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Abstract— The problem of quickest detection of an anomalous
process among M processes is considered. At each time, a subset
of the processes can be observed, and the observations follow
two different distributions, depending on whether the process
is normal or abnormal. The objective is a sequential search
strategy that minimizes the expected detection time subject to
an error probability constraint. This problem can be considered
as a special case of active hypothesis testing first considered
by Chernoff in 1959, where a randomized test was proposed
and shown to be asymptotically optimal. For the special case
considered in this paper, we show that a simple deterministic test
achieves asymptotic optimality and offers better performance in
the finite regime.

Index Terms— Sequential detection, hypothesis testing, dy-
namic search.

I. INTRODUCTION

We consider the problem of detecting a single anomalous
process among M processes. Borrowing terminologies from
target search, we refer to these processes as cells and the
anomalous process as the target which can locate in any of
the M cells. The decision maker is allowed to search the
target over K cells at a time (1 ≤ K ≤ M ). The observations
from searching a cell are realizations drawn from two different
distributions f or g, depending on whether the target is absent
or present. The objective is a sequential search strategy that
dynamically determines which cells should be searched at each
time and when to terminate the search so that the expected
detection time is minimized under a constraint on the error
probability.

The problem under study applies to intrusion detection in
cyber-systems in cases where an intrusion to a subnet has
been detected and the probability of each component being
compromised is small (thus with high probability, there is only
one abnormal component). It also finds applications in target
search, fraud detection, and spectrum scanning in cognitive
radio networks.

A. A Case of Active Hypothesis Testing

The above anomaly detection problem can be considered as
a special case of the sequential design of experiments problem
first studied by Chernoff in 1959 [1], in which the decision
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maker chooses and dynamically changes the experiment (thus
the observation model) among a set of available experiments.
Chernoff focused on the case of binary hypotheses and showed
that a randomized strategy (referred to as the Chernoff test)
is asymptotically optimal as the maximum error probability
diminishes. Specifically, the Chernoff test chooses the cur-
rent experiment based on a distribution that depends on the
past actions and observations. Variations and extensions of
the problem and the Chernoff test were studied in [2]–[5],
where the problem was referred to as controlled sensing for
hypothesis testing in [3], [4] and active hypothesis testing in
[5] (see Sec. I-C for a more detailed discussion on [3]–[5]).

It is not difficult to see that the quickest anomaly detection
problem considered in this paper is a special case of the active
hypothesis testing problem considered in [1]–[5]. In particular,
under each hypothesis that the target is located in the ith

(i = 1, 2, . . . ,M ) cell, the distribution (either f or g) of the
next observation depends on the action of which cell to search
(i.e., which experiment to carry out). The Chernoff test (with
the extension proposed in [3], [4] to allow indistinguishable
hypotheses under some but not all available experiments) thus
directly applies to our problem. However, in contrast to the
randomized nature of the Chernoff test, we show in this paper
that a simple deterministic test achieves asymptotic optimality
and offers better performance in the finite regime.

B. Main Results

Similar to [1]–[5], we focus on asymptotically optimal
policies in terms of minimizing the detection time as the error
probability approaches zero. A Bayesian approach is adopted,
assigning a cost of c per observation and a loss of 1 for wrong
decisions. Differing from the randomized Chernoff test, we
propose a deterministic closed-loop selection rule wherein the
selected cells are determined (and are not drawn randomly) by
the past observations and actions. Specifically, the selection
rule ϕ(n) which indicates which K cells should be observed
at time n is given by:



ϕ(n) =



(
m(1)(n),m(2)(n), ...,m(K)(n)

)
,

if D(g||f) ≥ D(f ||g)
(M−1) or K = M(

m(2)(n),m(3)(n), ...,m(K+1)(n)
)

,

if D(g||f) < D(f ||g)
(M−1) and K < M

where m(i)(n) denotes the cell index with the ith highest sum
of log-likelihood ratio collected from the cell up to time n,
and D(·||·) is the Kullback-Liebler (KL) divergence between
two distributions.

It is shown that the proposed policy is asymptotically opti-
mal in terms of achieving the lower bound on the Bayes risk
as c approaches zero. Furthermore, it is simple to implement
and achieves significant performance gain over the Chernoff
test as illustrated via simulations.

C. Related Work

As discussed in Sec. I-A, the above anomaly detection
problem can be considered as a special case of an active
hypothesis testing first studied by Chernoff [1]. Chernoff
focused on the case of sequential binary composite hypothesis
testing and showed the asymptotic optimality of the Chernoff
test. Extensions to M-ary hypotheses (where M is fixed) were
done in [2]–[4]. Specifically, by applying the Chernoff test,
the action u at time n is drawn from a distribution q(u) that
depends on the past actions and observations:

q(u) = arg max
q(u)

min
j∈M\{î(n)}

∑
u

q(u)D(pu
î(n)

||puj ) ,

where M is the set of the M hypotheses, î(n) is the ML
estimate of the hypothesis at time n, and puj is the observation
distribution under hypothesis j when action u is taken. The
original Chernoff test proposed in [1] (and the extended test
in [2]) requires that under any action, any pair of hypotheses
are distinguishable (i.e., has positive KL divergence). In [3],
[4], an extended Chernoff test was proposed to allow zero KL
divergence between hypotheses under some but not all actions.
In [5], the problem was studied under a non-zero information
rate, where the number of hypotheses approaches infinity.

Optimal solutions for the sequential target search problem
were studied in [6]–[9] for some special cases. Optimal
policies were derived for the problem of quickest search over
Weiner processes under the model that a single process is
observed at a time [6]–[8]. It was shown in [6], [7] that
the optimal policy is to select the process with the highest
posterior probability of being the target at each given time.
In [8], a simple SPRT-based solution was derived, which is
equivalent to the optimal policy in the case of searching over
Weiner processes. However, the optimal policy for general
distributions or when multiple processes are observed at a
time remained an open question. In this paper we address these
questions under the asymptotic regime, as the error probability
approaches zero.

Another related problem is the whereabouts search, which
is often considered under the setting of fixed sample size
as in [10]–[13]. In [10], [11], [13], searching in a specific

location provides a binary-valued measurement regarding the
presence or absent of the target. In [12], Castanon considered
the dynamic search problem under continuous observations:
the observations from a location without the target and with
the target have distributions f and g, respectively. The optimal
policy was established under a symmetry assumption that
f(x) = g(b− x) for some b. The problem of universal outlier
hypothesis testing was studied in [14]. Under this setting, a
vector of observations containing coordinates with an outlier
distribution is observed at each given time. The goal is to
detect the coordinates with the outlier distribution based on a
sequence of n independent and identically distributed (i.i.d)
vectors of observations.

Differing from the search problem, sequential detection
involving independent processes have been considered in [15]–
[22]. In [15], [16], the problem of quickly detecting an idle
period over multiple independent ON/OFF processes was
considered. An optimal threshold policy was derived in [16].
In [17], the problem of quickest detection of idle channels
over K independent channels with fixed idle/busy state was
studied. It was shown that the optimal policy is to carry out
an independent SPRT over each channel, irrespective of the
testing order. In [18], [19], optimal index probing strategies
were derived for the anomaly localization problem, where
the objective is to minimize the expected cost incurred by
the abnormal sequences. In [20], the problem of identifying
the first abnormal sequence among an infinite number of
i.i.d sequences was considered. An optimal cumulative sum
(CUSUM) test was established under this setting. Further
studies on this model can be found in [21], [22].

II. PROBLEM FORMULATION

Consider the following anomaly detection problem. A de-
cision maker is required to detect the location of a single
anomalous object (referred as a target) located in one of M
cells. If the target is in cell m, we say that hypothesis Hm

is true. The a priori probability that Hm is true is denoted
by πm, where

∑M
m=1 πm = 1. To avoid trivial solutions, it is

assumed that 0 < πm < 1 for all m.
At each time, only K (1 ≤ K ≤ M ) cells can be observed.

When cell m is observed at time n, an observation (or a vector
of observations) ym(n) is independently drawn from a distri-
bution fm(y) in a one-at-a-time manner. If hypothesis m is
false, ym(n) follows distribution fm(y) = f(y); if hypothesis
m is true, ym(n) follows distribution fm(y) = g(y). Let Pm

be the probability measure, corresponding to distribution fm
and Em be the operator of expectation with respect to the
measure Pm.

We define the stopping rule τ as the time when the decision
maker finalizes the search (i.e., delay) by declaring the location
of the target. Let δ ∈ {1, 2, ...,M} be a decision rule, where
δ = m if the decision maker declares that Hm is true. Let
ϕ(n) ∈ {1, 2, ...,M}K be a selection rule indicates which K
cells are chosen to be observed at time n. The time series vec-
tor of selection rules is denoted by ϕ = (ϕ(n), n = 1, 2, ...).
Let y(t) =

{
ϕ(i),yϕ(i)

}t

i=1
be the set of all the available



observations and the cell indices up to time t. A selection rule
is a mapping from y(t− 1) to {1, 2, ...,M}K .

Definition 1: An admissible strategy Γ for the sequential
search problem is given by the tuple Γ = (τ, δ,ϕ).

Let Pe(Γ) =
∑M

m=1 πmαm(Γ) be the probability of er-
ror, achieved by Γ, where αm(Γ) = Pm(δ ̸= m|Γ) is
the probability to decide δ ̸= m when Hm is true. Let
E(τ |Γ) =

∑M
m=1 πmEm(τ |Γ) be the average delay, achieved

by Γ.
We adopt a Bayesian approach, as was done in [1], [3], by

assigning a cost of c for each observation and a loss of 1 for
wrong decisions and 0 otherwise. The Bayes risk under Pm,
achieved by policy Γ, is defined by:

Rm(Γ) , αm(Γ) + cEm(τ |Γ) . (1)

Note that c represents the ratio of the sampling cost to the
cost due to wrong decisions.
The average Bayes risk is given by:

R(Γ) =
M∑

m=1

πmRm(Γ) = Pe(Γ) + cE(τ |Γ) . (2)

The problem is to find a strategy Γ that minimizes the Bayes
risk R(Γ):

inf
Γ

R(Γ) . (3)

III. AN ASYMPTOTICALLY OPTIMAL DETERMINISTIC
INDEX POLICY

In this section we propose a deterministic index policy to
solve (3). In subsequent sections we show that the proposed
policy is asymptotically optimal in terms of minimizing the
Bayes risk (2) as c → 0.

Let 1m(n) be the indicator function, where 1m(n) = 1 if
cell m is observed at time n, and 1m(n) = 0 otherwise. Let

ℓm(n) , 1m(n) log
g(ym(n))

f(ym(n))
, (4)

and

Sm(n) ,
n∑

i=1

ℓm(i) (5)

be the observed log-likelihood ratio (LLR) at time n and the
sum of the observed LLRs up to time n of cell m, respectively.
Let

∆Sm,j(n) , Sm(n)− Sj(n) , (6)

be the difference between the the observed sum of LLRs of
cells m and j.
We further define

∆Sm(n) , min
j ̸=m

∆Sm,j , (7)

and
∆S(n) , max

m
∆Sm(n) . (8)

The following recursive formula for m(i)(n) describes the
index of the cell with the ith highest sum of LLRs:

m(1)(n) , arg max
m

Sm(n) ,

m(i)(n) , arg max
m̸∈{m(r)(n)}i−1

r=1

Sm(n) , i = 2, ...,M .

(9)

A. The policy

At each time n, the proposed policy applies a simple
deterministic index selection rule, where the observed cells
are determined according to their indices Sj(n). Specifically,
the selection rule is given by:

ϕ(n) =



(
m(1)(n),m(2)(n), ...,m(K)(n)

)
,

if D(g||f) ≥ D(f ||g)
(M−1) or K = M(

m(2)(n),m(3)(n), ...,m(K+1)(n)
)

,

if D(g||f) < D(f ||g)
(M−1) and K < M

,

(10)
where the KL divergences D(g||f) > 0, D(f ||g) > 0 are
assumed to be strictly positive (otherwise, the error probability
does not approach zero).
The stopping rule and terminal decision rule are given by:

τ = inf {n : ∆S(n) ≥ − log c} , (11)

and

δ = m(1)(τ) . (12)

B. Performance Analysis

In this section we analyze the asymptotic performance of
the proposed deterministic index policy as c → 0. Define

I∗(M,K) ,

D(g||f) +D(f ||g) , if K = M

max

[
KD(f ||g)
M − 1

, D(g||f) + (K − 1)D(f ||g)
M − 1

]
,

if K < M

(13)
The following theorem shows that the proposed policy is
asymptotically optimal in terms of minimizing the Bayes risk
as c approaches zero:

Theorem 1: Let R∗ and R(Γ) be the Bayes risks, achieved
by the proposed deterministic index policy and any other
policy Γ, respectively. Then,

R∗ ∼ −c log c

I∗(M,K)
∼ inf

Γ
R(Γ) as c → 0 . (14)

The proof is given in the extended version of this paper [23].



C. Comparison to Chernoff’s Test

As discussed in Section I-A, the search problem can be
considered as a special case of an active hypothesis testing
studied in [1]–[5], and the Chernoff test and its variations
considered in [1]–[5] directly apply. Specifically, the Chernoff
test when applied to the anomaly detection problem with
K = 1 works as follows: select cell ϕ(n) = m(1)(n) if
D(g||f) ≥ D(f ||g)/(M−1) (as the proposed deterministic in-
dex policy does) or to draw ϕ(n) = m(j)(n) for j ̸= m(1)(n)
from a uniform distribution (with probability 1/(M − 1) for
each cell) if D(g||f) < D(f ||g)/(M − 1). On the other
hand, the proposed deterministic index policy surely selects
ϕ(n) = m(2)(n) if D(g||f) < D(f ||g)/(M − 1).

IV. NUMERICAL EXAMPLES

In this section we present numerical examples to illustrate
the performance of the proposed deterministic index policy.
We simulated a single anomalous object (i.e., target) located
in one of M cells with the following parameters: The a priori
probability that the target is present in cell m was set to πm =
1/M for all 1 ≤ i ≤ M . When cell m is observed at time n, an
observation ym(n) is independently drawn from a distribution
f ∼ exp(λf ) or g ∼ exp(λg), depending on whether the target
is absent or present, respectively. It can be verified that:

D(g||f) = log(λg)− log(λf ) +
λf

λg
− 1

D(f ||g) = log(λf )− log(λg) +
λg

λf
− 1 .

We compared two schemes: 1) The proposed deterministic
index policy; 2) The Chernoff test as discussed in Sec. III-C.
We consider the case where M = 5 and K = 1. Note that
the proposed deterministic index policy and the Chernoff test
select cell m(1)(n) only if D(g||f) ≥ D(f ||g)/(M − 1).
Otherwise, the proposed policy selects cell m(2)(n), while the
Chernoff test selects a cell j ̸= m(1)(n) randomly at each
given time n. We expect both schemes to approach the asymp-
totic lower bound as c → 0. First, we set λf = 2, λg = 10. In
this case D(g||f) ≈ 0.8, D(f ||g)/(M − 1) ≈ 0.6. As a result,
both algorithms select cell m(1)(n) at each given time n. The
performance of the algorithms (which perform the same in
this case) are presented in Fig. 1(a), 1(b). In Fig. 1(a), the
asymptotic lower bound on the expected sample size and the
average sample sizes achieved by the algorithms are presented
as a function of the cost per observation c (log-scale). In Fig.
1(b), the asymptotic lower bound on the Bayes risk and the
average Bayes risks achieved by the algorithms are presented
as a function of c. It can be seen that the performance of the
algorithms approach the lower bounds as c → 0.

Next, we set λf = 0.5, λg = 10. In this case D(g||f) ≈
2.05, D(f ||g)/(M − 1) ≈ 4. As a result, the Chernoff test
and the proposed policy have different cell selection rules.
The performance of the Algorithms are presented in Fig.
2(a), 2(b). In Fig. 2(a), the asymptotic lower bound on the
expected sample size and the average sample sizes achieved
by the algorithms are presented as a function of c. In Fig.
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(a) Average sample sizes achieved by the algorithms and
the asymptotic lower bound as a function of the cost per
observation.
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(b) Average Bayes risk achieved by the algorithms and the
asymptotic lower bound as a function of the cost per obser-
vation.

Fig. 1. Algorithms’ performance for M = 5, K = 1, λf = 2, λg = 10

2(b), the asymptotic lower bound on the Bayes risk and the
average Bayes risks achieved by the algorithms are presented
as a function of c. It can be seen that the proposed policy
significantly outperforms the Chernoff test in the finite regime.
These results demonstrate the advantage of using a determin-
istic closed-loop selection rule applied by the proposed policy
instead of randomization for the sequential search problem.

V. CONCLUSION

The problem of sequential detection of a single anomalous
object located in one of M cells was investigated. Due to
resource constraints, only a subset of the cells can be observed
at a time, The objective is a search strategy that minimizes
the expected detection time subject to an error probability
constraint. The observations from searching a cell are realiza-
tions drawn from two different distributions f, g, depending on
whether the target is absent or present. A simple deterministic
index policy was established to solve the Bayesian formulation
of the search problem, where a cost of c per observation and
a loss of 1 for wrong decisions are assigned. It was shown
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(a) Average sample sizes achieved by the algorithms and
the asymptotic lower bound as a function of the cost per
observation.
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(b) Average Bayes risk achieved by the algorithms and the
asymptotic lower bound as a function of the cost per obser-
vation.

Fig. 2. Algorithms’ performance for M = 5, K = 1, λf = 0.5, λg = 10

that the proposed policy is asymptotically optimal in terms of
minimizing the Bayes risk as c approaches zero. Simulation
results show significant performance gain of the proposed
policy over existing methods.
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