. Simple direct
transmission frons to d achieves the optimal scaling.

Il. M AIN RESULT

The main conclusions of this paper are summarized in the
following theorems. The first theorem establishes an upper
bound on the best achievable rate betweandd in a uniform
network. The second theorem establishes a lower bound on
the rate achieved by multi-hopping in the same network. The
proposition gives the rate achieved with direct transroissi

1A constant is independent of the parameters of the netwark, P, W,
from s to d.

Ny etc.



The above discussion shows that in all SNR-regimes, simple d d
strategies such as multi-hop and direct transmission dre su
ficient to approximately achieve the capacity of the network
More sophisticated relaying strategies, such as amplifi~a
forward, quantize-map-forward or noisy network codingy ca
not provide significant gains over these simple strategies i ¢
uniform networks. S -

We next turn to networks where nodes are clustered as in
Figure 2-(b). In Theorem 3.4, we establish an upper bound
on the best achievable rate betweeand d. Proposition 3.5
gives the rate achieved by multi-hop. Theorem 3.6 gives the Fig. 3. (a) The route frons to d. (b) Spatial Reuse.
rate achieved with a cluster decode-and-forward strategy.

Theorem 3.4:When the nodes are clustered as described in
Section I, the largest end-to-end achievable communinati

a) b)

rate betweers andd is bounded by min(SNR,, M2SNR.). In all cases, the cluster decode-
and-forward strategy of Theorem 3.6 is needed to achieve
R < min (log(l + K1SNRy), KsM*© MQSNRC) the optimal scaling. Note that this regime comprises many
. sub-regimes: although SNR« 0 dB, SNR, as well as
for the constantK; in Theorem 3.1, and a constait > 0. MSNR., the SNR of a MIMO transmission between two

Proposition 3.5:In a clustered network, multi-hop from

, neighboring clusters, can still be larger th@mB. This
to d achieves a rate

can be interpreted as a moderate SNR regime. On the
(®) other hand, both SNRand M/ SNR. can be smaller than

0 dB, in which case the network is at low SNR. We can
also have one of these quantities at high and the other
one at low-SNR. The cluster decode-and-forward strategy
achieves the optimal scaling in all cases.

R > log <1+ SNR- )

1+ K2SNR.

where K5 is the positive constant in Theorem 3.2. Direct
transmission froms to d achieves a rate

R > log (1 + (2)*‘1/23NR,) . 9)

Theorem 3.6:When the nodes are clustered as described in
Section Il, the cluster decode-and-forward strategy desdr
in the Section VI achieves a rate IV. UNIFORM NETWORKS

. SNR, MSNR.
1 1+ ——— K,M1 1+ ————
m1n<0g< +1+K35NR5>’ 4 Og( +1+MSNRC>)

for positive constantsss; and K. In this section, we prove Theorems 3.1 and 3.2 and Propo-

Comparing these three results we identify the followingtion 3.3-
regimes: Proof of Theorem 3.1The largest communication rate be-

« when SNR > 0 dB, the upper bound in Theorem 3.4tweens andd can be bounded by the total mutual information
is of the order oflogn and the lower bound in (9) is that can be conveyed fromto the rest of the network. The
constant. Direct transmission frasrto d is approximately capacity of the single-input-multiple-output (SIMO) cimeh
scaling optimal. The network is in a high-SNR regimebetweens and the remaining nodes in the network is given by
even the long-range direct channel frento d is at high [11]
SNR.

« when SNR « 0 dB but SNR > 0 dB, the upper
bound in Theorem 3.4 is of the order ddgn, and

multi-hop in (8) achieves a constant rate. Therefore, R < log 1+Z|hik‘2i
multi-hop is scaling optimal. This is a moderate SNR ik NoW
regime; while the long-range direct channel between N
and d is at low-SNR, the channels between nodes in |/ 144 Z 1 GpP
i i i _ i i = 108 72 2\ /2 o
neighboring clusters are at high-SNR. Both in the earlier o (@24 E2)2 NoW (\/A/n)

and the current regime, more sophisticated relaying can
not provide significant gains over direct transmission and
multi-hop relaying respectively.

« when SNR « 0 dB, the rate achieved by multi-
hop is of the order of SNRwhile the upper bound where the second inequality follows by observing that thra su
in Theorem 3.4 is either still of the order afgn or >, , |hix|? is largest ifs is located in the middle of the grid

=log (1 +4BSNR;),



in Figure 2-(a).A can be upper bounded as In order to decrease interference one can also considetial par
VA2 spatial reuse strategy where only alternate nodes on the rou
B Z 1 (10) are allowed to transmit simultaneously, see Figure 3-(b).
(2 + k2)a/2 Proof of Proposition 3.3:The proof of the proposition

=OR= simply follows from the fact that the separation between

(a) L2 ( 1 /‘/ﬁ/2 1 dz) andd can be at most/2A.
=\ 2)e/2 (w2 4 32)2/2 V. CLUSTEREDNETWORKS
(? 1+ /ﬁ/2 idx + /\/5/2 ;dy In this section, we prove Theorems 3.4 and 3.6. The proof
B 1 z~ 0 (1+y?)e/2 idea for Proposition 3.5 is given in the next section.
vn/2 o pvn/2 1 Proof of Theorem 3.4The first upper bound in the theorem

+ ./O /1 dedy follows from the SIMO bound in Theorem 3.1. Note that the
© /2 VA2 SIMO bound only depends on the SNR efto its nearest
< (2+7/2)+ / / T—ardrdH, (11) neighbors, which is SNRin the case of a uniform network and

0 1

SNR in the current case. The number of nodes in the network
where (a) follows by bounding the area given by the Riemar irrelevant to the upper bound as long as nodes are located
sum with the integral, (b) follows by applying the idea in (apn a regular grid of the corresponding minimal distance eNot
for the second sum, (c) follows by bounding the two integratiat if not every location on the grid is occupied, this cafyon
in (b) by assumingy = 2 and a change of variables for thedecrease the upper bound.
last integral. Bounding the last integral in (c), we obtain The second term in the upper bound follows by considering

the cut between the source cluster and the rest of the network
(12) The largest communication rate fromto the d is upper

Proof of Theorem 3.2in the multi-hop strategy, the packeté’qunded. by the mutua_l information that can be conveyed over
betweens and d are relayed by successive point-to-pointiS Ut i-e. the capacity of théf to n — M MIMO channel.
transmissions between neighboring nodes. Each intereediyyNeN the channels are ergodically fading, the capacity sf thi
relay node decodes the packets from the previous node AAMO channel is given by [11]
forwards them t_o t.he n.ext while the intgrference: from simul-» < max E (log det(I + HQ(H)H*)), (13)
taneous transmissions is treated as additional noise. Suenas Q(H)>0
that the packets are first routed over a horizontal and then a E(Quir(H))<P/NoW, VkeS
vertical path as illustrated in Figure 3-(a). The rate agtie where 4
by this multi-hop strategy depends on two parameters: the 0. — VG el %
SNR of the nearest neighbor transmissions, given by SNR k= /2 7

r.
and the interference from simultaneous transmissions. The S i ) o
interference-to-noise power ratio (INR) at receiver nodis under the optimistic assumption that the realizations ef th

B<2+4+7/24+7/(2(a—2)).

keSieN\S.

given by channels are know at both the transmitter and the receiver.
GP This allows the transmission covariance maifjX-) to be a
INR = Z NoWre,’ function of the channel matri¥/. We useS to the denote the
keldy o cluster of the source nodeand\/'\ S denotes the remaining
wherel4,, is the set of all transmitters other than the intendetabdes.
transmittert. The above sum can be bounded as The capacity of the MIMO channel in (13) can be upper
N bounded in two steps. First, we can show that choosing
INR < 4 Z Gpr Q(H) = v I is approximately optimal. It has been shown
T NoW(ky/A/n)> in [7][Lemma 5.2] that the increase in capacity for any other

, L ) choiceQ(H) of the covariance matrix is bounded By¢ for
by assuming the worst case scenario thet in the middle of 5. - - o This says that independent signaling at the transmit
the horizontal line and loosely upper bounding the interiee e s sufficient to achieve the cut-set bound. Beamfarmin

from the tr_ansmitt_ers_ on the vertical line by that from th?echniques can provide limited gains, essentially bec#iuse
horizontal line. This yields, phases between different nodes are independent of eaah othe

V)2 The remaining step is to bound the capacity of the MIMO
INR < 4 Z /?aSNRs <4(141/(a —1))SNR.. thatmrlﬁl tunder independent transmissi@p&d) = NOLWI.
k=1 ote tha

Therefore, the rate achieved by multi-hop can be lower
bounded as

P P
* < *
E(logdet([+ NWHH )) _E<NWTr(HH ))

0 0

SNR, I
R 2log (H 1+(4a/(a—1))SNRs>' Now )



S d

Fig. 5. The three phases of the cluster decode-and-forvieategy.

) . VI. CLUSTER DECODEAND-FORWARD
Fig. 4. Moving the nodes to upper bound (14).

In this section, we describe the cluster decode-and-farwar
strategy that achieves the performance in Theorem 3.6.

Note that The building block of the strategy is the three phase scheme
P G illustrated in Figure 5. Let us first focus on the case where
N()WTr(HH*) = N Z = (14) andd are located in neighboring clusters. Assuméas M
keSieN\s ik bits to communicate td. These bits can be communicated in

The sum is largest if is located in the middle of the network. (€€ succe'ssive. steps. _ . _
Assumings is located in the middle of the network, consider « s can first distribute its\/ bits among itsM neighbors
dividing this summation intol equal terms as was done in by using a multi-hop strategy, one bit for each node.

(10) in Theorem 3.1 by considering the nod&s\ S in « These nodes together can then form a distributed transmit
each quadrant separately. One simple way to upper bound antenna array, sending the bits simultaneously to the
this summation is to observe that if we move all thé neighboring cluster wheré lies.

nodes in each cluster (inc|uding the source C|uster) to thee Each node in the destination cluster obtained one obser-

comer of the cluster as indicated by the arrows in Figure 4 vation from the MIMO transmission. It can quantize and
we can only increase the summation since we decrease the ship the observation to the destination natlevhich can

inter-node distances;,,k € S,i € N\ S. This gives us a then do joint MIMO processing of all the observations
regular grid where each grid point contaifs nodes and the and decode the transmitted bits. The shipping of the
minimal distance of the grid is equal tg'M A/n. The proof guantized observations can be again handled by multi-
of Theorem 3.1 applies to the current case with Sképlaced hop.

with SNR’ and an additional factor a#/? since there aré/ We next give a back of the envelope calculation of the rate
nodes on each grid point (we get a factordf from the TX achieved by this strategy. Note that the bottleneck in ths fir

side and a factor ofi/ from there RX side). We obtain stage is the output rate from the source node. Following the
p G lines of the proof of Theorem 3.2, it can be shown thaan
— < 4BM?SNR,, output bits at a rate
NOW - ’f‘(-’;c
keSieN\S R,
where B is bounded in (12). Combined with the fact that log (1 1 +KSSNR5)

independent signalling is optimal within a factor dfc from
[7][lLemma 5.2], this completes the proof of the theorem.
Proof of Proposition 3.5:The proof of the proposition
follows similarly to the proofs of Theorem 3.2 and Propo- o M
sition 3.3. When the network is clustered, the performance of L= log (1 4 __SNR. ) '
multi-hop is limited by the rate achieved over the long hops 1+K3SNR,
across the clusters. Therefore, instead hopping over steargollowing the lines of [7, Lemma 4.3], it can be show that
neighbors we can simplify the strategy by hoping over n¢argie MIMO transmissions in the second phase achieve a rate
neighbor clusters since the performance of the strategy AS M log (1 + MSNR.) for a constantky, i.e. the rate is of
anyway limited by such hops. For examplecan transmit the order ofM at high-SNR and of the order df/>SNR; at
directly to a node in its nearest cluster, this node can thgsw-SNR. This gives a completion time
transmit to another node in a neighboring cluster etc. This

for a constant';. Therefore, th phase can be completed in a
total amount of time bounded by

(15)

yields a multi-hop strategy with the hop distance increased T = M
\/MA/n instead of\/A/n in Theorem 3.2. Since the SNR K4Mlog (1 + MSNR.)

over the a distance/M A/n is given by SNR, this gives for the second phase. The traffic in the third phase is symmet-
the result in (8). The lower bound for the rate achieved hncal to the first phase. If each observation is quantized Gt
direct transmission simply follows by noting that the lage bits, it takesl’s = Q77 time. Assuming thad is able to decode
separation betweesn andd can be at most/A. the transmitted bits from its source node from the quantized
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intermediate “source nodes” distribute the bits recovered

from the previous hop. All clusters operate at the same

time.
« In a second phase, simultaneous MIMO transmissions are

performed between neighboring clusters. The picture is

similar to the one in Figure 3-(a) and (b), but individual

nodes are replaced by clustersidfnodes, and the point-

to-point transmissions are replaced by MIMO transmis-

sions between clusters.
« In a third phase, the MIMO observations from the previ-

ous hop are collected to the “destination node” in each

cluster for joint decoding. The “destination node” ds

in the actual destination cluster and it is the designated

relay node in each intermediate cluster. All clusters again

operate at the same time.

At the end of the these three phases, each ofithbit blocks
from s proceed one hop td. The completion time of the first
phase is again given by (15) since all clusters operate at the
same time and the bounl;SNR, can be made to account
for the total interference. The rate of the MIMO transmissio

in the second phase is modified as

MSNR. )

due to the interference between simultaneous MIMO trans-
missions which as in Theorem 3.2 is of the order of the
SNR between neighboring clusters. The details of the prbof o
Theorem 3.6 can be made precise by following similar lines
to [7].



