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Abstract—Cognitive radio is a novel communication paradigm
that can significantly improve spectrum utilization by allowing
the cognitive radio users to dynamically utilize the licensed
spectrum. To achieve this, studying efficient spectrum allocation
mechanisms is imperative. In this paper, we consider a cognitive
radio network consisting of a primary spectrum owner (PO),
multiple primary users (PU) and multiple secondary users (SU).
We design an auction-based spectrum sharing mechanism where
the SUs bid to buy spectrum bands from the PO who acts as
the auctioneer, selling idle spectrum bands to make a profit.
Existing auction mechanisms assume that all the channels are
identical. However, we consider a more general and more realistic
case where channels have different qualities. Also, we allow SUs
to express their preferences for each channel separately. That
is, each SU submits a vector of bids, one for each channel.
The proposed auction mechanism results in efficient allocation
that maximizes SUs’ valuations, and it has desired economic
properties that we formally prove in the analysis. In addition,
numerical results show performance improvements in terms of
social welfare, SUs’ utilities and PO’s revenue, compared to the
case of identical channels.

I. INTRODUCTION

With the ever-increasing demand for wireless communica-
tions, spectrum scarcity and efficient use of wireless spectrum
is becoming a major challenge. The Federal Communications
Commission (FCC) has reported that the conventional fixed
spectrum assignment is no longer capable of meeting today’s
wireless spectrum requirements. Also, according to the spec-
trum usage measurements by the FCC’s Spectrum Policy Task
Force, many of the allocated spectrum bands are idle most of
the times or not used in some areas [1]. That calls for better
spectrum management techniques and policies.

A promising approach to improve spectrum utilization
is dynamic spectrum sharing which is realized by cognitive
radio networks [2]. In dynamic spectrum sharing, unlicensed
secondary users (SU) are allowed to utilize the radio spectrum
owned by a primary owner (PO). For this purpose, designing
a spectrum sharing mechanism that can efficiently allocate the
spectrum bands to SUs, seems imperative. It is necessary for
the mechanism to provide sufficient incentives for both PO and
SUs to participate in spectrum sharing.

In a simple spectrum auction scenario, the POs act as
auctioneers and sell their idle spectrum bands to SUs to make
a profit, and the SUs act as bidders who want to buy spectrum
bands. In such a setting, auction-based mechanisms appear to
be the most appropriate approach because they can capture

many of the key features of the spectrum sharing problem.
First, in an auction, it is possible to consider situations where
the seller is not assumed to know any prior information about
the valuation of items to the buyers. This aspect can not be
easily taken into account in pricing-based or other conventional
market-based mechanisms. Second, auctions can be designed
to allocate items to the buyers with highest valuations, thus
making an efficient allocation. Third, auctions require min-
imum interactions between seller and buyers, because the
buyers just need to submit their bids over the items. This
makes the implementation of the mechanisms easier and more
practical compared to the other market mechanisms.

In this paper, we consider a cognitive radio network con-
sisting of a PO, multiple primary users (PUs) and multiple
(SUs). The PO acts as the auctioneer, selling idle spectrum
bands to SUs. Unlike existing auction mechanisms that assume
identical channels, we consider a more general and more
realistic case where channels have different qualities. Also,
SUs are allowed to express their preferences for each channel
separately. That is, each SU submits a vector of bids, one for
each channel. This model provides much more flexibility for
SUs and is more practical compared to the existing spectrum
auctions. We design an auction mechanism to allocate the
channels efficiently, maximizing SUs’ valuations and also
satisfying desired economic properties.

Technically, this problem can be modeled by a non-
identical multiple items auction mechanism where each bid-
der has a different view of the available items. An auction
is described by a pair of functions, namely the allocation
function and the payment function. Also, it is desired for
an auction mechanism to have some economic properties
that we summarize here. Individual Rationality; a mechanism
is called individually rational if the utility of each bidder
is always nonnegative, otherwise, they may choose not to
participate. Incentive Compatibility; in an incentive compatible
mechanism, no bidder has incentive to lie about his valuations.
No Positive Transfers; in an auction with no positive transfers,
the payments are nonnegative – this means the mechanism
should not pay bidders [3].

In order to determine the allocation rule of the auction, we
transform the problem into the problem of finding a maximum
weight matching in a bipartite graph. This matching provides
us with the efficient allocation that maximizes SUs’ valuations.
For the payment function, we use the general case of the
Vickrey Clarke Groves (VCG) mechanism [3] where a bidder
pays the externality he causes. This auction mechanism runs in



polynomial time and satisfies all the Incentive Compatibility,
Individual Rationality, and No Positive Transfers conditions.

The main contributions of this paper are as follows. We
consider a cognitive radio network with heterogeneous channel
qualities which is more realistic compared to prior work.
Second, we also give SUs the flexibility to express their
preferences for channels separately. In this way, an SU can
submit a different bid for each available channel. We then
propose an auction-based spectrum sharing mechanism that
results in efficient spectrum allocation that maximizes SUs’
valuations. The proposed auction has desired economic prop-
erties (Incentive Compatibility, Individual Rationality, and No
Positive Transfers) that we formally prove in the analysis.
Also, we provide numerical results that show performance
improvements in terms of social welfare, SUs’ utilities and
PO’s revenue, compared to the case of identical channels.

The rest of this paper is organized as follows. In Section II
we review and discuss related work. Section III presents the
system model used in this paper. In Section IV, we present
the auction-based algorithm and prove its properties. Numer-
ical results are presented in Section V. Finally, Section VI
concludes the paper and outlines possible future work.

II. RELATED WORK

Game theory and auction design have been recently used
for wireless spectrum allocation and management [4]–[15].
Here we summarize some of the most relevant results.

In [4], an auction-based spectrum management scheme for
cognitive radio networks has been presented. The network
consists of a primary base station and several primary and
secondary users. The service provider determines the number
of channels to be sold and holds the auction among the sec-
ondary users. Since the channels are assumed to be identical,
the Vickrey auction determines the winners and payments. A
similar network topology has been considered in [5], however
channels are assumed to be different. The model is based on
the contract theory in which the PO acts like a monopolist
and determines the qualities and prices for spectrum bands
with the objective of maximizing his own revenue. However,
in this approach SUs cannot submit bids and the PO needs
some prior information about SUs’ valuations.

In [6], the idea of having multiple auctioneers, i.e. multiple
POs, has been presented. In this setting, each PO gradually
raises the trading price and each SU chooses one auctioneer for
bidding. After several bidding/asking rounds, the mechanism
converges to an equilibrium where no PO and SU would like
to change his decision. Also, [7] considers two wireless service
providers, and the authors study the optimal pricing for service
providers and optimal service provider selection for SUs. They
show that the equilibrium price and its uniqueness depend
on the SUs’ geographical density and spectrum propagation
characteristics. In [8], the authors study the dynamics of
spectrum sharing and pricing in a competitive environment
where multiple POs try to sell spectrum bands to multiple SUs.
They use evolutionary game theory to model the evolution and
the dynamic behavior of SUs. The competition among POs
has been modeled as a noncooperative game, and an iterative
algorithm has been presented to find the Nash equilibrium.

In [9], Zhou et al. proposed TRUST, a general framework
for truthful double spectrum auctions. This framework aims to
provide spectrum reuse while achieving truthfulness and other
desired economic properties. TRUST takes any reusability-
driven spectrum allocation method as an input, and applies
its own winner determination and pricing policy. There is an
external auctioneer with complete information that holds the
auction between POs and SUs.

The authors in [10] consider a setting in which SUs have
flexibility to bid for a bundle of frequencies at different times.
In fact, the spectrum opportunity is divided by frequency
and time, so that SUs can bid for a combination of them.
This flexibility, however, brings computational complexity.
Since the general problem falls into the combinatorial auctions
category, obtaining the efficient allocation is NP-hard, and
only approximate solutions can be achieved. In [11], the
authors study the effect of interference created among different
agents who may obtain the right to use the same spectrum at
nearby locations. This interference results in complementarities
among the traded spectrum bands, which brings computational
complexity to the design of efficient mechanisms. Since find-
ing the efficient allocation is NP-hard, some constant factor
approximations have been discussed.

Recently, a group of researchers considered two-tier market
models for dynamic spectrum access. In tier-1, SUs buy the
spectrum from the POs in a large time scale, and in tier-2,
SUs trade the obtained spectrum among themselves in a small
time scale. In [12], for example, the authors use Nash bargain
games to derive the equilibrium prices for each tier. However,
each tier is studied independently and the connection of tiers
has not been explored yet.

Despite all the previous work, the problem of designing
an auction-based spectrum sharing mechanism with heteroge-
neous channels and expressive bidding capability for SUs has
not been addressed. Here, we tackle this problem.

III. SYSTEM MODEL

In this paper, we consider a cognitive radio network con-
sisting of a primary network and a secondary network. There
is a primary spectrum owner (PO) (a base station or an access
point) and a set of primary users (PU) in the primary network.
The PO has some idle spectrum bands (or channels) that are
not used by PUs. The secondary network consists of a set
of secondary users (SUs), where each SU refers to a pair of
secondary transmitter and receiver. The PO is willing to sell
his idle channels to the SUs to obtain some profit, and SUs
are willing to buy channels for their services. An example of
cognitive radio network is depicted in Fig. 1.

We model the spectrum trading process as an auction in
which the PO is the auctioneer and the SUs are the bidders.
In our model, we consider heterogeneous channels, that is,
channels have different qualities. The quality of channel j is
defined as the maximum allowable transmission power on it,
and is denoted by qj .

In our setting, each SU has a different view of the available
channels. We allow SUs to express their preferences over
each channel separately. Thus, each SU submits a vector of
bids; one for each channel. Let m denote the number of
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Fig. 1. A cognitive radio network with one primary owner, two primary
users, and four secondary users.

available channels and n denote the number of SUs. Then,
Vi = (vi1, vi2, . . . , vim) is the vector of bids submitted by
SU i, consisting of m values for the available channels. The
valuation matrix submitted to the PO will be of the following
form:

W =

V1V2. . .
Vn


For an SU, the valuation for a channel is defined as the

benefit of obtaining that channel. We assume that SUs prefer
channels with higher capacities. Therefore, SUs’ valuation for
a channel is related to the channel capacity, which is a function
of channel quality, the interference coming from PUs, and the
path loss factor between the secondary transmitter and receiver.
We define SU i’s valuation for channel j as:

vij = B log2
(
1 + qj

Gi

Ii + σ2

)
(1)

where B is the channel bandwidth, σ2 is the noise variance, Gi

is the channel gain between the SU i’s transmitter and receiver,
Ii is the interference coming from the PO and PUs. Without
loss of generality, we assume that σ2 is the same for all SUs.

It should be noted that valuations are private information
of SUs, and it is not reasonable to assume that this information
is known by other SUs or the PO. In fact, this is one reason
that we use auction mechanisms. In this way, SUs declare
their valuations, and by designing an Incentive Compatible (IC)
auction we make sure that SUs do not have incentives to lie
about their valuations.

We assume that each channel can only be used by one
SU at a time. Also, each SU can only use one channel at
a time. Let pi denote the payment that SU i has to make
if he gets a channel. Then, the utility of SU i, denoted by
ui, is defined as the difference between his valuation for the

obtained channel, say channel j, and the price he has to pay,
i.e. ui = vij − pi. Also, ui = 0 if SU i does not get any
channel. Another essential assumption in designing a truthful
(or IC) auction is the rationality of bidders. That means that
they want to maximize their own utilities. Therefore, an SU
tries to obtain a channel with a price lower than his valuation
for the channel.

IV. THE AUCTION BASED MECHANISM

In this section, we derive an auction based mechanism
for spectrum sharing with certain guaranteed properties that
we prove in this section. From the bidding perspective, the
proposed auction is a one-shot auction where SUs submit their
bids to the PO simultaneously, and the PO holds the auction,
taking into account the bids collectively. SUs compute their
valuations according to (1) after the PO announces the qualities
of the available channels.

The auction mechanism takes the valuation matrix, W ,
as input and determines two outputs; the channel allocation
and the payments. The channel allocation is represented by an
n×m matrix, denoted by X . Each element of the allocation
matrix xij ∈ {0, 1} indicates whether the channel j is allocated
to SU i or not. That is, xij = 1 shows that the SU i
has obtained the right to access channel j and xij = 0
otherwise. As mentioned in the system model, we assume
that each channel can only be used by one SU at a time,
and each SU can only use one channel at a time. Therefore,
we impose the following constraints for a feasible allocation:
1)
∑

j xij ≤ 1, and 2)
∑

i xij ≤ 1. The auction should
also determine the payments for each SU. We represent the
payments by a payment vector P = (p1, p2, . . . , pn) where pi
denotes the price that SU i has to pay.

Auctions can be designed with different objectives. One
common goal is to optimize the social welfare. The social
welfare of an allocation X = {xij}n×m is the sum of the
valuations of all the SUs for this allocation. Formally, it can
be written as:

S =
∑
i

∑
j

xij · vij (2)

The allocation that maximizes the social welfare is referred
to as an efficient allocation. Formally, the efficient channel
allocation problem can be written as:

X∗ = argmax
X

S = argmax
X

∑
i

∑
j

xij · vij (3)

s.t. ∑
j

xij ≤ 1,∀i∑
i

xij ≤ 1,∀j

xij ∈ {0, 1},∀i,∀j

where the constraints in the above formulation are the feasibil-
ity constraints that we discussed earlier. In the next subsection,
we present a method to achieve an efficient allocation.
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Fig. 2. A weighted complete bipartite graph with two channels and three
SUs.

A. Efficient Channel Allocation

Now we transform the problem of efficient channel alloca-
tion, i.e. (3), into a maximum weight matching problem in
graph theory [16]. Then, the problem can be solved using
Kuhn-Munkres algorithm (also known as Hungarian algorithm)
[17]. We first review some basic concepts from graph theory
and the matching problem.

A bipartite graph is a graph whose vertices can be divided
into two disjoint sets V1 and V2, such that every edge in
the graph connects a vertex in V1 to one in V2. A complete
bipartite graph is a bipartite graph such that for any two
vertices i ∈ V1 and j ∈ V2, ij is an edge in the graph.
A weighted graph is a graph whose edges are associated
with weights, usually a real number. The weight of the edge
connecting vertices i and j is denoted by wij . In a bipartite
graph, a matching is a subset of edges such that they do not
share an endpoint. In other words, a matching is a subset of
edges such that for each vertex, there is at most one edge in
the matching that is incident upon this vertex.

Now, given a weighted complete bipartite graph, the prob-
lem of maximum weight matching is to find a matching with
maximum weight. This is a well-studied problem in graph
theory and it can be solved by the Kuhn-Munkres algorithm
(or Hungarian algorithm) in polynomial time [17]. We do not
present the details of the Kuhn-Munkres algorithm in this
paper. Instead, we transform the original channel allocation
problem, i.e. (3), into a maximum weight matching problem,
and we show that these two problems are equivalent.

We can easily build a complete bipartite graph G(V1, V2)
by letting V1 be the set of SUs and V2 be the set of available
channels. The edges in this graph represent bids of SUs for
the channels. Since each SU submits a bid for each available
channel, the graph is a complete bipartite graph. The weight
of the edge ij is defined as the valuation of the SU i for the
channel j, i.e. vij . A sample graph is depicted in Fig. 2 with
two channels and three SUs.

We claim that X is an efficient channel allocation ma-
trix if and only if M is a maximum weight matching in
the constructed graph G. First, suppose there is an efficient
channel allocation matrix X . Then each nonzero element of
X corresponds to an edge in the maximum weight matching

M . For example, xij = 1 means that channel j is allocated
to SU i, so the edge ij will be in the matching. It should be
noted that this set of edges form a matching, because each
channel can only be allocated to one SU and each SU can
only use one channel at a time (feasibility constraints for the
allocation). Also, this is a maximum weight matching since
we have an efficient allocation that maximizes summation of
SUs’ valuations that correspond to edge weights in the graph.

Conversely, suppose that we have a maximum weight
matching M in graph G, then the channel allocation matrix
X = {xij}n×m can be formed easily. For each edge ij in
M , set its corresponding element in X to 1, i.e. xij = 1, and
set all the other elements to zero. This results in an efficient
channel allocation matrix. First, according to the definition
of a matching, the resulting matrix satisfies the feasibility
constraints. Second, since edge weights in the graph represent
SUs’ valuations and M is a maximum weight matching, the
resulting allocation matrix is efficient.

In addition to the allocation rule, the proposed auction
should specify the payment rule, i.e. the price each SU has to
pay. In the next subsection, we provide details on the payment
rule of the proposed auction.

B. The Payment Rule

The goal is to find a payment rule for the efficient allocation
that satisfies some desired economic properties (Incentive
Compatibility, Individual Rationality and No Positive Trans-
fers). We present the payment rule in this subsection and we
discuss the economic properties in the next subsection.

We use the well-known Vickrey Clarke Groves (VCG)
mechanism with Clarke pivot payments [3]. Based on this pay-
ment rule, SU i pays the externality he causes. In other words,
SU i pays the difference between the social welfare of the
others with and without his participation. Let X = {xij}n×m
and Y = {yij}n×m be efficient channel allocation matrices
with and without SU i’s participation, respectively. (In order
to exclude SU i, we set the ith row of Y to zero.) Then, the
payment for SU i is calculated by the following formula:

pi =
∑
j 6=i

∑
k

yjk · vjk −
∑
j 6=i

∑
k

xjk · vjk (4)

As an example, consider the graph in Fig. 2 with two
channels and three SUs. SUs’ valuations are V1 = (10, 5) ,
V2 = (4, 6) and V3 = (6, 3). The efficient allocation matrix X
obtained by the mechanism is:

X =

[
1 0
0 1
0 0

]
That is, SU 1 gets channel 1 and SU 2 gets channel 2. To
calculate p1, we need to find the efficient allocation without
SU 1’s participation, denoted by matrix Y :

Y =

[
0 0
0 1
1 0

]
Now, using equation 4, p1 = 12 − 6 = 6. Similarly, we can
find Y for SU 2 and calculate p2 = 13− 10 = 3.



It is worth noting that in equation 4, valuations of SU i
are excluded in the summations and SU i does not have any
control over his payment. This makes the mechanism robust
against SUs’ strategic behaviors. In the next subsection, we
discuss the economic properties of the proposed auction.

C. Desired Economic Properties

It is desired for an auction to have certain economic
properties. First, we formally define these properties, then we
show that the proposed auction satisfies the desired economic
properties.

• Incentive Compatibility; Let Vi be user i’s true
valuation vector and V−i be the valuation vectors of
all other users (excluding i). Let the utility of i be
ui =

∑
j

xij · vij − pi when Vi and V−i are declared,

and be u′i =
∑
j

x′ij · vij − p′i when V ′i and V−i are

declared. An auction is called incentive compatible
if for every user i, every Vi and every V ′i we have
ui ≥ u′i. This is sometimes referred to as truthfulness,
and states that the dominant strategy for users is to
declare their true valuations regardless of what other
users do.

• Individual Rationality; An auction is individually
rational if for every user i, we have ui ≥ 0. That
means, users do not suffer as a result of participating
in the auction and the winners do not pay more than
their valuations.

• No Positive Transfers; In an auction with no positive
transfers we have pi ≥ 0, for every user i. This
property prevents the auctioneer from having to pay
agents.

Theorem 1: The proposed auction mechanism is incentive
compatible, individually rational and has no positive transfers.

Proof: We first prove incentive compatibility. Using
the payment rule, i.e. equation 4, utility of user i, when
declaring Vi and V−i, is ui =

∑
j

xij · vij +
∑
j 6=i

∑
k

xjk ·

vjk −
∑
j 6=i

∑
k

yjk · vjk, but when declaring V ′i and V−i, is

u′i =
∑
j

x′ij ·vij+
∑
j 6=i

∑
k

x′jk ·vjk−
∑
j 6=i

∑
k

yjk ·vjk. Since X

maximizes social welfare among all the possible allocations,
we have this inequality:

∑
j

xij · vij +
∑
j 6=i

∑
k

xjk · vjk ≥∑
j

x′ij · vij +
∑
j 6=i

∑
k

x′jk · vjk. Now, by subtracting the term∑
j 6=i

∑
k

yjk · vjk from both sides of the inequality, we get

ui ≥ u′i. Which is the incentive compatibility property.

Let X = {xij}n×m and Y = {yij}n×m be social welfare
maximizing allocations with and without SU i’s participation,
respectively. To show individual rationality, consider the utility
of user i:

ui =
∑
j

xij · vij +
∑
j 6=i

∑
k

xjk · vjk −
∑
j 6=i

∑
k

yjk · vjk

≥
∑
j

∑
k

xjk · vjk −
∑
j

∑
k

yjk · vjk

≥ 0

The first inequality holds since
∑
j

yij · vij ≥ 0. The second

inequality holds because X = {xij}n×m is the allocation that
maximizes the social welfare,

∑
j

∑
k

xjk · vjk.

Showing no positive transfers is quite easy. Using the
payment rule, equation 4, we have pi =

∑
j 6=i

∑
k

yjk · vjk −∑
j 6=i

∑
k

xjk · vjk ≥ 0, since Y = {yij}n×m maximizes the

social welfare without i’s participation,
∑
j 6=i

∑
k

yjk · vjk.

V. NUMERICAL RESULTS

In this section, we evaluate the performance of the pro-
posed auction mechanism in different network scenarios. The
number of SUs and number of available channels are set to be
{5,10,15,20,25,30,35,40} and {3,6,9,12,15,18}, respectively.
Noise variance is chosen to be σ2 = 10−5 and channel
bandwidths equal B = 1. Also, channel qualities (i.e. max-
imum allowable transmission powers) are randomly drawn
from Uniform distribution U[0.01,1]. We run each setting 1000
times in MATLAB. At first, SUs compute their valuations
according to the equation 1. Then, a bipartite graph is formed
and the Hungarian algorithm is used to determine channel
allocations. knowing the allocations, we determine payments
using equation 4.

We consider two settings; first, number of SUs changes
while number of channels is fixed at 3, second, we fix
number of SUs at 25 and change the number of channels.
The performance of the proposed auction is compared with the
case of identical channels where all the channel qualities are
set to a mean value. Social welfare, average payment of SUs,
average utility of SUs, and revenue of the PO are considered
as performance metrics, where revenue of the PO is defined
as the sum of SU payments

∑
i pi.

As can be seen in Fig. 3, social welfare increases with
number of SUs. With more SUs participating in the auction,
we have wider range of valuations, and since the auction favors
SUs with high valuations, the winners have higher valuations
that leads to higher social welfare.

The average payment of SUs is depicted in Fig. 4. We
observe that as the number of SUs increases and channel access
becomes more competitive, payments increase. This is because
with more competition, winning SUs cause more externality,
and consequently they have to pay more. This competition also
benefits the PO, since its revenue increases, as shown in Fig.
5. However, this competitive environment is not favorable for
SUs. Fig. 6 shows that the average utility of SUs decreases
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Fig. 3. Social Welfare (equation 2) versus the number of secondary users,
with fixed number of channels m=3.
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Fig. 4. Average payments versus the number of secondary users, with fixed
number of channels m=3.
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Fig. 5. Revenue of the PO versus the number of secondary users, with fixed
number of channels m=3.

with the number of SUs. That happens because with more
competition, SUs have to pay more, resulting in lower utilities.

Now we consider the case of fixed number of SUs, and
variable number of channels. As shown in Fig. 7, social welfare
increases with the number of channels. This is clearly because
with more channels available, we are adding more positive
terms to the social welfare (see equation 2). Fig. 8 depicts
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Fig. 6. Average utilities versus the number of secondary users, with fixed
number of channels m=3.
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Fig. 7. Social Welfare (equation 2) versus the number of channels, with fixed
number of SUs n=25.
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Fig. 8. Average payments versus the number of channels, with fixed number
of SUs n=25.

the average payment of SUs when the number of channels
increases. As can be seen, payments slightly decrease with the
number of channels. With more channels available, there is
less competition among SUs. Therefore, winning SUs cause
less externality and pay less.

Although average payment of SUs slightly decreases, rev-
enue of the PO increases with number of channels, as shown in
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Fig. 9. Revenue of the PO versus the number of channels, with fixed number
of SUs n=25.

Fig. 9. That is because the PO sells more items (channels) and
gets higher revenue, even though each item’s price is slightly
lowered. It can be seen from Fig. 10 that average utility of
SUs increases with number of channels. Since winning SUs
pay less when the number of channels increases, we witness
an increase in utilities.

From the above numerical comparisons, we observe that by
designing an auction for non-identical channels (i.e. channels
with different qualities) performance of the mechanism can
be considerably improved compared to the case of identical
channels case. With non-identical channels, SUs can better ex-
press their needs and we get a wide range of valuations. Since
the auction favors SUs with higher valuations, winners in the
non-identical channels case have higher valuations compared
to the winners in the identical channels case. Therefore, by a
similar argument as mentioned earlier, non-identical channels
auction results in higher social welfare, higher payments and
consequently higher revenue for the PO. Also, the utility of
SUs is improved by considering non-identical channels.

VI. CONCLUSION

In this paper, we studied the problem of spectrum sharing
in cognitive radio networks. An auction-based mechanism has
been proposed where the SUs bid to buy spectrum bands
from the PO who acts as the auctioneer. Unlike existing
auction mechanisms that assume identical channels, we have
considered a more general case where channels have different
qualities. Also, in our setting, SUs are allowed to express their
preferences for each channel separately. The proposed auction
results in efficient allocation that maximizes SUs’ valuations,
and it has desired proven economic properties. Simulation
results have shown performance improvements in terms of
social welfare, SUs’ utilities and PO’s revenue, compared to
the case of identical channels. Here we have assumed that
SUs’ valuations are related to channel capacities. A possible
direction for future work is to consider other forms of valuation
functions, and study its effect on utility of SUs and other
performance metrics. Other valuation functions might depend
on SU’s service type or queue length.
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Fig. 10. Average utilities versus the number of channels, with fixed number
of SUs n=25.
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