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Abstract—In modern wireless communication networks, the
layers of the protocol stack close ranks. Technology based
layers like the PHY and MAC layer are developed considering
assumptions and constraints on the service and application layers.
The coexistence of several wireless transmission links operated
by different users or operators requires interference coordination
on the PHY and MAC. Bilateral agreements or policies consider
business aspects and regulatory specifications. In this context,
models from multiuser information theory are combined with
microeconomic models. There are several connections between
both areas: the utility functions and capacities or achievable rates,
the strategy spaces and resources or coding schemes, the budget
sets and the constraints on powers or rates. In this paper, we
focus on one market equilibrium, the Walras equilibrium, and
develop a distributed algorithm which finds an efficient operating
point for three representative interference channel models: power
allocation and single user decoding, beamforming and single user
decoding, and rate splitting with successive decoding.

I. INTRODUCTION

Heterogeneous dense wireless networks require the flexi-
ble allocation of resources to nodes and network operators.
Since simultaneous resource usage results in interference on
the physical layer, and the decision for resource sharing is
performed at service and network layer, a cross-layer design
is required.

One approach to study the conflict situation of coexis-
tence and resource sharing on the physical layer is based
on game theory [1]. Depending on the system operation,
non-cooperative or cooperative game theory is applied. A
coordination mechanism is proposed for the two-user Gaussian
interference channel for a simplified Han-Kobayashi scheme
in [2]. Recently, methods from microeconomy are also applied
to the spectrum allocation and sharing scenario [3]. For hierar-
chical spectrum sharing, a microeconomic model is developed
in [4]. A market model for multi-carrier interference networks
is proposed in [5], [6]. Specifically, pricing is proposed to con-
nect service and application oriented and technology oriented
layers [7]. Pricing for higher layer interaction between Internet
service providers is proposed in [8].

In order to support these developments, we bring multiuser
information theoretic models and market models together.
After the meeting of Shannon with Nash in [9], we continue
with a meeting with Walras. Promising results are reported
in [10] for a multiple-input single-output (MISO) interference
channel (IC). A more general framework is developed in [11]
and the Walras equilibrium is computed for three interference

channel scenarios (MISO IC, protected and shared single
antenna IC, and multi-carrier IC).

In this paper, we present a market model for the interfer-
ence channel with a simplified Han-Kobayashi transmission
scheme, define goods and budget sets, show the properties of
the utility function and compute the Walras equilibrium. First,
we perform these steps for the interference channel with rate
splitting in detail, then review the steps for the MISO IC with
SUD and finally for protected and shared bands. Finally, the
main steps are described and discussed. We conclude that the
framework can be applied to a number of interference channel
scenarios.

II. SYSTEM AND MARKET MODEL

A. Mapping of Terms

In Table I, the mapping between the terms and parameters
of the competitive market model and the information theoretic
model is illustrated. On the left hand side, a selection of
terms for market models is listed. On the right side, important
terms from data transmission on the physical layer (PHY) and
multiple access control (MAC) layer are listed. We show one
example mapping between the terms. It is important to stress
that this mapping is flexible and should be adapted to the
scenario.

Market Model Terms Wireless Transmission Terms

Agents

{
Consumers
Producers

Nodes

{
Transmitters
Receivers

Goods


Coding/Decoding
Precoding and Signal Processing
Resource Allocation

Budgets


Power Constraints
Spectral Mask Constraints
Energy Constraints

Utilities


Achievable Rates
Capacities
Estimation Errors
Error Performances: BER, BLER

Market Wireless Network
Equilibrium Operating point

TABLE I
MAPPING BETWEEN MARKET MODEL AND DATA TRANSMISSION (PHY

AND MAC) MODEL TERMS.

The active entities in both models act and thereby influence



the state of the market or system. Agents either produce or
consume goods by supplying them for a certain price or by
buying them. Transmitters demand resources (including spec-
trum and power) when transmitting their coded and processed
data to the channel. Receivers observe signals, process and
decode the data they are interested in. Consumers are con-
strained by their budget set, transmitters usually have power or
resource constraints as well. The satisfaction of agents is mea-
sured by their utility functions or preference relations. Typical
utility functions in wireless networks include achievable rates,
capacities, estimation or bit error performance. The market
equilibrium describes a reasonable outcome of the competitive
market and this corresponds to a certain operating point of the
wireless interference system.

Clearly, Claude Shannon is the founder of information
theory [12]. The developments in microeconomics have a
longer history. One such development is started by Cournot
who has contributed to describe the outcome of a duopoly
using the calculus of functions. Walras developed a general
microeconomic equilibrium theory and his law states that in
equilibrium the excess market demands sum up to zero [13].
In a fictitious discussion between Shannon and Walras1 the
relation between the terms of Table I is a very likely topic.

In the following, we present three example mappings be-
tween typical wireless system scenarios and their correspond-
ing market models. We start with a simplified rate splitting
model for the interference channel and then briefly review
two further models.

B. System Model

Consider the Gaussian single antenna interference channel
in standard form [14] with cross channel gains a12 for the link
between transmitter one and receiver two and a21 for the link
between transmitter two and receiver one, respectively. We
will assume that the system operates in the weak and modest
interference regime, i.e., a12 ≤ 1, a21 ≤ 1. The transmit power
constraint at both transmitters is set to P and the noise power
is normalized to one.

We assume that the links apply a special case of the scheme
which achieves the Han-Kobayashi inner bound [15]: Rate
splitting into private messages with rates R11 and R22 and
public messages with rates R12 and R21 is applied at the
transmitters. At the receivers successive decoding is performed
in a specific order: Power λ1P is allocated for the private
message part of the codeword and λ̄1P = (1 − λ1)P is
allocated for the common message part of the codeword. The
common message is decoded by both receivers, the private
message only by the intended receiver. The decoding order
is as follows: First, the public message of the other link and
then, the own public and finally the own private message is
decoded. For the Gaussian interference channel, the following
conditions [16, Chapter 6] limit the achievable rates for the

1Such a meeting between Shannon and Walras could not happen because
Shannon was born six years later than Walras has died.

interference channel

R11 ≤ C
(

λ1P

1 + λ2Pa21

)
, R22 ≤ C

(
λ2P

1 + λ1Pa12

)
, (1)

R12 ≤ C
(

λ̄1P

1 + λ1P + λ2Pa21

)
, (2)

R12 ≤ C
(

λ̄1a12P

1 + P + λ1a12P

)
, (3)

R12 ≤ C
(

λ̄2P

1 + λ2P + λ1Pa12

)
, (4)

R12 ≤ C
(

λ̄2a21P

1 + P + λ2a21P

)
, (5)

with C(x) = log(1 +x). The total data rate of link one is the
sum of the private and common message rates R1 = R11+R12

and of link two R2 = R22+R21, respectively. Clearly, R1, R2

depend on the rate splitting parameter λ1, λ2 and we write
explicitly

R1(λ1, λ2) = C

(
λ1P

1 + λ2Pa21

)
+ (6)

min

[
C

(
λ̄1P

1 + λ1P + λ2Pa21

)
, C

(
λ̄1a12P

1 + P + λ1a12P

)]
.

The total rate R2(λ1, λ2) is derived analogue. The rate R1 is
increasing in λ1 and decreasing in λ2.

Note that the second term in the minimum in (6) is always
smaller than the first term in (6) because

1

1 + λ1P + λ2Pa21
≥ a12

1 + P + λ1a12P
⇔ a12 + λ2Pa12a21 ≤ 1 + P, (7)

which is always true for a12 ≤ 1 and a21 ≤ 1. Therefore, the
rates expression reduces with λ = [λ1, λ2] to

R1(λ) = C

(
λ1P

1 + λ2Pa21

)
+ C

(
λ̄1a12P

1 + P + λ1a12P

)
. (8)

For λ1 = λ2 = 1, the single-user decoding SUD rates are ob-
tained R1(1, 1) = C

(
P

1+Pa21

)
and R2(1, 1) = C

(
P

1+Pa12

)
.
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Fig. 1. Achievable rate region for simplified rate splitting in two scenarios:
P = 1, a12 = 0.9, a21 = 0.7 and P = 1, a12 = 0.4, a21 = 0.8.

In Figure 1, two examples of achievable rate regions are
shown with SUD rate tuple in red. It can be observed that



depending on the interference power and the transmit power,
the SUD rate tuple is close or far from the Pareto boundary.

C. Market Model

For an introduction into Walras models applied to interfer-
ence channel we refer to [11]. The links are the consumers. We
identify the goods of our competitive market to be λ1 and λ2.
For link one, we define the goods λ(1)1 = λ1 and λ

(1)
2 = λ̄2.

For the utility function of link one, we apply the achievable
rate R1(λ(1)) with λ(1) = [λ

(1)
1 , λ

(1)
2 ] as follows

u1(λ(1)) = C

(
λ
(1)
1 P

1 + λ̄
(1)
2 Pa21

)
+ C

(
λ̄
(1)
1 a12P

1 + P + λ
(1)
1 a12P

)
. (9)

Note the following special cases: u1(1, 0) = log(1 + P/(1 +
Pa21)) corresponds to SUD, u1(1, 1) = log(1 + P ) cor-
responds to the point to point link, u1(0, 1) = log(1 +
(Pa12)/(1 + P )) corresponds to the multiuser decoding
(MUD) and u1(0, 0) corresponds to SUD again. The properties
of the utility function in (9) are collected in the following
proposition proved in the Appendix A.

Proposition 1. The utility function u1 defined in (9) is
1) strongly increasing in λ(1) and
2) quasi-concave in λ(1).

In the proof of Proposition 1 the indifference curves are
computed. Therefore, an illustration of the Edgeworth box in
Figure 2 shows one example in which the two indifference
curves are tangent and the resulting operating point corre-
sponds to a point on the Pareto boundary of the achievable
rate region. For further information on the Edgeworth box
representation, the interested reader is referred to [11].
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Fig. 2. Tangent indifference curves in Edgeworth box correspond to point
on the Pareto boundary in achievable rate region. The rate constants are set
to γ1 = 0.7016 and γ2 = 0.6305.

Next, we define the budget set of link one as

B1(β) = {(λ(1)1 , λ
(1)
2 ) ∈ [0, 1]2 : λ

(1)
1 +

q2
q1
λ
(1)
2 ≤ 1} (10)

with prices q1 and q2 for good one λ(1)1 and good two λ
(1)
2 ,

respectively. We define the price ratio β = q2
q1

. The budget set
of link two is defined analogously. The endowment vectors e
for the two links are [1, 0] and [0, 1], because their start point
for negotiation is SUD.

In the Walrasian market approach, the two links are identi-
fied with two consumers, who can buy goods with their budget

described in Bk. The corresponding utility maximization prob-
lem (UMP) for consumer one reads

d1(β) = d1(q1, q2) = arg max
(λ

(1)
1 ,λ

(1)
2 )∈B1

u1(λ
(1)
1 , λ

(1)
2 ), (11)

with demand vector d1 = [d1,1, d1,2]. Note that the optimum
of (11) is achieved by a point on the boundary λ(1)1 +βλ

(1)
2 = 1

of the budget set. Then, the utility function can be expressed
over λ(1)1 within the range

max(0, 1− β) ≤ λ(1)1 ≤ 1.

The UMP for link two is similar. Based on the UMPs for both
links, the demands d1 and d2 as a function of the price ratio
β can be computed.

D. Walras Equilibrium and Distributed Algorithm

Walras desccribes in [13] a potential outcome of the com-
petitive market model. In fact, the model is more complicated
then our model from the last section because it contains also
producers which supply the market with goods. In order to
define the Walras equilibrium, we need the excess demand
function for both goods [11, Section 2] with prices q = [q1, q2]

z1(q) = d1,1 + d2,1 − 1 and z2(q) = d1,2 + d2,2 − 1. (12)

Collect the excess demand functions in one vector z(q) =
[z1(q), z2(q)] and define

Definition 1 (Walras Equilibrium). A Walrasian equilibrium
consists of a price vector q∗ ∈ R2

++ such that z(q∗) = 0
and the allocation of the goods to the consumers according to
their demand.

At the Walras equilibrium, the demand equals the supply
and the market clears. For our market model described in the
last section, this means that λ(1)2 +λ

(2)
2 = 1 and λ(1)1 +λ

(2)
1 = 1.

The condition for the existence of a Walras equilibrium are
stated in [17, Theorem 5.5]. In our market model, we satisfy
the two conditions:

1) The utility functions u1 and u2 are continuous, strongly
increasing, and strictly quasi-concave as shown in
Proposition 1.

2) A quantity of each good is initially possessed by at least
one consumer. In our model, link one possess all of good
one and link two all of good two.

The uniqueness of a Walras equilibrium can be answered
checking the gross substitute property (GSP) as described in
[18, Proposition 17.F.3]. The GSP can be written for our
competitive market model as

∂z1(q)

∂q2
> 0 and

∂z2(q)

∂q1
> 0. (13)

It says that the excess demand of good one should increase if
the price of good two is increased and vice versa. For the UMP
and corresponding demand function in (11), we can show in
Appendix B that the GSP holds.



Proposition 2. For the utility functions u1 and u2 and the
corresponding budget sets B1(β) and B2(β) the GSP in (13)
holds.

One important efficiency property of the Walras equilibrium
is its Pareto optimality as stated in the following First Welfare
Theorem [17, Theorem 5.7].

Theorem 1 (First Welfare Theorem). Consider an exchange
economy with utilities u1, u2 and initial endowments e1, e2. If
each consumer’s utility function ui is strictly increasing, then
every Walrasian equilibrium allocation is Pareto efficient.

The final question remains how to compute or achieve
the Walrasian equilibrium. The corresponding problem is to
compute the prices such that the excess demand is zero for
all goods. An iterative algorithm called tâtonnement process
adjusts the prices according to the excess demand. Here, we
consider the discrete update variant provided in [19] with the
following update rule

q
(t+1)
i =

[
q
(t)
i + aizi(q

(t))
]
0
, (14)

for all i and some step size parameter ai > 0. It is shown
in [19] that the updates in (14) are globally convergent if the
aggregate excess demand satsfies the GSP in (13).

For our market model, we have shown in Proposition 2 that
the GSP is satisfied for all goods and thereby the aggregate
excess demand function also possesses the GSP. The update
rule (14) can be applied to compute the Walrasian prices.

In practice, the update algorithm in (14) can be implemented
in two variants: An arbitrator sends the prices to the two links,
receives the demand and updates to new prices according to
(14). Another implementation is to collect the channel gains
a12 and a21 and the transmit power P and compute the
Walras equilibrium offline at some arbitrator’s processor. It
depends on the number of iterations required to converge to
the Walrasian equilibrium to determine which implementation
has lower complexity.
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Fig. 3. The Walrasian equilibrium achieves a point on the Pareto boundary.
The t̂atonnement process needs two iterations to converge.

In Figure 3, we show the simulation of the Walras equilib-
rium in the achievable rate region. We start from the SUD point
and move in two iterations straight to the Pareto boundary. For
the rate-splitting interference channel model, we conclude that
the market model and the computation of the corresponding
Walras equilibrium leads to the development of an iterative
distributed algorithm to compute an efficient operating point
in the achievable rate region.

III. GENERAL FRAMEWORK AND TWO SPECIAL CASES

The interaction between two competing links in a wireless
interference network can be modelled as a competitive market.
In this section, we describe a general framework including a
recipe how to apply it to your own interference network model.

Our simple exchange economy market model consists of
a set of consumers K with utility function uk, k ∈ K, a set
of goods X = {x1, ..., xN} and some initial endowment of
consumer k given by ek, k ∈ K. The benefit of owning good
n is expressed by a utility function uk(x) which maps from
the set of goods to the non-negative real numbers.

When designing the goods and utility function, the follow-
ing properties should be considered:

1) The utility function should be continuous in x strictly
increasing in the goods, i.e., ∂uk(x)

∂xn
> 0 for all k ∈ K

and n ∈ [1, ..., N ].
2) The utility function should be quasi-concave with re-

spect to x, i.e.,

uk(tx1 + t̄x2) > min(uk(x1), uk(x2)).

For an exchange economy with two goods, this require-
ment is equivalent to the convexity of the indifference
curves in the Edgeworth box (as in the proof of Propo-
sition 1).

3) The utility function should satisfy the gross substitute
property, i.e., the excess demand of good n should
increase with increasing price of any other good.

If the properties described above are fulfilled by the de-
signed exchange economy, then the Walrasian Equilibrium
exists, is unique and can be computed via the tâtonnement
process. In order to show that these requirements can be met
naturally, we present two examples below.

A. MISO interference channel

In this section, we present a comprehensive summary of
the system model and market model for the MISO interference
channel with single-user decoding. The properties of the utility
function are reviewed. It is shown that all results regarding the
existence of the Walras equilibrium and its computation can
be applied. For a complete derivation including proofs, the
interested reader is referred to [10].

We consider the two user MISO interference channel with
SUD, beamforming vectors w1,w2 under transmit power
constraints ||w1||2 ≤ 1, ||w2||2 ≤ 1, quasi-static flat-fading
vector channels hkl from transmitter k to receiver l. The
utility function is the achievable rate with SUD. Since the
beamforming vectors cannot be represented as goods, we



exploit the parameterization derived in [20] and write the
utility function (SINR) of link (consumer) one as [11, Eq.
(1.40)]

u1(λ
(1)
1 , λ

(1)
2 ) =

(√
λ
(1)
1 g1 +

√
λ̄
(1)
1 ĝ1

)2

1 + λMRT
2 g21 − λ(1)2 g21

, (15)

where g1 = ||Πh12
h11||2, ĝ1 = ||Π⊥h12

h11||2, and g21 =
||h21||2. λMRT

2 is the parameter which corresponds to the
maximum ratio beamformer (MRT). And the utility function
for the second link is defined analogously.

In the market model, the goods are the parameters for the
beamforming vectors 0 ≤ λ

(1)
1 ≤ λMRT

1 and 0 ≤ λ
(1)
2 ≤

λMRT
2 . First, we check the properties from the list above and

review the following results.

Theorem 2 (Theorem 1 in [10]). The utility function defined
in (15) is continuous, strongly increasing, and strictly quasi-
concave.

Furthermore, the GSP also holds for the market model de-
scribed above. The excess demand for the market is computed
in [11, Eq. (1.86)]. It is obvious that increasing the price q2
increases the aggregate excess demand of good one and vice
versa. Thus the iterative algorithm described above converges
to a Pareto efficient outcome on the Pareto boundary of the
achievable SINR or rate region.

B. SISO interference channel with protected and shared band

In this section, we summarize the system and market model
for the SISO interference with protected and shared bands.
The properties of the utility function again allow to apply
the results on the existence and computation of the Walras
equilibrium. For a complete derivation including proofs, the
interested reader is referred to [11].

We consider a two user interference channel in which both
users have a separate set of bands (protected bands) and a
shared band. The channels in the protected band are denoted
by h̄1 and h̄2. The interference channel of the shared band
in denoted by hkl from transmitter k to receiver l. The utility
function is given by a linear approximation of the average
SINR

u1(λ
(1)
1 , λ

(1)
2 ) = P1h̄1 + λ

(1)
1

[
h11

1 + P2h21
− h̄1

]
+λ

(1)
1 λ

(1)
2

h11h21
1 + P2h21

. (16)

The goods are defined by the power allocated to the shared
band for link one and one minus the power allocated to
the shared band by link two. The analysis of monotonicity
and quasi-concavity depends on the channel realizations: If
h̄1 ≤ h11

1+P2h21
then u1 in (16) is strongly increasing and

strictly quasi-concave [11, Lemma 1.5]. If h11 ≥ h̄1 >
h11

1+P2h21
, the utility u1 in (16) is neither increasing nor quasi-

concave. However, the UMP can be formulated and solved in
closed form. For h11 < h̄1, the utility function u1 in (16)
is strongly decreasing in λ

(1)
1 , by a change of variables a

modified strongly increasing and strictly quasi-concave utility
function can be developed.

The uniqueness of the Walrasian equilibrium for the market
model described above is shown in

Theorem 3 (Theorem 1.10 in [11]). The Walrasian equilib-
rium is unique for

h̄1 ≤
h11

1 + P2h21
and h̄2 ≤

h22
1 + P1h12

.

For these cases, the Walrasian prices can be computed in
closed form. However, by [11, Lemma 1.12] it follows that
the GSP is not fulfilled for

h̄1 > h11 or h̄2 > h22.

IV. CONCLUSION

In this paper, we described the discussion between an
information theorist working on interference channels and a
microeconomist working on exchange economies. In an inter-
ference channel with rate splitting, the rate splitting parameter
is identified with goods and we define a utility function and
budget sets for which the Walrasian equilibrium exists, is
unique and can be found by an iterative price update process.
The advantage from an information theoretic point is the
Pareto efficiency of the Walras outcome. Two further examples
are reviewed for which the exchange economy market model
can be applied. In conclusion, there are many more scenarios
and application for which the market model and the Walrasian
equilibrium is a suitable solution concept.
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APPENDIX A
PROOF OF PROPOSITION 1

Monotonicity of u1 with respect to λ(1) follows from

u
(1)
1 =

∂u1(λ
(1)
1 , λ

(1)
2 )

∂λ
(1)
1

=
P (1− a12) + P 2(1− λ̄(1)2 a12a21)

(1 + λ
(1)
1 P + λ̄

(1)
2 Pa21)(1 + P + λ

(1)
1 Pa12)

> 0

u
(2)
1 =

∂u1(λ
(1)
2 , λ

(1)
2 )

∂λ
(1)
2

= − Pa21

1 + λ
(1)
1 P + λ̄

(1)
2 Pa21

+
Pa21

1 + λ̄
(1)
2 Pa21

> 0,

where the second inequality is strict for all λ(1)1 6= 0. The proof
for u1 strongly increasing is similar to [10, Appendix B]. It is
sufficient to show that u(1)1 and u(2)1 are strictly positive. The
directional derivative in direction z = [z1, z2] with zi ≥ 0

is equal to u
(1)
1 z1 + u

(2)
1 z2 > 0 except for the case where



both z1 = 0 and λ(1)1 = 0. The second derivatives of u1 with
respect to λ(1)2 and λ(1)1 are given by

u
(1,2)
1 =

∂2u1

∂λ
(1)
2 ∂λ

(1)
1

=
P 2a21

(1 + λ
(1)
1 P + λ̄

(1)
2 Pa21)2

≥ 0

u
(1,1)
1 =

∂2u1

∂2λ
(1)
1

= − P 2

(1 + λ
(1)
1 P + λ̄

(1)
2 Pa21)2

+
a212P

2

(1 + P + λ
(1)
1 pa12)2

≤ 0

u
(2,2)
1 =

∂2u1

∂2λ
(1)
2

= − P 2a221

(1 + λ
(1)
1 P + λ̄

(1)
2 Pa21)2

+
P 2a221

(1 + λ̄
(1)
2 Pa21)2

≥ 0.

Studying the Hessian shows that the function u1 is not jointly
concave in λ(1). In order to show quasi-concavity, we study
the upper contour sets of the function u1 and show that they
are strictly convex [21]. Note that the boundary of the contour
sets correspond to the indifference curves [11, Figure 1.3]. For
fixed feasible utility γ1 of link one, we have

u1(λ(1)) = γ1 (17)

= log

(
(1 + λ

(1)
1 P + λ̄

(1)
2 Pa21)(1 + P + Pa12)

(1 + λ̄
(1)
2 Pa21)(1 + P + λ

(1)
1 Pa12)

)
.

Solving (17) for λ(1)2 with z = 2γ

1+P (1+a12)
gives

λ
(1)
2 (λ

(1)
1 ) = 1− λ

(1)
1

z(1 + P + λ
(1)
1 Pa12)

1

a21
+

1

Pa21
. (18)

Clearly the function λ
(1)
2 (λ

(1)
1 ) in (18) is strictly convex and

decreasing. The upper contour set is given in the λ
(1)
1 , λ

(1)
2

plane by the set

Λ = {[λ(1)1 , λ
(1)
2 ] ∈ [0, 1]2 : λ

(1)
2 ≥ λ(1)2 (λ

(1)
1 )}.

Since λ(1)2 (λ
(1)
1 ) is strictly convex and decreasing the set Λ

is strictly convex. Therefore, the function u1 is strictly quasi-
concave in λ(1).

APPENDIX B
PROOF OF PROPOSITION 2

Consider the GSP for the excess demand function of good
one d1. The corresponding UMP reads

max
λ(1)∈B1(β)

u1(λ(1)) (19)

where the price ratio β impacts only the budget set. An
increase in price q2 corresponds to an increase in β whereas
an increase in price q1 corresponds to a decrease in β. The

utility function in (19) can be rewritten as

max
[1−β]+≤λ(1)

1 ≤1
log

(
1 +

λ
(1)
1 P

1 + (1− 1
β λ̄

(1)
1 )Pa21

)
︸ ︷︷ ︸

φ1(λ
(1)
1 ,β)

+ log

(
1 +

λ̄
(1)
1 Pa12

1 + P + λ
(1)
1 a12P

)
︸ ︷︷ ︸

φ2(λ
(1)
1 )

. (20)

The first function φ1 is monotonic increasing in λ(1)1 whereas
the second function φ2 is monotonic decreasing in λ(1)1 . In the
optimum of (19), it holds

∂φ1(λ
(1)
1 , β)

∂λ
(1)
1

= −∂φ2(λ
(1)
1 )

∂λ
(1)
1

(21)

or the optimum is achieved at the boundary. When β is
increased, φ2(λ

(1)
1 ) is unchanged but φ(λ

(1)
1 , β) is growing

slower in λ
(1)
1 and therefore, the optimum λ

(1)
1 which solves

(20) and (21) gets larger. This shows that an increase in q2
(and thereby an increase in β) leads to an increased demand of
good one λ(1)1 of consumer one. Similar arguments show that
the demand of good one at consumer two is also increased.
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