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Abstract—Network coding-based link failure recovery tech-
niques provide near-hitless recovery and offer high capacity
efficiency. In this paper, we propose a simple column generation-
based design algorithm and a novel advanced diversity (net-
work) coding technique to achieve near-hitless recovery in large
networks. The main problem is solved with Linear Program-
ming (LP) and Integer Linear Programming (ILP), whereas the
subproblem can be solved with different methods. Simulation
results suggest that both the novel coding structure and the novel
design algorithm lead to higher capacity efficiency for near-hitless
recovery. The novel design algorithm simplifies the capacity
placement problem which enables implementing diversity coding-
based techniques in large networks with arbitrary topology.

I. INTRODUCTION

The protection of the data in wide area networks is very
important since the network failures, which happen regularly,
pose social, economical, and security threats. A breakdown
of the network failure statistics can be found in [1]. In this
paper, we focus on single link failure recovery, which makes
up to 70% of all network failures [2]. Various protection and
recovery techniques are developed to minimize the costs of
such failures, each offering a tradeoff in terms of different re-
covery metrics. The two main recovery metrics are restoration
speed and capacity efficiency. Capacity efficiency is calculated
by the total required capacity, in fiber miles, to route and
protect the data streams. Restoration speed is measured by
the total outage duration between the instant of failure and
the restoration of failed traffic. Capacity efficiency has a pre-
failure cost, whereas restoration speed has a post-failure cost.
The goal is to minimize both of these costs.

Recovery techniques differ from each other depending on if
they dedicate the spare resources to single demands or share
them among different failure scenarios and traffic demands.
The biggest advantage of dedicated recovery techniques is the
near-hitless recovery without signaling and rerouting opera-
tions. 1+1 Automatic Protection Switching (APS) has two link-
disjoint dedicated paths for each connection demand and those
paths are employed to transmit the same data to the destination
node [3]. The destination node switches to the protection path
and restores the traffic nearly instantaneously in the case of
a link failure over the primary path. However, 1+1 APS is
capacity-inefficient since it requires more than 100% capacity.
In [4], it is cited that 1+1 APS is currently employed in
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today’s networks despite its low capacity efficiency, which is
an indication of the need for nearly instantaneous link failure
recovery.

Coding-based recovery techniques emerged to improve the
capacity efficiency of dedicated protection techniques. In a
coding-based recovery technique, the dedicated protection
paths share the spare resources by coding operations, in par-
ticular, erasure coding [5], [6]. The first coding-based recovery
technique is called diversity coding. This technique has two
advantages. First, like 1+1 APS, it offers nearly instantaneous
recovery. Second, like rerouting-based restoration schemes, it
is capacity-efficient. The first works of diversity coding [5], [6]
predate network coding, usually considered to be introduced
in [7].

In [8], a heuristic algorithm is developed to implement
diversity coding over arbitrary networks. In [1], optimal al-
gorithms for the diversity coding technique are developed. It
is shown that diversity coding can offer competitive capacity
efficiency while providing near-hitless recovery. In [9], a
coding-based solution named Coded Path Protection (CPP) is
developed by converting a solution of Shared Path Protection
[10]. In CPP, sharing of the spare resources is replaced with
the employment of these resources to code different paths,
which results in higher restoration speed, higher transmission
integrity, and lower error signaling complexity. The bidirec-
tional nature of CPP allows encoding and decoding inside the
network for unicast demands.

In [11] and [12], network coding-based protection schemes,
similar to diversity coding, are proposed in which coding
operations are carried out over trees and trails, respectively.
These schemes are called 1+N protection and differ from di-
versity coding due to their bidirectional nature. In [13], the cost
efficiencies of a network coding-based recovery technique and
a simpler version of diversity coding technique are evaluated.

The coding-based techniques mentioned above have certain
assumptions to make them easier to implement. First, in
systematic coding, primary paths are exempt from coding
operations. Second, in these techniques, coding operations are
bound to specific topologies. Third, these protection schemes
require strict link-disjointness between each primary path and
the protection paths. However, those assumptions restrict their
capacity efficiencies. In [4], an argument that 1+N coding
requires high nodal degree, which reduces its efficiency on
sparse topologies, was made.



Nonsystematic coding, where both primary and protection
paths are incorporated into coding operations, is implemented
in wireless mesh networks for single link failure recovery
in [14]. In [15], nonsystematic diversity coding is imple-
mented using a heuristic algorithm for static provisioning.
The connection demands are added to the existing coding
groups one by one ensuring the decodability of the coding
structures. A coding group is a set of connection demands
that are coded and protected together. In [15], it is shown
that nonsystematic diversity coding has more coding flexibility
than conventional diversity coding resulting in higher capacity
efficiency. In [16], a general network-coding based approach is
presented which employs nonsystematic coding and does not
explicitly require link-disjointness between primary paths and
protection paths. However, this approach can protect at most
two connection demands in restricted specific topologies. In
[17], the restriction over the number of protected connection
demands is removed for bidirectional networks.

Due to high design complexity limitations, the coding-based
recovery techniques in the literature, such as [11], [16], [17],
fail to offer solutions in large realistic networks even though
they have potential in terms of capacity efficiency and restora-
tion time. These techniques are tested on relatively small
networks and with relatively few traffic demands compared
to the long-distance networks of the U.S. and France, to be
discussed in the sequel. In [18], a novel two step approach
is presented to cope with high design complexity in realistic
networks. The first step of this algorithm is the pre-processing
phase in which all candidate coding groups are calculated
and enumerated. In the second step, some of those candidate
coding groups are selected and placed on the networks to meet
the traffic demand. This approach overcomes the complexity
incurred by the size of the traffic matrix. However, the number
of coding groups is exponentially dependent on the network
size and the nodal degree of the destination node.

This paper contributes to the field of diversity coding-
based (or network coding-based) link failure recovery in
two novel ways. First, we introduce an optimal, simple, and
modular design algorithm that provisions the static traffic
in large arbitrary networks. The design algorithm uses the
column generation technique which does not require explicit
enumeration of the coding groups. It starts the problem with
a small set of coding groups and creates new coding groups
when they are needed. The underlying coding structure of this
algorithm is arbitrary as long as the destination nodes of the
connections are the same, which offers a solution for different
techniques under the same framework. Second, we improve
the coding structure of simple diversity coding by offering
a technique we call coherent diversity coding. This coding
structure is implemented using an Integer Linear Programming
(ILP) formulation. In a coherent diversity coding structure, we
implement a more relaxed link-disjointness criterion between
the paths in a coding group. This enables one to form coding
groups with higher flexibility and bigger size. The decodability
is preserved while the high nodal degree requirement is
mitigated. Moreover, coherent diversity coding incorporates
nonsystematic coding.

In this paper, the performance of the new proposed coding
technique and the column generation-based design algorithm

are investigated compared to conventional (systematic or non-
systematic) diversity coding and p-cycle protection [3]. The
simplicity of the new design algorithm is also tested based
on a set of simulations over the relatively large long-distance
networks of the U.S. and France.

II. COLUMN GENERATION METHOD

The column generation method is an effective technique to
solve relatively large linear programming (LP) formulations
without explicitly enumerating all possible variables [19]. In
some problems, only a small subset of the variables are
nonzero in the final solution. In those problems, column gen-
eration starts with a small set of variables and creates new and
useful variables (columns) which will be likely employed in
the final solution. In general, column generation dramatically
decreases the time and space complexity depending on the
nature of the problem. In the network-coding based link failure
recovery problem, we have observed that column generation
technique results in significant time and memory savings, and
therefore it enables the optimal implementation of efficient
network coding-based techniques over large realistic networks.

Column generation has been used for different LP problems,
including the well-known cutting stock problem [19]. The
cutting stock problem is to satisfy paper demand of different
widths by cutting fixed width rolls in different patterns. The
goal is to use a minimum number of rolls. The problem
starts with a small set of basic cutting patterns. The useful
cutting patterns are generated one-by-one. We observed that
the diversity coding-based link failure recovery problem is
very similar to the cutting stock problem. Diversity coding
over networks can be implemented like the cutting stock
problem as long as the cutting patterns are replaced by coding
groups and the demands for different widths of paper are
replaced with the traffic demands of a single destination
node. The only difference is the fact that coding groups can
have different costs, whereas in the cutting stock problem,
each cutting pattern is cut from rolls with the same total
width. Other advanced methods developed for the cutting stock
problem, such as extended Dantzig-Wolfe decomposition [19],
can also be applied to the implementation of diversity coding.

The column generation technique is also applied to the
p-cycle protection [20] and SPP [21] problems resulting in
significant time and memory savings. It is a better fit to
diversity coding technique than p-cycle protection and SPP
since, in diversity coding, there is a single subproblem that
generates coding groups. However, in p-cycle protection, there
is a subproblem for both generating p-cycles and generating
candidate paths for each connection demand. Likewise, in SPP,
there is a different subproblem for generating candidate path
pairs for each connection demand.

The column generation method for diversity coding is
visualized in Fig. 1. There are two main components of this
method. The main problem, which is also called the Coding
Groups Placement Problem, inputs the traffic demands and a
subset of the basic coding groups. This set includes coding
groups consisting of a single connection demand originating
from each source node to the destination node. The main
problem in this step is an LP formulation that finds the optimal
coding group combinations to meet the traffic demands. After
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Fig. 1. Steps in the column generation method.

the first run, it passes the dual variables of the solution to
the subproblem. The subproblem, which is also called the
Coding Group Generation Problem, attempts to find a new
useful coding group. The subproblem generates a reduced cost.
A new useful coding group has a negative reduced cost given
the dual variables of the main problem. The new useful coding
group is input to the main problem iteratively. In the next
round, optimal coding group combinations are found given
the expanded coding group set. The dual variables of this run
are input to the subproblem as before. This iterative operation
is carried out until the subproblem cannot find any new coding
group with a negative reduced cost. The main problem is then
solved one last time as an ILP. The gap between ILP and LP
solutions of the main problem is generally very small, as will
be discussed in Section IV.

A. Example 1

As an example, assume there are 2 connection demands
from S1 and S2 to D. Each has a unit traffic demand. The cost
of coding groups that protect only S1 −D and only S2 −D
are 10 and 7, respectively. The coding groups combination
problem employs one of each coding group to satisfy the traffic
demands at a total cost of 17. The values of the dual variables
of this solution are input to the subproblem. The subproblem
finds a coding group solution with a negative reduced cost -
3, which means the new coding group will be useful in the
main problem. It returns the new coding group consisting of
both S1 − D and S2 − D at a total cost of 15. The main
problem is run one more time and decreases the total cost
from 17 to 15 since it employs only the new coding group
created by the subproblem. Note that the negative reduced
cost of the subproblem is not linearly related to the decrease
of the total cost in the main problem. The dual variables of the
new solution of the main problem are input to the subproblem
again. This time, the subproblem cannot find any coding group
solution with a negative reduced cost, which indicates that the
optimal result has been achieved.

III. ILP FORMULATIONS

In this section, we present the algorithms that realize the
main problem and the subproblem. The main problem finds
the optimal combination of coding groups out of a given set
and places them on the network to meet the traffic demands.

Throughout the iterative process, the main problem is realized
with an LP formulation, whereas in the last step, the formula-
tion is converted to an ILP since in the final solution coding
groups must be replaced in integer numbers. On the other
hand, the realization of the subproblem is not unique. The
coding group generation algorithm depends on the adopted
coding structure. In addition, the way new coding groups are
generated can be realized by heuristic techniques, which does
not violate the optimality of the whole algorithm. In this
section, we present three different coding group generation
algorithms using mixed integer programming (MIP) or ILP
formulations.

A. Main Problem (Coding Groups Placement Problem)
An LP formulation is developed to implement the coding

groups placement algorithm, which serves the main problem
of the column generation method. The goal is to place the
coding groups with minimum total cost while meeting the
traffic demands. The input parameters of the LP are

• CG : The set of coding groups, this set is expanded at
each iteration,

• V : The set of nodes,
• tf : The traffic demand from source node f to destination

node d,
• costi : The cost of coding group i,
• CGi,f : The number of connections originating from

node f in coding group i.
The variables related to the coding groups placement problem
are

• n(i) : Keeps the number instances of coding group i
placed on the network, normally a continuous variable.

The variables n(i) are continuous when the main problem is
LP. They are converted to integer variables at the final ILP
step of column generation.

The objective function is

min
∑
i∈CG

costi × n(i). (1)

The following inequalities ensure a sufficient number of cod-
ing groups are placed to protect all of the traffic demands∑

i∈CG

CGi,f × n(i) ≥ tf ∀f ∈ V, f ̸= d. (2)

A flow diagram of the column generation method in terms of
the parameters and variables of the LP formulations is shown
in Fig. 2, where πf are the dual variables of the constraints in
2. The traffic demand parameters tf and an initial basic coding
group set CGinitial are input to the main problem. After the
first run, the main problem inputs the resulting dual values
of the constraints to the subproblem. The subproblem returns
a new coding group with negative reduced cost, if available.
The iterative process terminates when the subproblem cannot
produce any more new coding groups with reduced cost. Then
the variables n(i) are converted to integer variables and ILP
is run at the last step to get the final solution.

B. Subproblem (Coding Group Generation Problem)
The objective of the subproblem is to find a new coding

group in each iteration that will be useful in the main problem.

3



��������	
������ ��	���	
��

��������	
�������

ft

initialCG

fπ

newCGCGCG ∪=

+∈ Rin )(

+∈ Zin )( ����
���
�����

CG ft newCG

Fig. 2. Steps in the column generation method in terms of LP and ILP
variables.

The subproblem inputs the dual variables of the main problem
and returns a new coding group. A new coding group can be
selected among many which have negative reduced costs. In
this paper, we opt to search for a new coding group with
the minimum negative reduced cost until there is none. We
present three different coding group generation algorithms,
each implementing a different version of diversity coding.
These versions have the tradeoff of simplicity versus capacity
efficiency. In the following subsections, they are presented in
increasing order of capacity efficiency and design complexity.

1) Systematic Diversity Coding: In this algorithm, we adopt
systematic diversity coding where only protection paths are
encoded. The core algorithm is adopted from the diversity
coding tree algorithm in [22]. In a coding group, there is a
primary tree serving as the union of the primary paths of the
protected connections. There is also a link-disjoint protection
tree whose branches originate from the source nodes of the
protected connections. Those branches merge when they come
together until they reach at the destination node. An example
is taken from [22] and is shown in Fig. 3(a). There are three
connection demands originating from S1, S2, and S3 going
to node D. The solid black lines represent the primary tree
whereas dashed lines represent the protection tree.

The input parameters required in the MIP formulation of
the coding group generation algorithm based on systematic
diversity coding are

• G(V,E) : Network graph,
• S : The set of spans in the network, a span consists of

two links in the opposite directions,
• ae : Cost associated with link e,
• Γi(f) : The set of incoming links of each node f ,
• Γo(f) : The set of outgoing links of each node f ,
• d : The common destination node,
• ND : The nodal degree of the destination node d,
• α : A constant employed in the algorithm where 1

|V | ≥
α ≥ 0,

• β : A constant employed in the algorithm, β ≥ 2 ×
max(|V |,maxi(NDi)),

• πf : The values of the dual variables of the main problem.
The set of variables of this MIP formulation are

• CGnew
f : Integer variable, equals to the number of
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Fig. 3. (a) An example of the systematic diversity coding tree structure. There
are three link-disjoint primary paths spanned by the primary tree and there
is a link-disjoint protection tree, (b) An example of nonsystematic diversity
coding structure for the same set of connections.

connections originating from node f in the new coding
group,

• de ∈ {0, 1} : Integer variable, equals 1 iff the primary
tree of the new coding group passes through link e,

• ce ∈ {0, 1} : Integer variable, equals 1 iff the protection
tree of the new coding group passes through link e,

• pf : A continuous variable between 0 and 1. It keeps the
“voltage” value of node f [22] in the protection tree of
the new coding group,

• gf : Same description as pf except it is used for the
primary tree of the new coding group.

The objective function minimizes the reduced cost of a new
coding group

min
∑
e∈E

(de + ce)× ae −
∑
f∈V

CGnew
f × πf . (3)

If the value of the objective function comes out to be negative,
then a new coding group is found and input to the main
problem. ∑

f∈V

CGnew
f ≤ ND − 1, (4)

4



∑
e∈Γo(f)

de = CGnew
f +

∑
e∈Γi(f)

de ∀f ∈ V, f ̸= d, (5)

∑
e∈Γi(d)

de =
∑
f∈V

CGnew
f , (6)

∑
e∈Γo(d)

de + ce = 0, (7)

∑
e∈Γo(f)

ce ≥
CGnew

f

β
+

∑
e∈Γi(f)

ce

β
∀f ∈ V, f ̸= d. (8)

∑
e∈Γi(d)

ce ≥

∑
f∈V

CGnew
f

β
, (9)

de1 + de2 + ce1 + ce2 ≤ 1 ∀e1, e2 ∈ g, ∀g ∈ S, (10)

gf − gf ≥ α · de − (1− de) ∀e ∈ E, (11)

pf − pf ≥ α · ce − (1− ce) ∀e ∈ E. (12)

Inequality (4) ensures that the size of the new coding group
does not exceed ND − 1. Equation (5) carries out the
origination and continuation of the primary tree, whereas
equation (6) and equation (7) carry out the termination of the
primary tree. Inequality (8) is responsible for the origination
and continuation of the protection tree, whereas inequality
(9) and equation (7) are responsible for the termination of
the protection tree. Inequality (10) makes sure that primary
and protection trees are link-disjoint. Inequalities (11) and
(12) assign voltage values to nodes to prevent getting cyclic
structures in primary and protection trees, respectively.

2) Nonsystematic Diversity Coding: In this section, the
coding groups are generated based on a more generic coding
structure where both primary and protection paths can be
encoded. We refer to Lemma 1 from [14] while building valid
nonsystematic diversity coding. This coding structure increases
the capacity efficiency of systematic diversity coding with
extra design complexity. An example is shown in Fig. 3(b).
Different from systematic diversity coding, the primary paths
of S1 − D and S2 − D are encoded. The core algorithm to
generate new coding groups in the column generation method
is an ILP formulation taken from [22] with small changes.
Reference [22] presents how to optimally build nonsystematic
diversity coding structures. The algorithm in [22] looks for
every possible coding scenario by eliminating the invalid cases
that can be identified as coding cycles. The ILP formulation of
the nonsystematic diversity coding group generation algorithm
has a set of binary integer variables taking values from the set
{0, 1}

• xe(i) : Equals 1 iff the path i passes through link e,
• n(i, s) : Equals 1 iff path i is in subgroup s,
• m(i, j) : Equals 1 iff path i and path j are in the same

subgroup so are coded together,

• r(i, f) : Equals 1 iff path i and connection demand f are
indirectly related,

• te(s) : Equals 1 iff one of the paths in subgroup s
traverses over link e,

• σf,i : Equals 1 iff node f is the source node of demand
i.

The objective function is

min
∑
e∈E

2N∑
s=1

te(s)× ae −
∑
f∈V

CGnew
f × πf . (13)

The constraints are∑
f∈V

σf,i ≤ 1, 1 ≤ i ≤ ND − 1, (14)

CGnew
f =

ND−1∑
i=1

σf,i ∀f ∈ V, f ̸= d, (15)

∑
f∈V

ND−1∑
i=1

σf,i ≤ ND − 1 (16)

∑
e∈Γi(f)

xe(j)−
∑

e∈Γo(f)

xe(j) =

{
−σf,i if v ̸= d,∑

σf,i if v = d,

j = 2i, j = 2i− 1. (17)
2(ND−1)∑

s=1

n(i, s) = 1, 1 ≤ i ≤ 2(ND − 1), (18)

n(i, s) + n(i− 1, s) ≤ 1,

1 ≤ i, s ≤ 2(ND − 1) : mod(i, 2) = 0, (19)

te(s) ≥ xe(i) + n(i, s)− 1 ∀e, i, s (20)

te(s1) + te(s2) + tk(s1) + tk(s2) ≤ 1

∀e, k ∈ g, ∀g ∈ S, ∀s1, s2 (21)

m(i, j) ≥ n(i, s) + n(j, s)− 1 ∀i ̸= j, s. (22)

r(i, f) ≥ m(i, j) +m(j∗, 2f) +m(j∗, 2f − 1)

−m(i, 2f)−m(i, 2f − 1)− 1 ∀i, j, f, : i ̸= j (23)

such that j∗ = j − 1 if mod(j, 2) = 0 and j∗ = j + 1
otherwise.

r(i, f) ≥ r(i, g) +m(2g, 2f) +m(2g, 2f − 1)

+m(2g − 1, 2f) +m(2g − 1, 2f − 1)− 1 ∀i, f ̸= g :

i ̸= 2f, i ̸= 2f − 1, i ̸= 2g, i ̸= 2g − 1. (24)

r(2f, g) + r(2f − 1, g) +m(2f, 2g) +m(2f − 1, 2g)

+m(2f, 2g − 1) +m(2f − 1, 2g − 1) ≤ 1 ∀g, f : g ̸= f, (25)

Inequality (14) ensures that each demand has at most one
source node. Some connection demands may be empty. Equa-
tion (15) calculates the number of connection demands origi-
nating from each node at the new coding group. Inequality (16)
bounds the total number of connection demands in the new
coding group by the nodal degree of the destination node mi-
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nus 1. Equation (17) carries out the origination, continuation,
and termination of the paths of each connection demand. Each
connection demand has two paths in a coding group. Equation
(18) ensures that each connection demand is a part of a coding
subgroup. Inequality (19) ensures that paths belonging to the
same connection cannot be a part of the same subgroup.
Inequality (20) compiles the topologies of the subgroups
by combining the paths of the demands in that subgroup.
Inequality (21) satisfies the link-disjointness criterion between
the topologies of different subgroups. Inequality (22) says that
if two paths are in the same subgroup then they are assumed to
be coded together. In inequality (23), path i becomes indirectly
related to demand f if there exists a path j that is coded with
both path i and one of the paths carrying demand f . Moreover,
path i must not be coded with either paths of demand f . In
inequality (24), path i becomes indirectly related to demand
f if there exists a demand g that is indirectly related to path
i, and one of the paths of demand g must be coded together
with one of the paths of demand f . Inequality (25) ensures
that two different connection demands either can be indirectly
related or one of their paths are encoded together. Otherwise,
a coding cycle occurs which is a violation of the validity of
the coding structure.

3) Coherent Diversity Coding: In this section, we intro-
duce a novel coding structure that can mitigate the limiting
link-disjointness criterion to the optimal extent. It is called
Coherent Diversity Coding. This coding structure is optimal
under the conditions

• There is a single destination node,
• There are two link-disjoint paths for each connection

demand,
• The coding operations are within GF (2).

It enables one to achieve more capacity-efficient results than
conventional diversity coding. Conventional diversity coding,
systematic or nonsystematic, requires two paths to be either
coded or to be link-disjoint. This prevents applying conven-
tional diversity coding at the destination nodes with a nodal
degree of 2, even though the rest of the network is highly
connected. There is room for improvement in the capacity
efficiency of coding groups by relaxing the link-disjointness
criterion between different paths. Fig. 4 is taken from [16]
and shows how the strict link-disjointness criterion for two
connections can be relaxed in order to save capacity. The
connection demands are from node s to node t, carrying
signals p1 and p2, respectively. There is no available nontrivial
solution for conventional diversity coding on this topology
since there are only N , which is 2 in this case, number of
link-disjoint paths, less than the required N +1 (N +1 = 3),
from source to destination. Therefore, in Fig. 4(a), the solution
of conventional diversity coding is identical to that of 1+1
APS. The low nodal degree of the source node is a bottleneck
for conventional diversity coding. On the other hand, the
network-coding based technique proposed by [16] shows that
these two data signals can be coded to save capacity in
Fig. 4(b). However, the technique in [16] is nontractable for
more than two connection demands and lacks an efficient
capacity placement algorithm.

Therefore, we developed the optimal link-disjointness crite-
ria between paths in the same coding group that can mitigate
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Fig. 4. Effect of low nodal degree on coding (a) Diversity coding solution
(identical to 1+1 APS), (b) Network coding-based solution [16].

the effects of low nodal degree in the network. The coherent
diversity coding enables paths sharing the same link, even if
they are not coded together, up to the extent that decodability is
preserved. Therefore, it is both optimal and feasible. Under the
optimality conditions stated above, the necessary and sufficient
conditions of decodability are to ensure that at least one
copy of each signal is alive and any subset of k signals
resides in at least k subgroups after any single link failure.
The resulting coding structure will be decodable according to
Lemma 1 in [14]. Therefore, we build the coding structure
of coherent diversity coding such that after any single link
failure, there will be at least one copy of each signal and any
subset of k signals reside in at least k subgroups. The terms of
coherent and noncoherent paths are coined to keep the track
of link-disjointness relationship between paths. If two paths
are coherent to each other, then they can fail simultaneously,
therefore they can share the same links. Otherwise, their
simultaneous failure will impair the decodability as will be
shown with an example. The proposed technique is nearly as
simple to implement as diversity coding.

The received vector of systematic diversity coding for two
connection demands  p1

p2
p1 + p2

 (26)

where p1 and p2 are the data signals of two different connec-
tion demands. Each symbol on the received vector represents
a single path and each data signal is carried with two different
paths. The paths carrying the same signal are complementary
of each other. If two paths have to be link-disjoint, then they
are defined as noncoherent to each other. Assume the path
carrying p1 in the first subgroup and the path carrying p2 in
the third subgroup fail simultaneously, then the received vector
is  0

p2
p1 + 0

 . (27)

The destination node will still be able to decode symbols p1
and p2. It is clearly seen that conventional diversity coding
can tolerate failure of symbols in more than one subgroup.
Therefore, the path carrying p1 in the first subgroup and path
carrying p2 in the third subgroup can share some of the links.
Therefore, they are coherent to each other. Similarly, the path
carrying p2 in the second subgroup and the path carrying p1
in the third subgroup can share links. After those relaxations,
the solution in Fig. 4(b) is achieved with a modified diversity
coding approach. This approach is simpler to keep track
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Fig. 5. The process of finding the coherent and noncoherent paths to the underlined path in the second subgroup. Coherent paths are depicted in a circle
and noncoherent paths in a square.

of since there are at most 2 × N paths for N connection
demands. Intuitively, in systematic diversity coding, a path
can be link-joint with the paths that are combined with its
complementary path. However, to implement those relaxations
over nonsystematic codes with an arbitrary number of data
signals, a general strategy is needed. The set of rules that
define the general strategy are

1. A path is link-disjoint (noncoherent) with its comple-
mentary path,

2. A path is coherent with the path that is coded with its
complementary path,

3. A path is noncoherent with the complementary paths of
its coherent paths,

4. A path is coherent with the paths that are coded with its
noncoherent paths.

The logic behind these rules is to make sure that at least one
path carrying each data signal survives and any subset of k
signals are found within at least k subgroups under any single
link failure scenario. It is also important to keep the number of
nonzero subgroups greater than or equal to N under any failure
scenario. The following example visualizes how coherent and
noncoherent relationships between paths are found. A valid
nonsystematic code is 

a+ c
b

a+ e
c

b+ d+ e
d

 (28)

with five connection demands. The procedure to find the set
of coherent and noncoherent paths of the path carrying b in
the second subgroup is shown in Fig. 5. In the first step, the
complementary path of underlined b is set as a noncoherent
path in Fig. 5(a) following Rule 1. The coherent paths are
placed in a circle, whereas noncoherent paths are placed
in a square. In Fig. 5(b), paths that are combined with a
noncoherent path are set as coherent paths following Rule 2.
In Fig. 5(c) and in Fig. 5(d), the third and fourth rules of
the general strategy are applied, respectively. The process is
carried out by following Rule 3 and Rule 4 interchangeably
until those rules are no longer applicable. At the end, if there
is any nonvisited path in the coding group, it is assumed to be
coherent. In that case, the rest of the paths are set as coherent

paths to the path of interest.
For example, in Fig. 5, assume that the underlined path

carrying signal b fails simultaneously with the path carrying
signal a in the first subgroup which is noncoherent to itself.
If so, the received vector at the destination node becomes

c
a+ e
c

b+ d+ e
d

 . (29)

This vector clearly violates one of the conditions of decodabil-
ity because the set of four signals {a, e, b, d} is bounded within
only three subgroups {{a+ e}, {b+ d+ e}, {d}}. Therefore,
the resulting decoding vector is not decodable. The other
scenarios can also be checked to confirm that simultaneous
failures of noncoherent paths impair the survivability, unlike
the simultaneous failures of the coherent paths. If more than
two paths are supposed to share the same link then each pair of
paths must be coherent to each other. To find the coherent and
noncoherent set of paths of each path, this process is repeated
starting with the path of interest.

We developed an ILP formulation to generate new coding
groups based on the principles of coherent diversity coding.
The ILP formulation of this coding structure inherits all of
the variables, parameters, objective function, and constraints
of Section III-B2. The extra variables needed for this ILP
formulation are

• θ(i, j) ∈ {0, 1} : Binary variable, equals 1 iff the path i
and path j are noncoherent, in other words, they cannot
fail simultaneously.

The objective function to find a new coding group with the
most negative reduced cost is

min
∑
e∈E

2N∑
s=1

te(s)× ae −
∑
f∈V

CGnew
f × πf . (30)

The additional constraints are

θ(i, i− 1) = θ(i− 1, i) = 1 ∀i : mod(i, 2) = 0, (31)

θ(i, j) ≥ m(i∗, j∗) ∀i, j, (32)

θ(i, k) ≥ θ(i, j) +m(j, k∗)− 1 ∀i ̸= j ̸= k. (33)
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xe(i)+ xe(j)+ xe∗(i)+ xe∗(j) ≤ 2− θ(i, j) ∀i, j, e (34)

such that link e and link e∗ are links of the same span
in the opposite directions. Equation (31) makes sure that
complementary paths have to be link-disjoint with each other
according to Rule 1. Inequality (32) ensures both Rule 2 and
Rule 3 are satisfied. In addition, inequality (33) ensures that
both Rule 3 and Rule 4 are satisfied. Two paths cannot share a
link if they are noncoherent, which is guaranteed by inequality
(34).

IV. SIMULATION RESULTS

In this section, we present simulation results to investigate
the performance of the novel design algorithm and the new
coding structure differentially. The first test network is the
NSFNET network, which is depicted in Fig. 6. The numbers
next to the nodes are the index of those nodes and the
numbers next to the edges are the length of those edges.
The traffic matrix of the NSFNET network consists of 3000
random unit-sized demands, which are chosen using a realistic
gravity-based model [23]. Each node in the NSFNET network
represents a U.S. metropolitan area and their population is
proportional to the weight of each node in the connection
demand selection process. In this network, we simulated TSA
from [18], p-cycle protection [20], diversity coding tree from
[22], and the proposed CGM. CPLEX 12.2 is used for the
simulations. We also adopted different coding structures for
TSA and CGM. There are three different tables that present the
simulation results of this network. In Table I, the performance
metrics are the total cost (capacity) (TC) and the runtime.
The first technique in this table is the diversity coding tree
algorithm [22]. TSA-SDC refers to the two-step approach im-
plementing systematic diversity coding, whereas TSA-NSDC
means TSA for nonsystematic diversity coding. CGM-SDC,
CGM-NSDC, and CGM-CDC correspond to the CGM imple-
menting systematic diversity coding, nonsystematic diversity
coding, and coherent diversity coding. In our implementation,
in order to reuse previous results to save time, these three
algorithms are implemented sequentially. The coding groups
(columns) generated by CGM-SDC are inherited by CGM-
NSDC. Likewise, CGM-CDC inherits the coding groups gen-
erated by CGM-NSDC. The p-cycle algorithm is taken from
[20], which is also based on column generation.

Table I presents various trade-offs between protection tech-
niques. First of all, coding-based techniques offer near-hitless
recovery. Their restoration speed is at least two orders of
magnitude higher than that of p-cycle protection [22]. On the
other hand, p-cycle protection has higher capacity efficiency
than the tested coding-based methods. As it is seen, the
diversity coding tree algorithm has the highest complexity
which keeps it from achieving optimal results even though
it implements the same systematic diversity coding like TSA-
SDC and CGM-SDC do. The proposed CGM is more scalable
than the diversity coding tree algorithm and TSA, as seen from
the runtime column. In both TSA and CGM, nonsystematic
diversity coding is more capacity-efficient than systematic di-
versity coding. In addition, proposed coherent diversity coding
is the most capacity-efficient among coding-based methods.
However, the increase in capacity efficiency is negligible
compared to the savings in runtime. Network designers can opt

to carry out the implementations of CGM-NSDC and CGM-
CDC after the implementation of CGM-SDC. We believe that
CGM-SDC is the most efficient coding-based technique in
terms of restoration speed, capacity efficiency, and design
complexity.

The second test network is the U.S. long-distance network,
taken from [24], which is depicted in Fig. 7. The traffic matrix
is created using a gravity-based model [23]. In total, there are
23,204 static unit connection demands. This setup is chosen in
order to observe the performance of the new design algorithm
in a large realistic network with a dense traffic scenario. We
compare the performance of CGM with TSA and the p-cycle
algorithm from [20] in terms of spare capacity percentage
(SCaP) defined in [8]. The other coding-based recovery design
algorithms are too complex to implement in this setup. The
results are presented in Table II.

As seen from the results, the proposed design algorithm
can achieve optimal results with different versions of diver-
sity coding even in a large realistic network with a dense
traffic scenario. Proposed coherent diversity coding technique
performs best compared to other coding-based recovery tech-
niques at the expense of higher complexity. The increase in
capacity efficiency due to the advanced coding technique is
more significant than it is in the NSFNET network. The im-
plementation of systematic diversity coding with the proposed
CGM is highly scalable since its runtime does not increase
as much as others when the network size gets bigger. The
TSA approach is not as scalable as CGM since the number
of candidate paths in TSA increases exponentially with the
nodal degree and the number of nodes, whereas the number of
candidate paths in CGM increases linearly with the number of
nodes. The SCaP result of the new technique is better than that
of the column generation based p-cycle algorithm. It should
be noted that, p-cycle algorithm carries out Spare Capacity
Placement (SCP) [3] due to its high complexity, whereas the
proposed algorithm carries out Joint Capacity Placement (JCP)
[3]. Even with that adjustment, the proposed CGM is simpler
than the p-cycle algorithm.

The third network is the long-distance network of France
with 43 nodes and 142 unidirectional links taken from [25]. It
is depicted in Fig. 8. There are a total number of 4,518,318 unit
connection demands. The traffic scenario is created following
the same gravity-based model. The reason to select this
network is to test the performance of CGM in very large
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Fig. 6. NSFNET network.
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TABLE I
COST AND RUNTIME COMPARISON BETWEEN DIFFERENT TECHNIQUES

Protection Technique TC Runtime
Diversity Coding Tree 16410400 ≈ 6 hours
TSA-SDC 15788730 ≈ 6 minutes
TSA-NSDC 15742000 ≈ 9 minutes
CGM-SDC 15793170 ≈ 10 seconds
CGM-NSDC 15742000 ≈ 5 minutes
CGM-CDC 15674520 ≈ 1 hour
P-cycle algorithm 14814350 ≈ 3 minutes

TABLE II
COMPARATIVE PERFORMANCE OF THE NEW ALGORITHMS IN U.S. LONG-DISTANCE NETWORK

Protection Technique SCaP Runtime No. of Coding Groups
TSA-SDC 105.6% ≈ 3 hours 31464
CGM-SDC 105.6% ≈ 2 minutes 61
CGM-NSDC 105.5% ≈ 2 hours 72
CGM-CDC 102.4% ≈ 9 hours 79
P-cycle algorithm 107.0% ≈ 2.5 hours 32 (p-cycles)
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Fig. 7. U.S. long-distance network.

realistic networks. Therefore, we only simulate CGM-SDC to
investigate the runtime performance of the column generation
method without extra complexity due to the advanced coding
structure. It is compared to 1+1 APS. We also break down
the results in terms of the nodal degree of the nodes to see
the effect of the nodal degree on both capacity efficiency and
runtime. The results are presented in Table III. The runtime
of 1+1 APS is equal to 1 minute.

CGM can achieve the optimal result in such a large network
with over four million unit demands. The capacity efficiency
of CGM-SDC improves as the nodal degree increases with the
exception of nodal degree being equal to 5. It may be seen
as an exception due to the small sample size. According to
the Table III, there is a trade-off between the runtime and the
capacity improvement over 1+1 APS. When the nodal degree
increases, the SCaP improvement of CGM-SDC over 1+1 APS
increases at the expense of increased runtime of CGM-SDC
with some exceptions due to the small sample size. When the
nodal degree is equal to 2, systematic diversity coding acts the
same as 1+1 APS as we mentioned before.
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Fig. 8. Long-distance network of France.

V. CONCLUSION

In this paper, we introduced an advanced version of di-
versity coding and an optimal and simple design algorithm
to achieve near instantaneous recovery with higher capacity
efficiency. The proposed coherent diversity coding method
employs nonsystematic coding, which enables all paths to be
encoded, and relaxes the link-disjointness criterion between
paths to cope with the low nodal degree in the network. The
code is developed with the objective of minimum capacity.
The design algorithm consists of two parts, namely a main
problem and a subproblem. These two advanced techniques
combined achieve results with higher capacity efficiency in a
much shorter amount of time in relatively large networks. The
advantages of both techniques are shown with examples and
simulation results.

The new design framework is based on the column-
generation method and consists of two parts, a main problem
where the traffic demands are met with the available coding
groups and the subproblem where new useful coding groups
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TABLE III
SCAP PERFORMANCE OF THE NEW ALGORITHM WITH RESPECT TO THE NODAL DEGREE

Nodal Degree CGM-SDC (SCaP) 1+1 APS (SCaP) Runtime of CGM-SDC Sample Size
2 links 155.3% 155.3% ≈ 2 minutes 12 nodes
3 links 125.5% 149.4% ≈ 16 minutes 13 nodes
4 links 106.7% 140.6% ≈ 39 minutes 14 nodes
5 links 146.4% 184.5% ≈ 26 minutes 2 nodes
6 links 89.5% 126.5% ≈ 85 minutes 1 node
7 links 86.6% 136.6 ≈ 53 minutes 1 node
Total 105.7% 141.0% ≈ 85 minutes 43 nodes

are generated at each iteration. The main problem starts with
a set of dummy coding groups and inputs new coding groups
at each iteration. The subproblem creates a new coding group
depending on the information coming from the main problem.
The iterations are terminated when a new useful coding group
cannot be found. The main problem is formulated as LP
throughout the iteration process. At the end, the main problem
is solved via ILP which creates a very small optimality gap.
We have formulated the subproblem different for different
coding techniques based on either ILP or MIP. There is a
complexity versus capacity efficiency tradeoff in formulating
the subproblem. The main problem consists of only |V | − 1
constraints. It finds and places the optimal coding group
combinations to match the traffic demands, which takes sub-
ms to run. The new algorithm can be implemented over
networks with arbitrary topology and it can achieve optimal
results in very large arbitrary networks for arbitrary traffic
scenarios.

We ran various sets of simulations to investigate the per-
formance of the new coding structure and the new design
algorithm differentially. The coherent diversity coding has a
higher capacity efficiency then both the nonsystematic and
systematic diversity coding. The improvement is very small
in some networks but is more significant in other networks.
The most important observation of the paper is how the new
column generation-based design method simplifies implemen-
tation of coding-based recovery techniques in very large arbi-
trary networks. The new technique can find optimal solutions
in a much shorter time than the competitive techniques. The
complexity of the new technique is more scalable than the
competitive techniques depending on the network size, the size
of the traffic demands, and the nodal degree of the nodes in
the network.
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