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Abstract

Determining whether an unordered collection of overlapping substrings (called shingles) can be uniquely decoded
into a consistent string is a problem common to a broad assortment of disciplines ranging from networking and
information theory through cryptography and even genetic engineering and linguistics. We present three perspectives
on this problem: a graph theoretic framework due to Pevzner, an automata theoretic approach from our previous work,
and a new insight that yields an efficient streaming algorithm for determining whether a string of n characters over
the alphabet Σ can be uniquely decoded from its two-character shingles; our online algorithm achieves an overall
time complexity Θ(n + |Σ|) and space complexity O(|Σ|). As an application, we demonstrate how this algorithm
can be adapted to larger, varying-size shingles for (empirically) efficient string reconciliation.

I. INTRODUCTION

The problem of efficiently reconstructing a string from a given encoding is fundamental to a broad range of

settings. In information theory, this is related to the α-edits or string reconciliation problem [3, 20], wherein two

hosts seek to reconcile remote strings that differ in a fixed number of unknown edits, using a minimum amount

of communication. A similar problem is faced in cryptography through fuzzy extractors [7], which can be used to

match noisy biometric data to encrypted baseline measurements in a secure fashion. Within a biological context,

this problem has common roots with the sequencing of DNA from short reads [3] and reconstruction of protein

sequences from K-peptides [25]. This idea has even shown up in computational linguistics, where it was used to

learn transformations on varying-length sequences [24].

In a simple formal statement of the unique string decoding problem, one is given a string s ∈ Σ∗ over the

alphabet Σ. The string is considered uniquely decodable if there is no other string s′ ∈ Σ∗ with the same multiset

of length 2 substrings (known as bigrams). In the general case, we will be interested in substrings of length q ≥ 2,

which we will call q-grams or shingles. In our analysis, we shall assume throughout that alphabet characters can

be compared in constant time; otherwise, multiplicative log(|Σ|) terms need to be added where appropriate.

A. Approach

Two principal approaches have been put forth for deciding unique string decodability.

The first is due to Pevzner [23] and Ukkonen [29], who characterized the type of strings that have the same

collection of shingles. This approach can be used to generate a simple unique decodability tester whose naive

worst-case running time on strings of length n is Θ(n4).
The second approach is based on an observation that the set of uniquely decodable strings form a regular lan-

guage [13]. With this observation, it is possible to produce a deterministic finite state machine on exp(Ω(|Σ| log |Σ|))
states [14] and a non-deterministic one on O(|Σ|3) states [12]. The DFA is prohibitively expensive to construct

explicitly, while the NFA may be simulated in time O(n|Σ|3) and space Θ(|Σ|3).
In this work, we present a streaming, online, linear time algorithm for testing unique decodability of a string

from its length 2 substrings; to our knowledge, the best previous algorithm [12] has time complexity O(n|Σ|3) and
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space complexity Θ(|Σ|3). We further show how this algorithm can be extended to arbitrary (and varying) length

shingles, thus enabling an (empirically) efficient protocol for the classic α-edits (or string reconciliation) problem,

in which one is tasked with reconciling two remote strings that differ in at most α unknown edits (insertions or

deletions) [21]. This approach can be extended into a one-way rateless streaming protocol that reconciles strings

that are an arbitrary edit distance apart.

B. Outline

We begin with an overview of related work from the information theory and theoretical computer science

communities in Section II. Our linear-time algorithm for deciding unique decodability, together with a proof of

correctness, is described in Section III. We show in Section IV how this algorithm can be generalized to arbitrary-

and varying-length shingles, which have application to the α-edits problem, and close with concluding remarks and

remaining open theoretical questions in Section V.

II. RELATED WORK

A. Edit distance

The problem of determining the minimum number of edits (insertions or deletions) required to transform one

string into another has a long history in the literature [5, 9]. Orlitsky [20] shows that the amount of communication

Cα̂(x, y) necessary to reconcile two strings x and y (of lengths |x| and |y| respectively) that are known to be at

most α̂-edits apart is at most Cα̂(x, y) ≤ f(y) + 3 log f(y) + log α̂ + 13, for f(y) ≈ log
(

(

|y|+α̂
α̂

)

)

, although he

leaves an efficient one-way protocol as an open question.

The literature includes a variety of proposed protocols for this problem. Cormode et al. [6] propose a hash-based

approach that requires a known bound α̂ on edits between x and y (assuming, without loss of generality, that y is

the longer string) and communicates at most 4α log(2|y|
α

) log(2α̂) + O
(

α log |y| log log(|y|)

ln 1

1−ǫ

)

bits to reconcile the

strings with probability of failure ǫ.
Orlitsky and Viswanthan [22] propose a interactive protocol that does not need to know the number of edits in

advance and requires at most

2α log |y| (log |y|+ log log |y|+ log(1/ǫ) + logα)

bits of communication.

Other approaches include those of Evfimievski [8] for small edit distances, Suel [27] based on delta-compression,

and Tridgell [28] which presents the computationally efficient (but potentially communicationally inefficient) rsync

protocol.

B. Reconciliation

Another natural approach to the α-edits problem involves the utilization of a reconciliation algorithm, which

reconciles remote data with minimum communication.

a) Set reconciliation: The problem of set reconciliation seeks to reconcile two remote sets SA and SB of

b-bit integers using minimum communication. The approach in [18] involves translating the set elements into an

equivalent characteristic polynomial, so that the problem of set reconciliation is reduced to an equivalent problem

of rational function interpolation, much like in Reed-Solomon decoding [16].

The resulting algorithm requires one message of roughly bm bits of communication and bm3 computation time

to reconcile two sets that differ in m entries. The approach can be improved to expected bm communication

and computation through the use of interaction [17] and generalized to multisets and to arbitrary error-correcting

codes [10].

b) String reconciliation: A string σ can be transformed into a multiset S through shingling, or collecting all

contiguous substrings of a given length, including repetitions. For example, shingling the string katana into length

2 shingles produces the multiset:

{at, an, ka, na, ta} . (1)

As such, in order to reconcile two strings σA and σB , the protocol STRING-RECON [1] first shingles each string,

then reconciles the resulting sets, and then puts the shingles back together into strings in order to complete the
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reconciliation. It is important to note that if two strings differ by α edits, then they will also differ in O(α) shingles,

as long as shingle size is a constant.

The process of combining shingles of length l back into a string involves the construction of a modified de

Bruijn graph of the shingles. In this graph, each shingle corresponds to an edge, with weight equal to the number

times the shingle occurs in the multiset. The vertices of the graph are all length l− 1 substrings over the shingling

alphabet; in this manner, an edge e(u, v) corresponds to a shingle s if u (resp. v) is a prefix (resp. suffix) of s. A

special character $ used at the beginning and end of the string in order to mark the first and last shingle.

An Eulerian cycle in the modified de Bruijn graph, starting at the first shingle, necessarily corresponds to a string

that is consistent with the set of shingles. Unfortunately, there may be a large number of strings consistent with a

given shingling, so that well-defined decoding requires either the specification of one cycle of interest or another

way to guarantee only one possible cycle.

C. Unique decoding

In an analysis of approximate string matching, Ukkonen [29] conjectured that two strings with the same shingles

are related through two types of string transformations, and

Pevzner [23] proved that this conjecture is true, thus providing a simple but inefficient algorithm for determining

the unique decodability of a string, and Motahari et al [19] provided asymptotic bounds on how many shingles are

needed to reliably reconstruct a string.

It was later shown in [13] that the collection of strings having a unique reconstruction from the shingles

representation is a regular language. Following up, Li and Xie [14] gave an explicit construction of a deterministic

finite-state automaton (DFA) recognizing this language. Our work in [12] has demonstrated that there is no DFA of

subexponential size for recognizing this language, and, instead, we have exhibited an equivalent NFA with Θ(|Σ|3)
states.

III. EFFICIENT ONLINE TESTING

Before describing our main result, we give a conceptually simpler online streaming algorithm for determining

whether a given string w ∈ Σ∗ is uniquely decodable from its bigrams. Algorithm 1 is online in the sense that it

needs only constant-time pre-processing, and streaming, in that results for one string can be sub-linearly extended

to a superstring. The actual algorithms used in our protocol build on the ideas in Algorithm 1.

As a convention, we will use “low” letters a, b, c to denote members of Σ while the “high” letters u, v, w will

denote strings over Σ. For any u ∈ Σ∗, we write G(u) for the bigram graph induced by u, and we shall use the

notation a → b (resp. a ⇒ b) to mean that there is a directed edge (resp. path) from a to b. We further use the

shorthand “u is UD” to denote that u ∈ LUNIQ, and the ith character of w is denoted by w[i] and characters i through

j by w[i : j].
Since the algorithm above will be superseded by those in the sequel, we omit a runtime and correctness analysis

and, instead, provide a brief informal discussion. As each character of the string is read, the corresponding shingle

(i.e. edge) is traced through a modified de Bruijn graph, whose vertices correspond to Σ. The main idea of the

algorithm is to track cycles in this graph. As we prove later, there are two ways that a cycle can break unique

decodability: if a cycle intrudes on an existing cycle from outside that cycle, or if the current node has two parents

that are in the same strongly connected component. Otherwise, the string is uniquely decodable.

IV. STRING RECONCILIATION

We next present the string reconciliation protocol in [11] as a specific example where a generalization of our

online unique decodability algorithm is applicable. This specific protocol is a refinement of a shingling approach

in [1], and is further based on a transformation to an instance of set reconciliation [18].

A. Definitions

The protocol is fundamentally based on the concept of a shingling. Formally, a shingle s = s1s2 . . . sk is simply

an element of Σ∗
$
, where $ is a special delimiter found only at the beginning and end of a string. For two shingles

s = s1s2 . . . sk and t = t1t2 . . . tk′ , we write s
l
 t if there is some length ≥ l − 1 suffix u of s that is also a

prefix of t, or, more precisely, if we can rewrite s = s′u and t = ut′ for strings s′, t′ and |u| ≥ l− 1. We define the
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input : string w ∈ Σ∗

output: TRUE if w ∈ LUNIQ and FALSE otherwise

1 initialize each v ∈ Σ as not having been visited, and each v ∈ Σ as not belonging to a cycle;

2 initialize the graph G with vertex set Σ and no edges;

3 mark w[1] as having been visited;

4 for i := 2 to |w| do

5 has the node w[i] already been visited? if NO then

6 mark w[i] as having been visited;

7 else// node w[i] has already been visited -- thus, it is on a cycle

8 does the edge w[i− 1]→ w[i] already exist in G? if NO then

9 does w[i] belong to an existing cycle? if YES then

// intrusion on an existing cycle

10 return FALSE;

11 else// creating a new cycle

12 label w[i] and all the nodes visited since the previous occurrence of w[i] as belonging to a

cycle;

13 end

14 else

// the edge w[i− 1]→ w[i] already exists in G, stepping along an

existing cycle

15 end

16 end

17 are there two distinct nodes a, b ∈ G such that a→ w[i], b→ w[i] and a, b belong to the same strongly

connected component of G? // the possibility a = w[i] is not excluded

18 if YES then

19 return FALSE;

20 end

21 draw the edge w[i− 1]→ w[i] in G;

22 end

23 return TRUE;

Algorithm 1: Online algorithm for testing unique decodability

non-overlapping concatenation s⊙l t (or just s⊙ t in context) as the concatenation s′ut′, where s = s′u, t = ut′

and |u| = l − 1. For example, kata
3
 tana and kata⊙3 tana = katana.

For a fixed l, the sequence of shingles s1
l
 s2

l
 . . .

l
 st is said to represent the word w ∈ Σ∗ if w =

$||s1 ⊙ s2 ⊙ . . . ⊙ st||$, where || denotes string concatenation and si
l
 si+1 for all i. If S =

{

s1, . . . , st
}

is a

multiset of shingles, we will use Φ−1(S) ⊆ Σ∗ to denote the collection of all words represented by S. More formally,

define Π = Π(S) to be the set of all permutations on t = |S| elements with the property that sπ(i)
l
 sπ(i+1) for

all i. Then,

Φ−1(S) =
{

w ∈ Σ∗ : $w$ = sπ(1) ⊙ sπ(2) ⊙ . . .⊙ sπ(t), π ∈ Π
}

.

We refer to the members of Φ−1(S) as the decodings of S, and say that S is uniquely decodable if |Φ−1(S)| = 1.

A shingling I of a word w = w1 . . . wt ∈ Σ∗ is a set of shingles of w that represents w. We say that I is an

uniquely decodable shingling of w if |Φ−1(I(w))| = 1. As a simple example, consider the string w = katana with

the shingling I(w) = {$k, ka, at, ta, an, na, n$}. For l=2, I can be alternately decoded into kanata and is thus not

uniquely decodable. However, if the second and third shingles are merged into ata, that the shingling becomes

{$k, ka, ata, an, na, n$}, and then there is exactly one decoding: katana.

Protocol 1 transforms a string that is not uniquely decodable into one that is uniquely decodable by merging

shingles and suitably modifying Algorithm 1 to handle a heterogeneous collection of arbitrarily-sized shingles.

The main new technical challenge in this protocol is embodied in Step 4, in which the protocol must efficiently

determine whether the shingles it has are uniquely decodable and, if not, merge shingles (and any metadata) until

a uniquely decodable collection of shingles is produced.
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1. Split σ into a set Sσ of length l shingles, with the ith shingle of the string denoted si. Similarly split τ into

Sτ .

2. Reconcile sets Sσ and Sτ .

3. The first host sets S0
σ ←− {s0}.

4. For i from 1 to |σ| − l + 1 do

Si
σ ←− Si−1

σ ∪ {si}
While Si

σ is not uniquely decodable

Merge the last two shingles added to Si
σ.

5. Exchange indices of merged shingles.

6. Uniquely decode Si
σ and Si

τ on the remote hosts.

Protocol 1: Reconciliation of remote strings σ and τ .

B. Modifications to Algorithm 1

The string reconciliation protocol described in this section requires the use of a modified form of the unique-

decodability algorithm from Section III, one in which shingle sizes may vary in length.

1) Checking Unique Decodability: Algorithm 2 generalizes Algorithm 1 to shingles of length ≥ l, for fixed l;
an analysis of its complexity is provided in Section IV-C2. It is based on the following lemma, which was first

proved in [13] for bigrams but is readily extended to arbitrary shinglings.

Lemma 1. A shingle set S is uniquely decodable iff there is exactly one Eulerian cycle in the corresponding De

Bruijn graph G(S) that starts and ends with $.

The following theorem establishes the correctness of Algorithm 2.

Theorem 2. Algorithm 2 returns true iff its input set S is uniquely decodable.

Proof: From Lemma 1 we know that to determine the unique decodability of S is equivalent to determining

the existence of a unique Eulerian cycle in G that starts and ends with the special delimiter $.

Completeness: Given an input set S that makes Algorithm 2 return true, what needs to be proved is that G(S)
has a unique Eulerian cycle. Assume that after S is processed by Algorithm 2 all the labels in G(S) are fixed; we

now restart from $ along the Eulerian cycle to see if there were any opportunities to diverge from the cycle we

found to produce different Eulerian cycle in G(S). During the traversal, there are four cases at any vertex v:

• case 1: v is labeled as NOT IN CYCLE

• case 2: v is labeled as IN CYCLE and has exactly one out-going edge;

• case 3: v is labeled as IN CYCLE and has two out-going edges;

• case 4: v is labeled as IN CYCLE and has more than two out-going edges;

In case 1, Algorithm 2 only visited v once, meaning that any traversal on G(S) must leave v along the only available

edge. In case 2, since v has only one out-going edge, any traverse must leave v along the same edge. In case 3,

there are two out-going edges of v. Suppose the traversal leaves v from one of the two edges first, denoted e1, and

returns to v at some later point in order to traverse the second out-going edge, denoted e2. Note that by returning

to v for the first time the traversal already forms a cycle, denoted Ce1, in which e1 is included while e2 is not.

Were the traversal to leave on e2 and return to v again, it would cause an intrusion on Ce1 and Algorithm 2 would

return false. Bounded by this, any traversal to v must leave along e1 all but the last time, there is no opportunity

to diverge from the existed cycle at v. In light of case 3, case 4 is therefore not possible since any path that leaves

v along its second out-going edge is not allowed to return.

Soundness: To prove that Algorithm 2 returns true if its input set S is uniquely decodable is equivalent to proving

that a shingle set S is not uniquely decodable if Algorithm 2 returns false.

Algorithm 2 only returns false when an intrusion on an existing cycle is detected at vertex vx, at which time we

know that: (i) vx has been marked as VISITED, so that the path between the last visit and the current visit forms a

cycle. (ii) vx is already in another cycle including its parent edge, which is necessarily different from the cycle just

found in (i), since an intrusion is only detected when stepping onto vx along an edge other than its recorded parent

edge. Since vx is in two different cycles that both return to vx, there are at least two different Eulerian cycles on
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Input: Ordered shingle set S = {s1, s2, s3, ..., sn} constructed from shingling string w with minimum

shingle length l;
Output: true if S is uniquely decodable and false otherwise;

1 initialize the graph G(S) with vertex set V , each vi ∈ V represents the length l− 1 prefix of si, vi = vj if

si and sj have the same prefix;

2 initialize each v ∈ V as UNVISITED;

3 initialize each v ∈ V as NOT IN CYCLE;

4 initialize each Ψ(v) as empty;

5 for i← 1 to |S| do

6 case 1: vi is UNVISITED

7 mark vi as VISITED;

8 endsw

9 case 2: vi is NOT IN CYCLE

10 j ← i;
11 repeat

12 if vj is NOT IN CYCLE then

13 label vj as IN CYCLE;

14 Ψ(vj)← sj−1;

15 end

16 j ← j − 1;

17 until vj = vi;
18 endsw

19 case 3: vi is IN CYCLE

20 if si−1 = Ψ(vi) then /* stepping along an existing cycle */

21 do nothing;

22 else /* intruding an cycle from a different edge */

23 return false

24 end

25 endsw

26 end

27 return true

Algorithm 2: Checking the unique decodability of a shingle set

G(S) can be found based on which cycle is visited first. Lemma 1 tells us S is not uniquely decodable if G(S) has

two Eulerian cycles, and Soundness is proved.

2) Patching Unique Decodability: In cases where an unique decoding of a shingle set does not exist, Algorithm 3

provides method of merging some of the shingles in order to produce uniquely decodable shingle set that decodes

to the same string. We call the checking and (potential) merging process patching the unique decodability of a

shingle set. Algorithm 3 executes in almost the same way as Algorithm 2 to check the unique decodability of

the input shingle set. We only change the boolean label INCYCLE in Algorithm 2 to a counter Φ(v), which

keeps track of how many cycles (not necessarily distinct) that include vertex v have been detected at the time.

If the input shingle set fails a unique-decodability check, Algorithm 3 makes use of Procedure deCycle and its

Sub-Procedure mergePrevious in order to recover the unique decodability property for the working shingle set.

Procedure deCycle is called at line 27 of Algorithm 3, and its function is to delete one cycle at vi by merging

all the edges backwards from current to just before the last occurrence of vi. As a sub-procedure of deCycle,

mergePrevious is called when one edge (sk−1) needs to be merged with its previous edge (sk−2), with different

decisions being made at each merge, depending on the state of vertex vk.

Theorem 3. The shingle set S′ returned by Algorithm 3 is uniquely decodable.

Lines 1 to 25 work in the same way as in Algorithm 2, and therefore when Algorithm 3 reaches Line 26,

UD=false iff the shingle set seen so far is NOT uniquely decodable; the rest of the proof is developed with the
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Input: Ordered shingle set S = {s1, s2, s3, ..., sn} constructed from shingling string w with minimum

shingle length l;
Output: Shingle set S′ that decodes uniquely to w;

1 initialize the graph G(S) with vertex set V , each vi ∈ V represents the length l− 1 prefix of si, vi = vj if

si and sj have the same prefix;

2 initialize each v ∈ V as UNVISITED, each Φ(v) = 0, each Ψ(v) as null;

3 initialize UD, the boolean flag indicating unique decodability, to be true;

4 i← 1;

5 while i ≤ |S| do

6 case 1: vi is UNVISITED

7 mark vi as VISITED;

8 endsw

9 case 2: vi is VISITED and Φ(vi) = 0
10 j ← i;
11 repeat

12 if Φ(vj) = 0 then

13 Ψ(vj)← sj−1;

14 end

15 Φ(vj)← Φ(vj) + 1;

16 j ← j − 1;

17 until vj = vi;
18 endsw

19 case 3: vi is VISITED and Φ(vi) > 0
20 if si−1 = Ψ(vi) then /* stepping along an existing cycle */

21 do nothing;

22 else /* intruding an cycle from a different edge */

23 UD=false;

24 end

25 endsw

26 if UD=false then

27 (S, G, i) ← deCycle(S, G, i) /* delete one cycle at vi */;

28 UD←true;

29 end

30 end

31 i← i+ 1; return S

Algorithm 3: Patching the unique decodability of a shingle set

Input: S: shingle set; G: de Bruijn graph of S; i, index number of current vertex

Output: modified input (S,G, i), with updated state Ψ and Φ to reflect cycle deletion

1 k ← i;
2 repeat

3 k ← k − 1;

4 (S, G) ← mergePrevious(S, G, k); /* merge sk with sk−1 */;

5 until vk = vi;
6 delete sk to si−1 from S;

7 i← k − 1;

8 return (S,G,i)

Procedure deCycle(S, G, i), deleting cycle by merging edges backwards from vi until Ψ(vi) is merged once
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Input: S: shingle set; G: de Bruijn graph of S; k, index number of current vertex

Output: modified input (S,G)
1 if Φ(vk) = 0 then /* vk is not in cycle */

2 mark vk as UNVISITED;

3 else if Φ(vk) = 1 then /* vk is in exactly one cycle, this merge will break the

cycle */

4 j ← k;

5 repeat

6 Φ(vj)← Φ(vj)− 1;

7 if Φ(vj) = 0 then

8 Ψ(vj)← null;

9 end

10 j ← j − 1;

11 until vj = vk;

12 else /* vk is in more than one indistinct cycles, this merge will reduce

the number of cycles by 1 */

13 Φ(vk)← Φ(vk)− 1
14 end

15 Append the l-th to the last character of sk to sk−1;

16 return (S,G)

Procedure mergePrevious(S, G, k), merging sk with sk−1 and maintaing relevant metadata

aid of Lemma 4.

Lemma 4. When UD=false at Line 26 of Algorithm 3 for some index i, then

• 1) when it next reaches Line 29, Φ(vi) will be reduced by one, and vi is involved in one fewer cycles;

• 2) the next iteration of while loop (from Line 5) will restart at vi;
• 3) by the next time UD=true at Line 26 of Algorithm 3, the intruded cycle will be broken.

The proof of Lemma 4 has been omitted due to space considerations.

Proof of Theorem 3: From Theorem 2, we know that Algorithm 3 takes a shingle set as input, and detects

whether it is uniquely decodable, more precisely, whether there is an intrusion on existing cycle(s) at the time.

By Lemma 4, if decode=false, Algorithm 3 repeatedly breaks the intruded cycle(s) and restarts the check at the

same vertex, until all the intruded cycles that the current vertex is involved are broken, at which point UD=true. In

essence, if the input set is it is not uniquely decodable, Algorithm 3 “patches” it by merging some of the shingles

together, and such merging cannot increase the number of decoding needed to reconstruct the string, for all the

merges are designed to take place on existing cycles and therefore cannot introduce new cycles during the patching

process. After the patching, Algorithm 3 always exits with UD=true, indicating that it always returns an uniquely

decodable set.

C. Analysis

1) Data Structures: We can use an array and a double-linked list to store the vertex information. A two-

dimensional array can be used to store the state information of all vertices. The rows of this array are indexed by

vertex number, for each row representing some vertex v, it contains the state information of v such as the VISITED

boolean, and values Φ(v) and Ψ(v). The total number of rows of the array is |Σ|l, and the number of non-zero

rows is at n− l − 1 (excluding shingles that contain the delimiter), in practice, it is common that n≪ |Σ|l.
Both Algorithm 2 and 3 take an ordered shingle set as input, and we use a doubly-linked list to store all these

input shingles in order of occurrence. The i-th element of the list will be denoted Li, and by design, Li = si.
2) Runtime Analysis: Algorithm 2:

Theorem 5. Algorithm 2 has Θ(|Σ|) preprocessing time complexity and Θ(n) on-line time complexity.

Proof: We list the detailed run time analysis as below.
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• Lines 1-4. Initialization of De Bruijn graph G and its vertex set V , can be accomplished in constant time with

sparse storage, with the two-dimensional array implementation described in Section IV-C1. Note that for G,

only vertices need to be stored in the array while edges are essentially the input shingles, which are already

kept in another list.

• Lines 6-8. Since the array containing the state information of vertices has constant time access, the time cost

of this step is constant.

• Lines 9-18. All the input vertices are kept in an order list (see Section IV-C1), and the iteration at lines

11-17 can then be accomplished by scanning backwards through the list. Since l is constant, an operation like

comparison, searching or reading/writing can be done in constant time.

• Lines 19-25. Comparing shingles of length l takes constant time, again because l is constant.

3) Runtime Analysis: Algorithm 3:

Theorem 6. Algorithm 3 has linear time complexity Θ(n+ |Σ|) running on string w of length n.

Proof: Details are as followed:

• Lines 1-29. Though more metadata need to be maintained compared to Algorithm 2, all the operations can

still be accomplished in constant time.

• Procedure deCycle. The cost of merging two shingles with length-l overlap is constant, because l is assumed

constant. In the worst-case, all the shingles are merged together and the output shingle set S is uniquely

decodable by itself, the sequence of n− l+1 merges takes Θ(n) time in aggregation. Therefore, the amortized

cost per call of procedure deCycle is Θ(n)/n.

D. Communication Complexity

Only Steps 2 and 5 in Protocol 1 transmit data. For two strings of length n differing in α edits, Step 2 will

require O(αl2) bits of communication for the implementation parameter l. Step 5 will require between 0 and

2n log(n− l + 1) communication, depending on the decodability of the string.

More precisely, the communication efficiency of the protocol relies upon having as few merge operations as

possible, since, at worst, every shingle is merged in Step 5, requiring 2n log n bits of communication for a shingle

set of size n. In the best case, no shingles are merged and the communication complexity of the protocol is

directly related to the edit distance between reconciled strings. The shingle size l thus represents a tradeoff between

communication spent on set reconciliation and communication spent on merge identification.

Though it is hard to give precise bounds on the number of shingles that needed to be merged for transforming a set

S into uniquely decodable. The work in [1] provides some hints in estimating the “safe” length of shingling random

bit-strings into uniquely decodable set without additional merges. Specifically, for length-n Bernoulli string (strings

of n random bits in which each bit is 0 with probability p > 0.5), it can expected that each node in the corresponding

De Bruijn graph of length l shingles to have only one outgoing edge if l ≥ n+ 1+
W (− ln (p)p−n)

ln p
= O(log n),

where W (·) is the Lambert W function [4]. This suggests that the minimum length of shingling needs to be sized

logarithmically with the string length in order to avoid high-frequency merges.

Thus, when the two strings are composed of random iid bits, then, under the appropriate choice of l, we can

expect that no merging is needed giving an overall communication complexity that is O
(

α log2(n)
)

, for large n.

Empirical evidence suggests that this length is tight, in the sense that decreasing it a little produces significant

number of possible decodings in the corresponding shingle set, and a similar effect has been observed for strings

generated from simple Markov processes and natural English-language text.

E. Rateless approach

Observe that Protocol 1 communicates two types of data: (i) set reconciliation data from step 2, and (ii) merged

shingle indices in step 5. The set reconciliation data can be ratelessly streamed for reconciling strings with arbitrary

edit distance by using a simple modification of the protocol in [18]. Specifically, a characteristic polynomial
χ
Sσ

(Z) = (Z − s1)(Z − s2)(Z − s3) · · · (Z − s|Sσ|) of the shingles si ∈ Sσ is computed and its evaluations

at points in an appropriately sized finite field are provided to the decoder, which similarly computes evaluations

of its own characteristic polynomial. The rational function representing the division of the two polynomials can
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be determined from any ∆ sample points, if the two shingle sets differ in at most ∆ shingles (an additional

k verification points can be added to probabilistic check the result). The merged shingle indices, which can be

determined independently of the reconciliation, can be encoded with any standard rateless code [2, 15, 26], and the

two rateless streams can be combined by considering them inputs to yet a third rateless encoding.

V. CONCLUSION

We have provided a linear-time algorithm for determining whether a given string is uniquely decodable from

its bigrams. Our algorithm is online, in that it needs only constant-time pre-processing, and streaming, in that

results for one string can be sub-linearly extended to a superstring. We have also shown how this algorithm can be

incorporated into an existing protocol for string reconciliation, though the space of applications potentially extends

further to networking, cryptography, and genetic engineering.

Several interesting open questions remain. For one, it is natural to ask whether the proposed online algorithm can

be extended for testing the existence of 2, 3, ... or k decodings. It is also interesting to provide sharper bounds for

the numbers of merged shingles in Protocol 1 under different random string models, as this could help determine

the correct choice for initial shingling size l, in addition to tightening bounds on the communication complexity of

the protocol. Finally, it is possible that context-dependent shingling, as in [30].
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