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Abstract—The problem of sampling from a remote sensor,
powered by energy harvesting, is considered. The problem is
formulated as a partially observable Markov decision process
(POMDP), since the controller only has partial knowledge of the
energy reserve at the sensor. Three policies are proposed and their
performances are evaluated and compared to that of a clairvoyant
policy.

I. INTRODUCTION

The problem of sensing using a remote sensor is of interest
in a wide array of sensing applications. This problem becomes
significantly more interesting when the sensor node is powered
by energy harvesting.

The idea of energy harvesting is that the sensor node
is equipped with a harvester device which collects energy
from an ambient source such as light, wind, vibrations, or
electromagnetic waves. The harvested energy is stored in
an energy storage device (battery or super-capacitor), and is
used for sensing, signal processing and communication when
needed (Figure 1). The intermittent and stochastic nature of the
majority of ambient energy sources adds a new dimension to
the problem: the level of available energy is no longer mono-
tonically decreasing. Consequently, when energy harvesting
is used, interesting stochastic decision and control problems
arise.

It is, therefore, natural to take a controlled sensing approach
when sampling using an energy harvesting sensor. In general,
the control of a sensor may consist of occurrence and timing
of the sensing events as well as adjustment of different
sensor parameters or modalities. Conventionally, in controlled
sensing, the information acquired from the sensor(s) consists of
the measurements taken by the sensor. When energy harvesting
is involved, however, one can consider the harvested energy
as a second phenomenon affecting the sensor node. Thus, the
information obtained from the sensor can include the state of
energy harvesting as well as the amount of energy stored at
the sensor, in addition to the conventional information (Figure
2).
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Fig. 1. Energy harvesting sensor node.

In this paper we consider the problem of controlled sam-
pling using an energy harvesting sensor. That is, we assume
that the controller neglects the values of the samples, and only
tries to maximize the number of samples. We formulate the
problem as a partially observable Markov decision process
(POMDP) [1], and provide a number of heuristic sub-optimal
policies. We evaluate the performance of these policies and
compare them to that of a clairvoyant policy.

II. RELATED WORK

There has been a large body of literature developing on
energy harvesting sensor nodes, particularly during the last
year. However, the vast majority of these works focus on
the communications aspect and do not consider sensing or
sampling, much less controlled sensing or sampling. These
literature have covered many aspects of communications with
energy harvesting including source and channel coding [2],
power control [3], power allocation [4], scheduling [5], routing
[6], multiple access [7] and throughput maximization or delay
constraints [8]. Information theoretic aspects are studied in
[9] and [10]. Energy harvesting has been considered in the
context of broadcast [11], cellular networks [12], cognitive
communications [13], and cooperative and relayed communi-
cations [14]. There have also been a few works considering
non-idealities such as the imperfections of energy harvesting
and storage components [15] as well as correlation between
energy sources [16].

Few works consider the sensing problem in conjunction
with energy harvesting. In [17]-[19] remote estimation systems
with energy harvesting nodes are considered. They focus on
how the transmit powers must be allocated. Thus, although
they do consider a sensing objective, it is the communication
that is the subject of control. To the best of our knowledge,
works on controlled sensing with energy harvesting are limited
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Fig. 2. Controlled sensing with an energy harvesting sensor.



to [20] and [21]. The problems of estimation and quickest
change detection with energy harvesting nodes are considered
in [21] and [20], respectively.

III. PROBLEM DEFINITION

Consider an energy harvesting sensor being remotely con-
trolled by a controller.

Energy harvesting: Let h; € Z, be the number of units
of energy harvested at time k. We assume that hy is iid and
has a probability mass function (pmf)

¢ = Pr(hy =1). (1)

Clearly, g¢; = 0 if 7 < 0, as the amount of harvested energy is
non-negative.

Energy storage: The sensor stores the harvested energy in
a storage device with capacity of B energy units. Thus, the
amount of stored energy at each time is given by

bg+1 = min{max{by — cx,0} + hy, B} )

where cj, is the energy consumed at time k. We note that
when the storage is full (by = B), any harvested energy is
lost, and when sufficient energy is not available (b; < cg), the
task requiring consumption ¢ will fail, yet the storage will
be emptied. Furthermore, we note that imperfections of the
storage device, namely inefficiency of charge/discharge can be
absorbed in the variables in (2).

Sampling operation: To request a sample from the sensor,
the controller transmits a “sample request packet”. We denote
the decision of the controller to do so with u, = {R,D}, where
R stands for “Request” and D stands for “Do not request”.
Receiving a sample request packet results in consumption of ¢
units of energy at the sensor. Upon receiving this request, the
sensor will take a sample from a given physical phenomenon
and transmits it back to the controller in a “response” packet,
if it has sufficient energy. We assume that this process, i.e.
sampling and response, costs C' — ¢ units of energy. In other
words, requesting a sample by the controller may result in
successfully receiving a sample at the energy cost of C' units
to the sensor, or it may be unsuccessful and cost the sensor ¢
energy units. In summary

0 uk:D
c, = {c up, =R, by, < C . 3)

C ur,=R,bp >C

Also we denote the reward at time k by rg, where

0 U = D

T = 0 uk:R,bk<C R 4
1 up=R,bp>C

where 0 indicates that a sample was not received (not requested

or failed), and 1 indicates that a sample was received.

Objective: The objective of the controller is to maximize
the number of samples taken. That is, we would like to
maximize the total reward function,

H
R = > (5)
k=0

where H < oo is the horizon.

Knowledge of controller: When the sensor responds, it
will also report its current level of energy storage (before new
harvested energy is added),

by = max{by, — cx,0}. 6)

Thus, in the case of sampling success. However, since the
amount of harvested energy is random, the controller does not
know b1 with certainty. Moreover, when sampling fails, the
controller does not receive a response. In this case it can only
infer that 0 < by < C'—c. Thus, the controller only has partial
knowledge of the energy level at the sensor. Thus, we can only
model the problem as a partially observable Markov decision
process (POMDP) [1].

IV. STATE SPACE AND SUFFICIENT STATISTICS
A. State Space

In general, given a POMDP, all past information, may be
required for an optimal policy. Let us define the information
that the controller learns at each time as

N uk:D
Y = F up =R, b < C
bk uk:R,kaC’

; @)

where by, € {0,..,B — C}, is the amount of remaining
energy reported by the sensor in the response packet. Using
this definition we can describe the total information at the
controller at time k as

T = {Ym}m=o- ®

We note that the control actions u are implied from gy, and
thus are omitted. Clearly, in general, Zj, takes values in a space
which grows exponentially, as (B — C + 3)*. Thus, including
the actual energy state by € {0, ..., B}, the size of the state
space at time k is (B + 1)(B — C + 3)*. This means that for
any reasonable horizon a dynamic programming approach is
computationally prohibitive.

B. Sufficient Statistics

However, it is well known that the posterior probability
mass function (pmf) of the unknown variable is a sufficient
statistic [22]. That is, the controller can keep track of

P = [ Pro Dk, B ]T, &)

where pi; = Pr(b, = i|Zy), instead of all the past infor-
mation, 7. The posterior pmf, p; takes values in the space
[0, 1]B+L. Thus, although the state space is infinite, the number
of states is fixed, which makes the problem easier to handle.

The evolution of the posterior pmf, pg, can be described as
follows. If the control action is u; = D, then the posterior pmf
must be updated to reflect the addition of the newly harvested
energy. That is

Prr1 = Qps, (10)
where
Qo 0 0 0
a1 9o 0 0
Q= : L : ] oan
dB-1 qB-2 q1

B-2
g8 9B tqB-1 Yoico qB—i 1



where g; are given in (1). We note that the multiplication by Q
convolves the pmf of the harvested energy with the posterior
pmf, while also limiting it to B from above.

Alternatively, if u; = R, but the sampling fails (i.e.
yr = F), then the controller can only infer that before the
reception of the request packet, there was not sufficient energy,
i.e. by < C. Since the request packet itself consumes c, thus,
the remaining energy by, must be in the range {0, ...,C'—c—1}.
This means that

Pr+1 = ArQTpy, (12)
where
11><c I 0
T — 0(07671)><C (C—c)x(C—c) (C—c)x(B—C+1)

0(B—Ctetr1)x(B+1)
truncates the pmf to the allowable range and

1
Ax(pr) = Zcip (13)
i=0 ki

is a normalization factor to ensure that pg4; is a proper pmf.

Finally, if u; = R, and the sampling succeeds, the
controller will receive y;, = by, which means

Qe ; (14)

where e; is the ¢th standard basis vector.

Pr+1 =

V. PoLICY DESIGN

Although the optimal policy proves to be elusive, one may
design heuristic sub-optimal, yet simple, policies based on
the understanding of the information carried in the posterior
pmf. We consider four different policies as described in the
following:

A. Kalman Estimator (KE) Policy

Given the posterior pmf, the Kalman estimate of the
unknown variable by, is found by

by = Elbi|ps]

B
= > ipk, (15)
=0

This policy, compares this estimate of the remaining energy
level with a predetermined threshold and requests a sample, if
bi, exceeds that threshold, i.e.

R I;kZBT

Uk {D by < Br (16)

B. Probability of Sufficient Energy (PSE) Policy

Another intuitive approach is to decide based on the
conditional probability that the sensor has sufficient energy.
That is

o R PSE Z T
Uk = {D PSE<T (17)
where
B
Pe = > pri (18)
i=C

is the posterior probability that b > C.

C. Deterministic Approximation (DA) Policy

A much simpler approach is to neglect the stochastic nature
of energy harvesting and assume that at each time slot, the
system harvests energy h, where h = E[hy] = ZZO iq;. This
means that we can estimate by by Bk, where

§ min{i)vk +h,B} up=D
bp+1 = max{by —¢,0} w,=Rby<C .19
b up =D, by > C
The decision is then made based on
o R lv)k Z Bt
wo= {5 hin @)

D. Clairvoyant Policy

Finally, since an optimal policy is not known, we consider
a clairvoyant policy as benchmark, where the exact value of
bi. is known to the controller, and the decision is made based

on
R ZA);C>C
= ~ - . 21

Clearly, the performance of such a policy will serve as an
upper bound on that of the optimal policy.

VI. NUMERICAL RESULTS

We use Monte Carlo simulations to evaluate the perfor-
mance of the policies described above. For our simulations,
we assume that the capacity of the energy storage device is
B = 12 units of energy. Furthermore, we assume that receiving
the sample request packet costs ¢ = 2 units of energy, and
measurement of the sample and sending the response packet
costs C' = 6 units of energy. To demonstrate the effect of
randomness on the performance of policies, we consider two
different distributions for the energy harvesting. In the fist case,
we assume that the pmf of the harvested energy (in energy
units) is

i=0
i=1 22)
otherwise

Ol

and in the second case, we assume that

5 =0

1<i<6 . 23)
otherwise

7
gi=Prihy =i)=4 &
0
We note that in both cases, an average of h = % units of
energy is harvested in every time unit, which ensures a proper
comparison between the two cases. However, the variance in
the first case is a,% = %, where as in the second case, it is

of =13 =2.1667.

Given these parameters, we simulate the system for a given
threshold 7 and horizon H. Figure 3, for instance, depicts
the normalized average number of samples as a function of
the threshold 7 for the above policies assuming a horizon of
H = 50. We assume that the energy storage device is empty
at the beginning (by = 0). We average the number of samples
taken over 10, 000 repetitions. For easier interpretation of the
results, we normalize the number of samples by Bh/C, which
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Fig. 3. Normalized number of samples versus threshold 7 for horizon H =

50, assuming harvesting distribution (22).

is the number of samples taken with deterministic harvesting
(h units per time step), full information, and long horizons.

From results such as those presented in Figure 3 we will
choose the optimal values of threshold 7 for each policy and
horizon. We note that we have used a resolution of 0.05 for
7. Figure 4 depicts the obtained results for the harvesting
distribution given in (22). As expected, we observe that the
clairvoyant policy performs quite well. In fact, since the
controller has perfect information, no energy is lost due to
bad decisions. Similarly, no energy is lost due to the fullness
of the energy storage device. Thus, the only reason that the
normalized number of samples os less than one is that some
energy is remained in the storage device, when the horizon is
reached. As we can see, this gap narrows as horizon increases.
The KE, PSE and DA policies perform quite similarly, with
a slight advantage for the PSE policy. All of these policies
perform at 80% — 95% of that of the GA policy.

Figure 5 presents similar results, but assuming (23) as the
distribution of the harvested energy. Compared to Figure 4
We can see that as expected, as the variance of the harvested
energy increases, the performance of KE, PSE and DA policies
fall. We also note that as expected, the difference in perfor-
mance of these policies is more pronounced. In particular, the
DA policy is now performs noticeably worse than KE and PSE
policies. This is of course expected as the level of randomness
has risen.

Overall, we observe that the heuristic policies perform
more-or-less similarly. From this, we conjecture that the perfor-
mance of an optimal policy will be closer to the performance
of these policies, rather than close to the upper bounding
clairvoyant policy.

VII. CONCLUSION AND DISCUSSION

This paper, for the first time, considers the problem of
controlled sampling from an energy harvesting sensor. The
problem is formulated as a partially observed Markov decision
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Fig. 5. Normalized number of samples versus horizon, H, assuming
harvesting distribution (23).

process (POMDP). A number of sub-optimal policies are pro-
posed and their performances are studied though simulations,
and compared to that of a clairvoyant policy. We conjecture
that the performance of the optimal policy is closer to those
of the proposed policies, than to that of the clairvoyant policy,
which provides an upper bound.

The extensions of this problem, in terms of extending the
objective function in order to regulate the sample rate, as well
as to the case of multiple sensors are quite interesting and are
the subject of our ongoing work.
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