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Abstract—This paper studies the problem of detecting the in-
formation source in a network in which the spread of information
follows the popular Susceptible-Infected-Recovered (SIR) model.
We assume all nodes in the network are in the susceptible state
initially except the information source which is in the infected
state. Susceptible nodes may then be infected by infected nodes,
and infected nodes may recover and will not be infected again
after recovery. Given a snapshot of the network, from which we
know all infected nodes but cannot distinguish susceptible nodes
and recovered nodes, the problem is to find the information
source based on the snapshot and the network topology. We
develop a sample path based approach where the estimator of the
information source is chosen to be the root node associated with
the sample path that most likely leads to the observed snapshot.
We prove for infinite-trees, the estimator is a node that minimizes
the maximum distance to the infected nodes. A reverse-infection
algorithm is proposed to find such an estimator in general graphs.
We prove that for g-regular trees such that gq > 1, where g is
the node degree and q is the infection probability, the estimator
is within a constant distance from the actual source with high
probability, independent of the number of infected nodes and the
time the snapshot is taken. Our simulation results show that for
tree networks, the estimator produced by the reverse-infection
algorithm is closer to the actual source than the one identified
by the closeness centrality heuristic.

I. INTRODUCTION

Diffusion processes in networks refer to the spread of
information throughout the networks, and have been widely
used to model many real-world phenomena such as the
outbreak of epidemics, the spreading of gossips over online
social networks, the spreading of computer virus over the
Internet, and the adoption of innovations. Important properties
of diffusion processes such as the outbreak thresholds [1] and
the impact of network topologies [2] have been intensively
studied.

In this paper, we are interested in the reverse of the diffusion
problem: given a snapshot of the diffusion process at time
t, can we tell which node is the source of the diffusion?
The answer to this problem has many important applications,
and can help us answer the following questions: who is the
rumor source in online social networks? which computer is the
first one infected by a computer virus? who is the one who
uploaded contraband materials to the Internet? and where is
the source of an epidemic?

We call this problem information source detection problem.
This information source detection problem has been studied

in [3]–[5] under the Susceptible-Infected (SI) model, in which
susceptible nodes may be infected but infected nodes cannot
recover. The authors formulated the problem as a maximum
likelihood estimation (MLE) problem, and developed novel
algorithms to detect the source.

In this paper, we adopt the Susceptible-Infected-Recovered
(SIR) model, a standard model of epidemics [6], [7]. The
network is assumed to be an undirected graph and each node in
the network has three possible states: susceptible (S), infected
(I), and recovered (R). Nodes in state S can be infected
and change to state I , and nodes in state I can recover and
change to state R. Recovered nodes cannot be infected again.
We assume that initially all nodes are in the susceptible state
except one infected node (called the information source). The
information source then infects its neighbors, and the infor-
mation starts to spread in the network. Now given a snapshot
of the network, in which we can identify infected nodes
and healthy (susceptible and recovered) nodes (we assume
susceptible nodes and recovered nodes are indistinguishable),
the question is which node is the information source.

We remark that it is very important to take recovery into
consideration since recovery can happen due to various reasons
in practice. For example, a contraband material uploader may
delete the file, a computer may recover from a virus attack after
anti-virus software removes the virus, and a user may delete
the rumor from her/his blog. In order to solve the information
source detection problem in these scenarios, we study the SIR
model in this paper, which makes the problem significantly
more challenging than that in the SI model as we will explain
in the related work section.

A. Main Results

The main results of this paper are summarized below.
• Similar to the SI model, the information source detection

problem can be formalized as an MLE problem. Unfor-
tunately, to solve the MLE problem, we need to consider
all possible infection sample paths, and for each sample
path, we need to specify the infection time and recovery
time for each healthy node and the infection time for each
infected node, so the number of possible sample paths
is at the order of Ω(tN ), where N is the network size
and t is the time the snapshot is obtained. Therefore, the
MLE problem is difficult to solve even when t is known.



The problem becomes much harder when t is unknown,
which is the assumption of this paper. To overcome this
difficulty, we propose a sample path based approach. We
propose to find the sample path which most likely leads
to the observed snapshot and view the source associated
with that sample path as the information source. We
call this problem optimal sample path detection problem.
We investigate the structure properties of the optimal
sample path in trees. Defining the infection eccentricity
of a node to be the maximum distance from the node
to infected nodes, we prove that the source node of
the optimal sample path is the node with the minimum
infection eccentricity. Since a node with the minimum
eccentricity in a graph is called the Jordan center, we
call the nodes with the minimum infection eccentricity
the Jordan infection centers. Therefore, the sample path
based estimator is one of the Jordan infection centers.

• We propose a low complexity algorithm, called reverse
infection algorithm, to find the sample path based esti-
mator in general graphs. In the algorithm, each infected
node broadcasts its identity in the network, the node who
first collect all identities of infected nodes declares itself
as the information source, breaking ties based on the sum
of distances to infected nodes. The running time of this
algorithm is equal to the minimum infection eccentricity,
and the number of messages each node receives/sends is
bounded by the degree of the node.

• We analyze the performance of the reverse infection
algorithm on g-regular trees, and show that the algorithm
can output a node within a constant distance from the
actual source with high probability, independent of the
number of infected nodes and the time the snapshot is
taken.

• We conduct simulations over tree networks to verify
the performance of the reverse infection algorithm. The
detection rate over regular trees is found to be around
60%, and is higher than that of the infection closeness
centrality (or called distance centrality) heuristic. The
infection closeness of a node is defined to be the inverse
of the sum of distances to infected nodes and the infection
closeness centrality heuristic is to claim the node with the
maximum infection closeness as the source. Note that in
[3]–[5], the authors proved the node with the maximum
infection closeness is the MLE on regular trees.

B. Related Work

There have been extensive studies on the spread of epi-
demics in networks based on the SIR model (see [1], [2], [8],
[9] and references within). The work most related to this paper
is [3]–[5], in which the information source detection problem
was studied under the SI model. This paper considers the SIR
model, where infection nodes may recover, which can occur
in many practical scenarios as we have explained. Because
of node recovery, the information source detection problem
under the SIR model differs significantly from that under the
SI model. The differences are summarized below.

• The set of possible sources in the SI model [3]–[5]
is restricted to the set of infected nodes. In the SIR
model, all nodes are possible information sources because
we assume susceptible nodes and recovered nodes are
indistinguishable and a healthy node may be a recovered
node so can be the information source. Therefore, the
number of candidate sources is much larger in the SIR
model than that in the SI model.

• A key observation in [3]–[5] is that on regular trees,
all permitted permutations of infection sequences (a in-
fection sequence specifies the order at which nodes are
infected) are equally likely under the SI model. The
number of possible permutations from a fixed root node,
therefore, decides the likelihood of the root node being
the source. However, under the SIR model, different
infection sequences are associated with different prob-
abilities, so counting the number of permutations are not
sufficient.

• [3]–[5] proved that the node with the minimum closeness
centrality is the an MLE on regular-trees. We define the
infection closeness centrality to be the inverse of the
sum of distances to infected nodes. Our simulations show
that the sample path based estimator is closer to the
actual source than the nodes with the maximum infection
closeness.

Other related works include: (1) detecting the first adopter of
innovations based on a game theoretical model [10] in which
the authors derived the MLE but the computational complexity
is exponential in the number of nodes, (2) network forensics
under the SI model [11], where the goal is to distinguish an
epidemic infection from a random infection, and (3) geospatial
abduction problems [12], [13].

II. PROBLEM FORMULATION

A. The SIR Model for Information Propagation

Consider an undirected graph G = {V, E}, where V is
the set of nodes and E is the set of (undirected) edges.
Each node v ∈ V has three possible states: susceptible (S),
infected (I), and recovered (R). We assume a time slotted
system. Nodes change their states at the beginning of each
time slot, and the state of node v in time slot t is denoted
by Xv(t). Initially, all nodes are in state S except node v∗

which is in state I and is the information source. At the
beginning of each time slot, each infected node infects each
of its susceptible neighbors with probability q, independent of
other nodes, i.e., a susceptible node is infected with probability
1 − (1 − q)n if it has n infected neighbors. Each infected
node recovers with probability p, i.e., its state changes from I
to R with probability p. In addition, we assume a recovered
node cannot be infected again. Since whether a node gets
infected only depends on the states of its neighbors and
whether a node becomes a recovered node only depends on
its own state in the previous time slot, the infection process
can be modeled as a discrete time Markov chain X(t) where
X(t) = {Xv(t), v ∈ V} is the states of all the nodes at time
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Figure 1. An Example of Information Propagation

slot t. The initial state of this Markov chain is Xv(0) = S for
v 6= v∗ and Xv∗(0) = I.

B. Information Source Detection

We assume X(t) is not fully observable since we cannot
distinguish susceptible nodes and recovered ones. So at time
t, we observe Y = {Yv, v ∈ V} such that

Yv =

{
1, if v is in state I;
0, if v is in state S or R.

The information source detection problem is to identify v∗

given the graph G and Y, where t is an unknown parameter.
Figure 1 is an example of the infection process. The left

figure shows the information propagation over time. The nodes
on each dotted line are the nodes which are infected at that
time slot, and the arrows indicate where the infection comes
from (e.g., node 4 is infected by node 2).

The figure on the right is the network we observe, where
the shaded nodes are infected nodes and others are susceptible
or recovered nodes. The pair of numbers next to each node
are the corresponding infection time and recovery time. For
example, node 3 was infected at time slot 2 and recovered
at time slot 3. −1 indicates that the infection or recovery
has yet occurred. Note that these two pieces of information
are not available to us, and we include them in the figure to
illustrate the infection and recovery processes. If we observe
the network at the end of time slot 3, then the snapshot of
the network is Y = {0, 1, 0, 1, 0, 1, 1}, where the states are
ordered according to the indices of the nodes.

C. Maximum Likelihood Detection

We define X[0, t] = {X(τ) : 0 < τ ≤ t} to be a sample
path of the infection process from 0 to t. In addition, we define
function F (·) such that

F (Xv(t)) =

{
1, if Xv(t) = I;
0, otherwise.

We say F(X[t]) = Y if F (Xv(t)) = Yv for all v. Identifying
the information source can be formulated as a maximum
likelihood detection problem as follows:

v† ∈ arg max
v∈V

∑
X[0,t]:F(X(t))=Y

Pr(X[0, t]|v∗ = v),

where Pr(X[0, t]|v∗ = v) is the probability to obtain sample
path X[0, t] given the information source is node v.

Figure 2. An Example Illustrating the Infection Eccentricity

We note the difficulty of solving this maximum likelihood
problem is the curse of dimensionality. For each v such that
Yv = 0, we need to decide its infection time and recovered
time (the node is in susceptible state if the infection time is
> t), i.e., O(t2) possible choices; for each v such that Yv =
1, we need to decide the infection time, i.e., O(t) possible
choices. Therefore, even for a fixed t, the number of possible
sample paths is at least at the order of tN , where N is the
number of nodes in the network. This curse of dimensionality
makes it computational expensive, if not impossible, to solve
the maximum likelihood problem. To overcome this difficulty,
we propose a sample path based approach which is discussed
below.

D. Sample Path Based Detection

Instead of computing the marginal probability, we propose
to identify the sample path X∗[0, t∗] that most likely leads to
Y, i.e.,

X∗[0, t∗] = arg max
t,X[0,t]∈X (t)

Pr (X[0, t]) , (1)

where X (t) = {X[0, t]|F(X(t)) = Y}. The source node
associated with X∗[0, t∗] is viewed as the information source.

III. SAMPLE PATH BASED DETECTION ON TREE
NETWORKS

The optimal sample paths for general graphs are still diffi-
cult to obtain. In this section, we focus on tree networks and
derive structure properties of the optimal sample paths.

First, we introduce the definition of eccentricity in graph
theory [14]. The eccentricity e(v) of a vertex v is the maximum
distance between v and any other vertex in the graph. The Jor-
dan centers of a graph are the nodes which have the minimum
eccentricity. For example, in Figure 2, the eccentricity of node
v1 is 4 and the Jordan center is v2, whose eccentricity is 3.

Following a similar terminology, we define the infection
eccentricity ẽ(v) given Y as the maximum distance between
v and any infected nodes in the graph. Define the Jordan
infection centers of a graph to be the nodes with the mini-
mum infection eccentricity given Y. In Figure 2, nodes v3,
v10, v13 and v14 are observed to be infected. The infection
eccentricities of v1, v2, v3, v4 are 2, 3, 4, 5, respectively, and
the Jordan infection center is v1.



We will show that the source associated with the optimal
sample path is a node with the minimum infection eccentricity.
We derive this result using three steps: first, assuming the
information source is vr, we analyze t∗vr such that

t∗vr = argt max
t,X[0,t]

Pr(X[0, t]|v∗ = vr),

i.e., t∗vr is the time duration of the optimal sample path in
which vr is the information source. It turns out that t∗vr equals
to the infection eccentricity of node vr. Considering Figure
2 if the source is v1, then the time duration of the optimal
sample path is 2.

In the second step, we consider two neighboring nodes, say
nodes v1 and v2. We will prove that if ẽ(v1) < ẽ(v2), then
the optimal sample path rooted at v1 occurs with a higher
probability than the optimal sample path rooted at v2.

Finally, at the third step, we will show that given any two
nodes u and v, if v has the minimum infection eccentricity
and u has a larger infection eccentricity, then there exists
a path from u to v along which the infection eccentricity
monotonically decreases, which implies that the source of
the optimal sample path must be a Jordan infection center.
For example, in Figure 2, node v4 has a larger infection
eccentricity than v1 and v4 → v3 → v2 → v1 is the path along
which the infection eccentricity monotonically decreases from
5 to 2.

A. The Optimal Time

Lemma 1. Consider a tree network rooted at vr and with
infinitely many levels. Assume the information source is the
root, and the observed infection topology is Y which contains
at least one infected node. If ẽ(vr) ≤ t1 < t2, then the
following inequality holds

max
X[0,t1]∈X (t1)

Pr(X[0, t1]) > max
X[0,t2]∈X (t2)

Pr(X[0, t2]),

where X (t) = {X[0, t]|F(X(t)) = Y}. In addition,

t∗vr = ẽ(vr) = max
u∈I

d(vr, u),

where d(vr, u) is the length of the shortest path between vr
and u and also called the distance between vr and u, and I
is the set of infected nodes. �

The proof of Lemma 1 can be found in [15].

B. The Sample Path Based Estimator

After deriving t∗v , we have a unique t∗v for each v ∈ V . The
next lemma states that the optimal sample path rooted a node
with a smaller infection eccentricity is more likely to occur.

Lemma 2. Consider a tree network with infinitely many levels.
Assume the information source is the root, and the observed
infection topology is Y which contains at least one infected
node. For u, v ∈ V such that (u, v) ∈ E , if t∗u > t∗v, then

Pr(X∗u([0, t∗u])) < Pr(X∗v([0, t
∗
v])),

where X∗u[0, t∗u] is the optimal sample path starting from node
u.

Proof. Denote by Tv the tree rooted in v and T−vu the tree
rooted at u but without the branch from v. See T−v1v9 and T−v2v7
in Figure 2. Furthermore, denote by C(v) the set of children
of v. The sample path X[0, t] restricted to T−vu is defined to
be X([0, t], T−vu ).

Step 1: The first step is to show t∗u = t∗v+1. First we claim
T−uv ∩I 6= ∅. Otherwise, all infected node are on T−vu . Since
on a tree, v can only reach nodes in T−vu through edge (u, v),
t∗v = t∗u + 1, which contradicts t∗u > t∗v.

If T−vu ∩ I 6= ∅, ∀a ∈ T−vu ∩ I, we have

d(u, a) = d(v, a)− 1 ≤ t∗v − 1,

and ∀b ∈ T−uv ∩ I,

d(u, b) = d(v, b) + 1 ≤ t∗v + 1.

Hence,
t∗u ≤ t∗v + 1,

which implies that

t∗v < t∗u ≤ t∗v + 1,

i.e., t∗u = t∗v + 1.
If T−vu ∩ I = ∅, all infected nodes are in T−uv , so it is

obvious t∗u = t∗v + 1.
Step 2: In this step, we will prove that tIv = 1 on the sample

path X∗u[0, t∗u]. If tIv > 1 on X∗u([0, t∗u]), then

t∗u − tIv = t∗v + 1− tIv < t∗v.

Note that according to the definition of t∗u and tIv, within t∗u−tIv
time slots, node v can infect all infected nodes on T−uv . Since
t∗u = t∗v + 1, the infected node farthest from node u must be
on T−uv , which implies that there exists a node a ∈ T−uv such
that d(u, a) = t∗u = t∗v+1 and d(v, a) = t∗v. So node v cannot
reach a within t∗u − tIv time slots, which contradicts the fact
that the infection can spread from node v to a within t∗u − tIv
time slots along the sample path X∗u[0, t∗u]. Therefore, tIv = 1.

Step 3: Now given sample path X∗u[0, t∗u], we construct
Xv[0, t

∗
v] which occurs with a higher probability. We divide

the sample path X∗u[0, t∗u] into two parts along subtrees T−vu
and T−uv . Since tIv = 1, we have

Pr(X∗u[0, t∗u])

= qPr
(
X∗u
(
[0, t∗u], T−uv

) ∣∣∣tIv = 1
)

Pr
(
X∗u
(
[0, t∗u], T−vu

))
,

where q is the probability that v is infected at the first time
slot. Suppose in Xv[0, t

∗
v], node u was infected at the first

time slot, then

Pr(Xv[0, t
∗
v]) =

qPr
(
Xv

(
[0, t∗v], T

−u
v

))
Pr
(
Xv

(
[0, t∗v], T

−v
u

) ∣∣∣tIu = 1
)
.

For the subtree T−uv , given X∗u ([0, t∗u], T−uv ) , in which
tIv = 1, we construct the partial sample path Xv ([0, t∗v], T

−u
v )

to be identical to X∗u ([0, t∗u], T−uv ) except that all events occur
one time slot earlier, i.e.,

Xv

(
[0, t∗v], T

−u
v

)
= X∗u

(
[1, t∗u], T−uv

)
.



This is feasible because t∗v = t∗u − 1. Then

Pr
(
X∗u
(
[0, t∗u], T−uv

) ∣∣∣tIv = 1
)

= Pr
(
Xv

(
[0, t∗v], T

−u
v

))
.

For the subtree T−vu , we construct Xv([0, t
∗
v], T

−v
u ) such

that

Xv([0, t
∗
v], T

−v
u ) ∈

arg maxX̃([0,t∗v],T
−v
u )∈X (t∗v,T

−v
u ) Pr

(
X̃
(
[0, t∗v], T

−v
u

) ∣∣∣tIu = 1
)
.

Based on Lemma 1, we have

max
X̃([0,t∗v ],T

−v
u )∈X (t∗v,T

−v
u )

Pr
(
X̃
(
[0, t∗v], T

−v
u

) ∣∣∣tIu = 1
)

=

max
X̃([0,t∗u−1],T

−v
u )∈X (t∗u−1,T

−v
u )

Pr
(
X̃
(
[0, t∗u − 1], T−vu

) ∣∣∣tIu = 1
)

> max
X([0,t∗u],T

−v
u )∈X (t∗u,T

−v
u )

Pr
(
X
(
[0, t∗u], T−vu

))
.

Therefore, given the optimal sample path rooted at u, we have
constructed a sample path rooted at v which occurs with a
higher probability. The lemma holds.

Next, we give a useful property of the Jordan infection
centers in the following lemma.

Lemma 3. On a tree network with at least one infected node,
there exist at most two Jordan infection centers. When the
network has two Jordan infection centers, the two must be
neighbors. �

The proof of Lemma 3 can be found in [15].
Based on Lemma 2 and Lemma 3, we finish this section

with the following theorem.

Theorem 4. Consider a tree network with infinitely many
levels. Assume that the observed infection topology Y contains
at least one infected node. Then the source node associated
with X∗[0, t∗] (the solution to the optimization problem (1))
is a Jordan infection center, i.e.,

v† = arg min
v∈V

ẽ(v).

Proof. We assume the network has two Jordan infection
centers: w and u, and assume ẽ(w) = ẽ(u) = λ. The same
argument works for the case where the network has only one
Jordan infection center.

Based on Lemma 3, w and u must be adjacent. We will
show for any a ∈ V\{w, u}, there exists a path from a to u
(or w) along which the infection eccentricity strictly decreases.

Step 1: First, it is easy to see from Figure 3 that d(γ,w) ≤
λ − 1 ∀γ ∈ T−uw ∩ I. We next show that there exists a node
ξ such that the equality holds.

Suppose that d(γ,w) ≤ λ− 2 for any γ ∈ T−uw ∩ I, which
implies

d(γ, u) ≤ λ− 1 ∀γ ∈ T−uw ∩ I.

Since w and u are both Jordan infection centers, we have
∀γ ∈ T−wu ∩ I,

d(γ,w) ≤ λ
d(γ, u) ≤ λ− 1.

Figure 3. A Pictorial Description of the Positions of Nodes a, u, w and ξ.

In a summary, ∀γ ∈ I,

d(γ, u) ≤ λ− 1.

This contradicts the fact that ẽ(w) = ẽ(u) = λ. Therefore,
there exists ξ ∈ T−uw ∩ I such that

d(ξ, w) = λ− 1.

Step 2: Similarly, ∀γ ∈ T−wu ∩ I,

d(γ, u) ≤ λ− 1,

and there exists a node such that the equality holds.
Step 3: Next we consider a ∈ V\{w, u}, and assume a ∈

T−wu and d(a, u) = β. Then for any γ ∈ T−uw ∩ I, we have

d(a, γ) = d(a, u) + d(u,w) + d(w, γ)

≤ β + 1 + λ− 1

= λ+ β,

and there exists ξ ∈ T−uw ∩I such that the equality holds. On
the other hand, ∀γ ∈ T−wu ∩ I.

d(a, γ) ≤ d(a, u) + d(u, γ)

≤ β + λ− 1.

Therefore, we conclude that

ẽ(a) = λ+ β,

so the infection eccentricity decreases along the path from a
to u.

Step 4: Repeatedly applying Lemma 2 along the path from
node a to u, we can conclude that the optimal sample path
rooted at node u is more likely to occur than the optimal
sample path rooted at node a. Therefore, the root node
associated with the optimal sample path X∗[0, t∗] must be
a Jordan infection center, and the theorem holds.

IV. REVERSE INFECTION ALGORITHM

Since in tree networks with infinitely many levels, the
estimator based on the sample path approach is a Jordan
infection center, we view the Jordan infection centers as
possible candidates of the information source. We next present
a simple algorithm to find the information source in general
networks. The algorithm is to first identify the Jordan infection



centers, and then break ties based on the sum of distances to
infected nodes.

The key idea of the algorithm is to let every infected
node broadcast a message containing its identity (ID) to
its neighbors. Each node, after receiving messages from its
neighbors, checks whether the ID in the message has been
received. If not, the node records the ID (say v), the time at
which the message is received (say tv), and then broadcasts
the ID to its neighbors. When a node receives the IDs of all
infected nodes, it claims itself as the information source and
the algorithm terminates. If there are multiple nodes receiving
all IDs at the same time, the tie is broken by selecting the
node with the smallest

∑
tv.

The tie-breaking rule we proposed is to choose the node
with the maximum infection closeness [16]. The closeness
measures the efficiency of a node to spread information to
all other nodes. The closeness of a node is the inverse of the
sum of distances from the node to any other nodes. In our
model, we define the infection closeness as the inverse of the
sum of distances from a node to all infected nodes, which
reflects the efficiency to spread information to infected nodes.
We select a Jordan infection center with the largest infection
closeness, breaking ties at random.

Algorithm 1 Reverse Infection Algorithm
for i ∈ I do
i sends its ID ωi to its neighbors.

end for
while t ≥ 1 and STOP== 0 do

for u ∈ V do
if u receives ωi for the first time then

Set tui = t and then broadcast the message ωi to its
neighbors.
If there exists a node who received |I| distinct
messages, then set STOP == 1.

end if
end for

end while
return u† = arg minu∈S

∑
i∈I tui, where S is the set of

nodes who receive |I| distinct messages when the algorithm
terminates. Ties are broken at random.

It is easy to verify that the set S is the set of the Jordan
infection centers. The running time of the algorithm is equal
to the minimum infection eccentricity and the number of
messages each node receives/sends during each time slot is
bounded by its degree.

V. PERFORMANCE ANALYSIS

The reverse infection algorithm is based on the structure
properties of the optimal sample paths on trees. While the
MLE is the node that maximizes the likelihood of the snapshot
among all possible nodes, the sample path based estimator
does not have such a guarantee. To demonstrate the effec-
tiveness of the sample path based approach, we next show
that on (g + 1)-regular trees where each node has g + 1

neighbors, the information source generated by the reverse
infection algorithm is within a constant distance from the
actual source with high probability, independent of the number
of infected nodes and the time at which the snapshot Y was
taken.

Theorem 5. Consider a (g + 1)-regular tree with infinitely
many levels where g > 2 and gq > 1. Assume that the
observed infection topology Y contains at least one infected
node. Given ε > 0, there exists dε such that the distance
between the optimal sample path estimator and the actual
source is dε with probability 1 − ε, where dε is independent
of the number of infected nodes and the time the snapshot Y
was taken.

Proof. Consider the tree rooted at the information source v∗.
We say v∗ is at level 0. We denote by Zl the set of infected
and recovered nodes at level l. Furthermore, we define Zτl to
be the set of infected and recovered nodes at level l whose
parents are in set Zτl−1 and who were infected within τ time
slots after their parents were infected. We assume Zτ0 = {v∗}.
In addition, let Zl = |Zl| and Zτl = |Zτl |.

Note

lim
τ→∞

Zτl = Zl,

and given v and u ∈ Zτl ,

|tIv − tIu| ≤ l(τ − 1),

i.e., the infection times of nodes in Zτl differ by at most l(τ−
1) (note that the difference is not τ − 1 since the parents of u
and v may be infected at different times). Our proof is based
on the Galton Watson (GW) branching process [17]. A GW
branching process is a stochastic process B(l) which evolves
according to the recurrence formula B(0) = 1 and

B(l) =

B(l−1)∑
i=1

ζi,

where {ζi} is a set of random variables, taking values from
nonnegative integers. The distribution of ζi is called the
offspring distribution of the branching process. In a (g + 1)-
regular tree, the evolution of Zτl is a branching process, where
the offspring distribution is a function of τ. We use Bτ to
denote the corresponding branching process, and Bτ (l) to
denote the number of offsprings at level l, i.e., Bτ (l) = Zτl
(we use these two notations interchangeably). Given a node is
in the infected state for t time slots, the number of infected
offsprings follows a binomial distribution. Note the following
two facts:

• The number of time slots at which a node is in the
infected state follows a geometric distribution with pa-
rameter p.

• A child remains to be susceptible with probability (1−q)τ
when the parent has been in the infected state for τ time
slot.
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Figure 4. A pictorial description of the positions of v′, ṽ, u1, and w.

Therefore, the offspring distribution of the branching process
Bτ at level ≥ 11 is

Pr(γ = i)

=

τ−1∑
t=1

(1− p)t−1p
(
g

i

)(
1− (1− q)t

)i
(1− q)t(g−i)

+

(
1−

τ−1∑
t=1

(1− p)t−1p

)(
g

i

)
(1− (1− q)τ )

i
(1− q)τ(g−i),

where γ is the number of offsprings of a node. The offspring
distribution of branching process B∞ is

Pr(γ′ = i)

=

∞∑
t=1

(1− p)t−1p
(
g

i

)(
1− (1− q)t

)i
(1− q)t(g−i).

Each infected node can be viewed the source of branching
processes on the subtree rooted at the node. We define Kl

to be the number of survived B1 branching processes whose
roots are in set Zτl , where a branching process survives if it
never dies out.

Now given L ≥ 2, we consider the following events:
• Event 1: ZL = 0
• Event 2: Kl ≥ 2 for some l ≤ L. In other words, at least

two B1 branching processes starting from Zτl survive for
some l ≤ L.

We note that these two are disjoint events.
When Zl = 0, no node at level L is infected and the

infection process terminates at level L − 1. When there is
at least one infected node in Y, since ẽ(v∗) ≤ L − 1, the
minimum infection eccentricity is at most L − 1. Therefore,
the distance between v∗ and v† is no more than 2(L− 1).

Given Kl ≥ 2 for some l ≤ L, we will argue that the
distance between the sample path based estimator and the
actual one is upper bounded by (τ +1)L−1. Consider Figure
4, where the shaded nodes are infected and recovered nodes.
We will show that if two B1 branching processes starting from
l ≤ L survive, a node at level ≥ (τ+1)L−1 cannot be a Jordan
infection center. Recall that at time t, the distance between any

1The source node has g + 1 children while other nodes have g children

infected node and the actual source is no more than t, which
implies the eccentricity of a Jordan infection center is ≤ t.
Now consider a node ṽ at level ≥ (τ + 1)l− 1. Recall that at
least two B1 branching processes starting from level l survive.
Let u1 ∈ Zτl be the root of a survived B1 branching process,
and assume node ṽ is not on the subtree rooted at u1. Further,
assume v′ is an infected node at the lowest level on sub-tree
T−wu1

. Since the branching process B1
u1

survives, the infection
process propagates one level lower at each time slot and node
v′ is at level l + t− tIu1

.
From Figure 4, it is easy to see that the distance between

v′ and ṽ is at least

t− tIu1
+ 2 + (τ + 1)l − 1− l = t− tIu1

+ τ l + 1,

which occurs when the first common predecessor of nodes v′

and ṽ is at l−1 level. Note that the common predecessor cannot
appear at level ≥ l since ṽ is not on T−wu1

. Since u1 ∈ Zτl , the
infection time of node u1 is no later than τ l, i.e., tIu1

≤ τ l.
Therefore, the distance between v′ and ṽ is at least t + 1,
which is larger than t. Hence, v′ cannot be a Jordan infection
center. Since l ≤ L, any node at or below level (τ + 1)L− 1
cannot be a Jordan infection center. In a summary, if event 2
occurs, then we have

d(v∗, v†) ≤ (τ + 1)L− 1.

We next show that given any ε, we can find sufficiently
large τ and L, independent of t and the number of infected
nodes, such that the probability that either event 1 or event 2
occurs is at least 1− ε.

Given n0 > 0 and τ > 0, we define

l† = min {l : Zτl > n0} ,

i.e., l† is the first level at which Bτ has more than n0 nodes.
We first have

Pr(ZL = 0) + Pr (Kl ≥ 2 for some l ≤ L)

≥Pr(ZL = 0) + Pr
(
Kl† ≥ 2 and l† ≤ L

)
= Pr(ZL = 0) + Pr

(
l† ≤ L

)
Pr
(
Kl† ≥ 2

∣∣∣l† ≤ L)
= Pr(ZL = 0) + Pr

(
L⋃
i=1

{Zτi > n0}

)
Pr
(
Kl† ≥ 2

∣∣∣l† ≤ L)
≥

(
1− Pr

(
L⋂
i=1

{0 < Zτi ≤ n0}

)
− Pr

(
L⋃
i=1

{Zτi = 0}

))
× Pr

(
Kl† ≥ 2

∣∣∣l† ≤ L)+ Pr(ZL = 0).

Note that we have

Pr(Kl† ≥ 2|l† ≤ L)

=

L∑
l=1

Pr(Kl† ≥ 2|l† = l) Pr(l† = l|l† ≤ L). (2)

According to Lemma 6, given any ε1 > 0, we can find a
sufficiently large n0 such that

Pr(Kl† ≥ 2|l† = l) ≥ (1− ε1),



which implies that for sufficiently large n0,

Pr(Kl† ≥ 2|l† ≤ L) ≥ 1− ε1.

We can then conclude

Pr(ZL = 0) + Pr (Kl ≥ 2 for some l ≤ L)

≥

(
1− Pr

(
L⋂
i=1

{0 < Zτi ≤ n0}

))
(1− ε1)

− Pr

(
L⋃
i=1

{Zτi = 0}

)
+ Pr(ZL = 0)

=

(
1− Pr

(
L⋂
i=1

{0 < Zτi ≤ n0}

))
(1− ε1)

+ Pr(ZL = 0)− Pr(ZτL = 0),

where Pr(∪Li=1 {Zτi = 0}) = Pr(ZτL = 0) because Zτl = 0
implies that ZτL = 0 for l ≤ L.

According to Lemma 7 and Lemma 8, given any ε2 > 0
and ε3 > 0, there exist sufficiently large τ and L such that(

1− Pr

(
L⋂
i=1

{0 < Zτi ≤ n0}

))
> 1− ε2,

and
Pr(ZL = 0)− Pr(ZτL = 0) ≥ −ε3.

Hence, we have

Pr(ZL = 0) + Pr (Kl ≥ 2 for some l ≤ L)

≥ (1− ε1)(1− ε2)− ε3.

Now choosing ε1 = ε2 = ε3 = ε4/3 for some ε4 > 0, we have

Pr(ZL = 0) + Pr (Kl ≥ 2 for some l ≤ L)

≥ 1− ε4.

Now let |Y| denote the number of infected nodes in the
observation Y. Define events E1 = {ZL = 0} and E2 =
{Kl ≥ 2 for some l ≤ L}. We have

Pr(E1||Y| = 1) + Pr (E2||Y| = 1)

=
1

Pr(|Y| = 1)
(Pr(E1 ∩ {|Y| = 1}) + Pr (E2 ∩ {|Y| = 1})) .

Since E2 implies that |Y| = 1, we have

Pr(E1||Y| = 1) + Pr (E2||Y| = 1)

=
1

Pr(|Y| = 1)
(Pr(E1 ∩ {|Y| = 1}) + Pr (E2))

=
1

Pr(|Y| = 1)
(Pr(E1)− Pr(E1 ∩ {|Y| = 0}) + Pr (E2))

≥ 1

Pr(|Y| = 1)
(Pr(E1)− Pr({|Y| = 0}) + Pr (E2))

≥ 1

Pr(|Y| = 1)
(Pr({|Y| = 1})− ε4)

=1− ε4
Pr(|Y| = 1)

.

Note that Pr(|Y| = 1) is a positive constant since the
B1 branching process starting from the information source
survives with non-zero probability. The theorem holds by
choosing ε4 = εPr(|Y| = 1).

The lemmas used in the proof are listed below and the
detailed proofs can be found in [15].

Lemma 6. Consider n0 i.i.d GW branching processes with a
binomial offspring distribution with parameters g and q such
that gq > 1. Denote by K the number of branching processes
that survive. Given any ε > 0, if

n0 ≥
8 log 1

ε

1− ρ
,

then
Pr(K ≥ 2) ≥ 1− ε,

where ρ is the extinction probability of the GW branching
process. In the binomial case, ρ is the smallest non-negative
root of equation ρ = (1− q + qρ)g. �

Lemma 7. Given any ε > 0, there exists a constant L′ such
that for any L ≥ L′,

Pr

(
L⋂
i=1

{0 < Zτi ≤ n0}

)
≤ ε.

�

Lemma 8. Given any ε, there exist τ ′ and L′ such that for
any τ > τ ′ and L > L′

Pr(ZL = 0)− Pr(ZτL = 0) ≥ −ε.

�

VI. SIMULATIONS

In this section, we evaluate the performance of the reverse
infection algorithm on tree networks. We compare the reverse
infection algorithm with the closeness centrality heuristic,
which selects the node with the maximum infection close-
ness as the information source. Note that the node with the
maximum closeness is the maximum likelihood estimator of
the information source on regular trees under the SI model
[3]–[5].

We first studied the performance on small-size trees. The
infection probability q was chosen uniformly from (0, 1) and
the recovery probability p was chosen uniformly from (0, q).
The infection process propagates t time slots where t was
uniformly chosen from [3, 5]. To keep the size of infection
topology small, we restricted the total number of infected and
recovered nodes to be no more than 100. For small-size trees,
we first calculated the MLE using dynamic programming for
fixed t and then searching over t ∈ [0, tmax] for a large value
of tmax to find the optimal estimator.

The detection rate is defined to be the fraction of experi-
ments in which the estimator coincides with the actual source.
We varied g from 2 to 10 and the results are shown in Figure
5. We can see that the detection rate of the reverse infection
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Figure 5. The Detection Rates of the Maximum Likelihood Estimator (MLE),
Reverse Infection (RI) and Closeness Centrality (CC) on Regular Trees

algorithm is almost the same as that of the MLE, and is higher
than that of the closeness centrality heuristic by approximately
20% when the degree is small and by 10% when the degree
is large.
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Figure 6. The Detection Rates of the Reverse Infection (RI) and Closeness
Centrality (CC) Algorithms on Regular Trees

We further conducted our simulations on large-size g-
regular trees. The infection probability q was chosen uni-
formly from (0, 1) and the recovery probability p was chosen
uniformly from (0, q). The infection process propagates t
time slots where t was uniformly chosen from [3, 20]. We
selected the networks in which the total number of infected
and recovered nodes is no more than 500.

We varied g from 2 to 10. Figure 6 shows the detection rate
as a function of g. We can see the detection rates of both the
reverse infection and closeness centrality algorithms increase
as the degree increases and is higher than 60% when g > 6.
However, he detection rate of the reverse infection algorithm
is higher than that of the closeness centrality algorithm, and
the average difference is 8.86%.

VII. CONCLUSION

In this paper, we developed a sample path based approach to
find the information source under the SIR model. We proved

that the sample path based estimator is a node with the mini-
mum infection eccentricity. Based on that, a reverse infection
algorithm has been proposed. We analyzed the performance of
the reverse infection algorithm on regular trees, and showed
that with high probability the distance between the estimator
and actual source is a constant, independent of the number of
infected nodes and the time the network was observed. We
evaluated the performance of the proposed reverse infection
algorithm on tree networks.
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