
1

1



2

Communication Complexity and Data Compression
Ulrich Tamm

Abstract— A result of Ahlswede and Cai for the 2-party
communication complexity of set intersection is generalized to
a multiparty model. There are relations to several areas as to
the direct-sum conjecture and amortized complexity in compu-
tational complexity or interactive communication in information
theory as well as to wireless sensor networks and even quantum
communication. The aim of the paper is mostly to survey these
different applications and to draw the attention of researchers
in one area to the results and applications in other areas.

Index Terms— prefix codes, communication complexity, amor-
tized complexity, functions on direct sums

I. INTRODUCTION

The notion of communication complexity was introduced
by Yao in 1979 [26]. Since then it found many applications in
Computer Science, e. g. [16]. The communication complexity
of a function f : X × Y → Z (where X , Y , and Z are finite
sets), denoted as C(f), is the number of bits that two persons,
P1 and P2, have to exchange in order to compute the function
value f(x, y), when initially P1 only knows x ∈ X and P2

only knows y ∈ Y . To this aim they follow a predetermined
interactive protocol.

In his pioneering paper Yao [26] used an extra stop symbol
to announce the end of a message in such an interactive
protocol. Papadimitriou and Sipser [21] got rid of this extra
symbol by allowing only prefix codes. Since then no possible
message is the beginning of another one the end of a message
is excatly determined. However, prefix codes may also serve to
compress the amount of communication and a very remarkable
compression was achieved by Ahlswede and Cai [1] (cf. also
[2]) for set intersection.

To this aim they considered vector-valued functions fn

defined on the direct sums Xn,Yn of the sets from the domain
of some basic function f : X×Y → Z . For xn = (x1, . . . , xn)
f and yn = (y1, . . . , yn) then

fn(xn, yn) =
(
f(x1, y1), . . . , f(xn, yn)

)
The set intersection sin(xn, yn) then arises for the Boolean

”and” as basic function si. Obviously, then sin yields the
intersection of the two sets represented by the binary strings
xn and yn. In [1] it was shown that

c(sin) = dn · log2(3)e

Originally Ahlswede’s research in this direction was mo-
tivated by studying the communication complexity of the
Hamming distance [4] and similar functions defined on direct
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sums, e.g. [3] and [24]. He was mainly interested in a single–
letter characterization basing the communication complexity
of the direct sum function on the communication complexity
of the basic function f . To this aim he and his coauthors
demonstrated that several lower bounds behave multiplica-
tively. We shall sketch these bounds and also the protocol for
set intersection in Section II.

A further line of research leading to direct sum methods in
communication complexity goes back to the question if it is
easier to solve communication problems simultaneously than
separately, cf. [16], pp. 42 - 48. An obvious upper bound on the
communication complexity C(fn) is obtained by evaluating
each component f(xi, yi) separately and communicating the
result for component i using the optimal protocol for f . Can
we do better by considering all components simultaneously?
With the result of Ahlswede and Cai this is possible for set
intersection, since C(si) = 2 but C(sin) = dn · log2 3e.

The measure lim supn→∞
1
nC(fn) is also called amortized

communication complexity (see [12]). One of the main open
problems in communication complexity is the question if
there can exist a significant gap between the communication
complexity and the amortized communication complexity of a
function. We shall review the discussion in Section III.

This problem was recently extended to the ”number in
hand” model of multiparty communication complexity [11].
In Section IV we shall consider the set intersection function
sn for more than 2 sets and show that the results of Ahlswede
and Cai [1] can be generalized to this case. Namely, for k
parties involved in the communication

dn · log2(k + 1)e ≤ C(sn) = dn · log2(k + 1)e+ k − 2

Interestingly, the”number in hand model” in the beginning
was not so popular but later found an important application in
streaming [5]. Especially, the compression for set intersection
has an application in wireless sensor networks as discussed
in [14], where even more general threshold functions were
considered.

II. COMMUNICATION COMPLEXITY OF SET INTERSECTION

For set intersection sin the naive protocol, in which one
person sends all the bits of his input and the other person
returns the result, yields the upper bound C(sin) ≤ 2n on the
communication complexity.

A lower bound is obtained via the rank of the function value
matrices Mz(f) = (axy)x∈X ,y∈Y for all z ∈ Z defined by

axy =

{
1 if f(x, y) = z
0 if f(x, y) 6= z.

Namely, for any function f
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C(f) ≥ dlog2 r(f)e, where r(f) =
∑
z∈Z

rankMz(f)

In [1] it was shown that the parameter r(f) behaves
multiplicatively, i.e., for any vector-valued function fn with
basic function f it holds

r(fn) = r(f)n

For the basic function si (the logical ”and”) then

r(si) = rank
(

1 1
1 0

)
+ rank

(
0 0
0 1

)
= 2 + 1 = 3

The communication complexity of si hence is 2 bits, since
the naive protocol requires 2 bits of communication and the
lower bound is also C(si)d≥ log2(r(f))e = dlog2(3)e = 2.

However, for the vector-valued function, there is a gap
between the upper and lower bound, since the naive protocol
now requires 2n bits of communication, whereas the lower
bound is

C(sin) ≥ dlog2 r(si
n)e = dlog2(3n)e = dn · log2(3)e

Via the use of prefix codes and Kraft’s inequality it is
possible to close this gap.

Theorem 1 ([1], [2]):

C(sin) = dlog2(3)e

Proof: The naive protocol is modified as follows. In know-
ledge of xn the set of possible function values is reduced to
the set S(xn) = {yn : yn ⊂ xn}. Hence, only dlog2 S(xn)e
bits have to be reserved for the transmission of sin(xn, yn)
such that P1 can assign longer messages to elements with few
subsets. So, in contrast to the naive protocol, the messages
{φ1(xn) : xn ∈ {0, 1}n} are now of variable length. Since
the prefix property has to be guaranteed, Kraft’s inequality
for prefix codes yields a condition, from which the upper
bound can be derived. Specifically, we require that to each xn

there corresponds a message φ1(xn) of (variable) length l(xn)
such that for all xn ∈ {0, 1}n the sum l(xn) + dlog2 S(xn)e
takes a fixed value, L say. Kraft’s inequality states that a
prefix code exists, if

∑
xn 2−l(x

n) ≤ 1. This is equivalent
to
∑

xn 2dlog2 S(xn)e ≤ 2L. With the choice L = dlog2(3n)e
Kraft’s inequality holds.

Thus, an efficient protocol was obtained via data compres-
sion, namely the appropriate encoding of the messages in the
naive protocol. This can be interpreted as a compression of
this protocol.

III. AMORTIZED COMMUNICATION COMPLEXITY AND THE
DIRECT–SUM CONJECTURE

Direct sum methods in communication complexity are use-
ful tools in separating complexity classes. Further applications
are the comparison of lower bound techniques and the study of
their power - e. g., how large can be the gap between the lower
bound and the communication complexity [19]. The intuition

is that small gaps for the basic function f become large for
the vector-valued function fn.

Karchmer, Raz, and Wigderson [17] asked how much better
simultaneous computations are compared to the component-
wise evaluation of the function fn for basic Boolean functions
f : {0, 1}m × {0, 1}m → {0, 1}. They conjectured that the
amortized communication complexity

C(f) =
1

n
lim sup
n→∞

C(fn)

is close to C(f) – the communication complexity of the
basic function f .

As Karchmer, Raz, and Wigderson [17] point out, a proof of
their direct sum conjecture would be a decisive step towards
a separation of the complexity classes NC1 and NC2 - a
long outstanding open problem in computer science. Actually,
they considered the communication complexity of relations.
For functions this concept was discussed in [12].

In [6] the notion of closeness in the above conjecture was
defined more formally. Namely the direct sum conjecture in
[6] was stated as

C(fn) = n · (C(f)−O(1))

There is some evidence against it, since Naor, Orlitsky, and
Shor [18] presented a partial function (not defined for every
input - this concept is motivated from interactive commu-
nication [20]) with deterministic communication complexity
C(f) = Θ(log(m)) but amortized complexity O(1)

Observe that the amortized communication complexity is
just the limit for n −→ ∞ of the communication com-
plexity of the vector–valued function divided by the number
of components n. Hence, with Theorem 1 the function sin

can be evaluated much faster considering all n components
simultaneously than by componentwise communication of the
results for the basic function si, which would cost 2n bits.
So the amortized communication complexity of the function
si is 1

n limn→∞ C(sin) = log2(3). Of course, the difference
C(si)−C(si) = 2− log2(3) is too small in order to disprove
the direct sum conjecture. However, compression of a protocol
leads to a significant improvement.

Much interesting for information theory is the application of
protocol compression in the analysis of probabilistic and ran-
domized protocols, e. g., [15]. Here methods as Slepian/Wolf
coding [9], interactive communication [8] or common infor-
mation and common randomness [13] come into play in the
analysis of corresponding direct – sum theorems.

IV. SET INTERSECTION FOR MULTIPARTY
COMMUNICATION

The set intersection function sn in k > 2 arguments has as
basic function s the logical ”and” of k binary inputs. Thus s
is defined on {0, 1} × {0, 1} × . . .× {0, 1} via:

s(x1, x2, . . . , xk) =

{
1 , x1 = x2 = . . . = xk = 1
0 , else

The problem in generalizing Theorem 1 is that for more
than 2 parties communicating the rank lower bound is not
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applicable any more. Luckily, generalizing a result of [1] it
can also be shown that the independence number behaves
multiplicatively for vector-valued functions, i.e., Ind(fn) ≥
Ind(f)n.

Here Ind(f) =
∑

z indz(f), where indz(f) is the minimal
number of disjoint monochromatic rectangles needed to in-
clude all the values z in the function matrix. A monochromatic
rectangle is a subset A1× . . .×Ak on which the function fn

takes the constant value z.

Theorem 2: ([14], [25])

dn · log2(k + 1)e ≤ C(tn) ≤ dn · log2(k + 1)e+ k − 2

Proof: The function tensor of the basic function s contains
exactly one entry 1 namely for x1 = x2 = . . . = xk = 1,
i.e., the all–1 vector of length k . All other entries are 0. The
k neighbours of the all–1 vector, i.e. all (x1, . . . , xk) with
exactly one xi = 0 and all other xj = 1 obviously must be
contained in different monochromatic rectangles. Since also
the all-1 vector must be contained in a separate monochromatic
rectangle, the independence number Ind(s) = k+1 and hence
C(sn) ≥ dn log2 Ind(s)e = dn log2(k + 1)e.

A protocol that almost achieves this lower bound is again
obtained by assigning an appropriate prefix code to the
messages in the trivial protocol. As for the set intersection
function sin in two arguments, again Person 1 can assign
longer messages to inputs with few 1s. The other persons then
can determine the exact value following an optimal protocol
for set intersection of k − 1 sets. For k = 2 we already
know that dn · log2(3)e bits are optimal. So, for k = 3,
Person 1 transmits l(x) bits, say for an input x. Since the
total number of bits transmitted should be a fixed value L,
say, L = l(x) + f(x), where f(x) is the number of bits
the other persons should still transmit to agree on the result.
In order to guarantee the existence of a prefix code, Kraft’s
inequality

∑
x 2−l(x) ≤ 1 must hold. This is equivalent to∑

x 2−(L−f(x)) ≤ 1 or
∑

x 2f(x) ≤ 2L. Now if Person 1
has an input x = x1 with exactly i many 1’s then by the
protocol for si we know already that f(x) = di · log2(3)e bits
are enough to determine the set intersection of the remaining
two sets by persons 2 and 3. So, Kraft’s inequality reduces
to
∑

i

(
n
i

)
2di log2(3)e ≤ 2L. This can be assured by the choice

L = dn log2(4)e + 1. Analogously, for k > 3 we inductively
obtain from Kraft’s inequality

∑
i

(
n
i

)
2di·log2(k)e+k−3 ≤ 2L,

which is fulfilled for L = dn · log2(k + 1)e+ k − 2.

The research in [25] was motivated by a recent extension
of the direct–sum conjecture to the ”number in hand” model
of multiparty communication complexity [11]. Yao’s model
of communication complexity can be generalized to several
multiparty models depending on the information accessible
to each person. Most well studied is the ”number on the
forehead” model in which each person knows all inputs but
her own, for instance [7] or [22]. The ”number in hand”
model, in which each person knows just her own input, was
not so popular in the beginning but later found an important
application in streaming [5].

So it was natural to extend set interesection and other
functions defined over the binary alphabet to more than 2
arguments. The compression for set intersection also was
helpful in the study of several more functions. Whereas the
direct – sum conjecture states that a significant reduction of
communication cannot be expected by increasing the length n
of the inputs, set intersection demonstrates that the amount of
communication can significantly be reduced, when the number
k of communicators is increased.

This has an application in wireless sensor networks. Ob-
serve that the naive protocol would require n · k bits of
communication among the k communicators, whereas the
compressed protocol above requires only n · log2(k + 1) bits.
Kowshik and Kumar in [14] were interested in this reduction of
communication and derived a more general result for threshold
functions, where set intersection occurs as a special case.
Thus, instead of calculating the basic function at every time
instance separately, the sensor network can save energy by
collecting information about n time instances and then follow
the compressed protocol.

The problem with ”number in hand” is that a generalization
of the lower bound techniques is rather difficult. The most
powerful lower bound in two-party communication complexity
is the rank lower bound. But the rank of a matrix is generalized
by a tensor rank (3 and higher dimensional matrices), which
is not so easy to determine. Besides, the matrix rank is
multiplicative under the tensor product (very important for
functions on direct sums). This is no longer the case for
higher dimensional tensors - a serious problem also in quantum
information theory, cf. [10]. Over small alphabets a lower
bound can be derived via the independence number as in the
proof of Theorem 2. However, for functions defined over larger
alphabets, this number is not easy to determine.

V. CONCLUDING REMARKS

A communication protocol was presented for the computa-
tion of the intersection of k subsets of an n–elementary set
represented by their characteristic vectors as binary strings of
length n. Via prefix coding communication can be reduced
from n · k bits to n · log2(k + 1) bits. As a consequence the
amortized complexity of the logical ”and” of k binary inputs
is log2(k + 1), which is much better than its communication
complexity k.

The underlying multiparty communication model here was
”number in hand”. As an application, computation of the
logical ”and” can be carried out more efficiently in collocated
wireless sensor networks [14].

Message compression in protocols also is a useful tool in
probalistic communication complexity for functions defined
on direct sums. For deterministic communication the direct
– sum conjecture relating the communication complexity and
the amortized communication complexity of a function would
yield an important separation result in computational complex-
ity [17].
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