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Abstract—We consider a parameter estimation problem for a
Hidden Markov Model in the framework of particle filters. Using
constructs from reinforcement learning for variance reduction in
particle filters, a simulation based scheme is developed for esti-
mating the partially observed log-likelihood function. A Kiefer-
Wolfowitz like stochastic approximation scheme maximizes this
function over the unknown parameter. The two procedures are
performed on two different time scales, emulating the alternating
‘expectation’ and ‘maximization’ operations of the EM algo-
rithm. Numerical experiments are presented in support of the
proposed scheme.

I. INTRODUCTION

We consider a partially observed Markov chain on a
finite state space, in other words a Hidden Markov Model
(HMM for short), whose transition probabilities depend on an
unknown parameter. The problem we address is to estimate
this parameter given a trace of observations. The standard
procedure for this is the ‘Expectation-Maximization’ or ‘EM’
algorithm of Dempster et al [10] wherein one alternates
between an ‘Expectation’ (or ‘E’) step that computes the
conditional expectation of the log-likelihood function given
the current parameter estimate, and the ‘Maximization’ (or
‘M’) step that performs a maximization of the said expectation
with respect to the unknown parameter in order to update the
estimate. In our case, we are looking at a stochastic dynamical
system, which requires us to develop an appropriate nonlinear
filter (smoother, to be precise) for evaluating the conditional
behavior of state given observations. Such filters are usually
computationally cumbersome. This has prompted a large body
of research on particle filters, which employ Markov Chain
Monte Carlo (MCMC) for a simulation based methodology
to estimate the conditional averages using the strong law
of large numbers [2]. This is our starting point. In a recent
work [8], we introduced ideas from reinforcement learning
(see [3], Chapter 16, for background) in order to reduce the
problematic high variance in particle filters. In this article,
we introduce a suitable modification of the scheme proposed
in [8] for estimating the partial log-likelihood function for
the HMM. A Kiefer-Wolfowitz like scheme is then used in
order to perform the maximization of this over the parameter
space. This executes an approximate gradient ascent using
a finite difference approximation of the gradient. The two
procedures are supposed to alternate in the classical EM

algorithm. We perform them concurrently albeit on different
time scales, exploiting the theory of ‘two time scale stochastic
approximation’ ([6], Chapter 6) to achieve the same effect.

The paper is organized as follows. The next section
describes the problem set up and the algorithm. Section
3 presents supporting numerical experiments for a simple
example. Section 4 concludes with a discussion of further
possibilities.

We conclude this section by recalling from [8] the
motivation for this approach. Particle filters inherit the
usual issues concerning MCMC, such as possibly high
variance. Recently reinforcement learning has been used as
an alternative to pure MCMC, the idea being to combine
MCMC with classical numerical schemes so as to retain some
advantages of both [7]. As argued in ibid., being ‘incremental’,
it inherits from MCMC lower per iterate computation and
memory requirement than the deterministic numerical
schemes. From numerical schemes, it inherits a lower
variance than pure MCMC. The latter, as pointed out in ibid.,
is because the learning schemes, through ‘one step’ analysis,
estimate conditional expectations rather than expectations,
which can be thought of as a Rao-Blackwellization of the
particle filter. We consider an importance sampling version
thereof as in [1], where it offers the added advantage that it
involves only a one step likelihood ratio per iterate rather then
the full likelihood ratio, which has a much higher variance.

II. THE EM PARTICLE FILTER

Consider the HMM given by the (state, observation) pro-
cesses (Xn, Yn), n ≥ 0, taking values in a finite product space
S ×O, such that

P (Xn+1 = i, Yn+1 = j|Xm, Ym,m ≤ n) = pθ∗(i, j|Xn)

for a prescribed transition probability function pθ∗(·, ·|·). The
latter is known to belong to a parametrized family {pθ(·, ·|·) :
θ ∈ Θ} for a compact parameter set Θ that contains the true
parameter θ∗. For simplicity of notation, we take Θ to be a
closed bounded interval in R, though what follows extends
easily to parameter sets in Rd, d > 1. Let Fn := σ(Yi, i ≤



n), n ≥ 0. We pick a θ̂0 as our initial guess for θ∗. The EM
algorithm in our context is as follows.

1) (E step:) Estimate

Λ(θ, θ′) := Eθ[

N−1∑
m=0

log pθ′(Xm+1, Ym+1|Xm)|FN ]

(1)
for θ = θ̂n based on observations Ym, 1 ≤ m ≤ N .

2) (M step:) Find θ̂n+1 := argmax
(

Λ(θ̂n, ·)
)

,

till convergence.

We begin with a stochastic approximation scheme for the
first, or ‘E’, step above. For this, a ‘stochastic approximation’
or ‘reinforcement learning’ based particle filter/smoother in
the spirit of [8] is given as follows. We fix a realization
Ym = ym, 1 ≤ m ≤ N , of the observation process. This
features as a fixed parameter in the scheme below. Let Q :=
[[q(j|i)]]i,j∈S be an irreducible stochastic matrix such that
maxy p(j, y|i) > 0 =⇒ q(j|i) > 0. Consider a Markov chain
{X̃n} with transition matrix Q and initial distribution π0. The
law of this chain will be our ‘importance sampling’ measure.
Simulate independent runs {X̃k

m, 0 ≤ m ≤ N}, k ≥ 1, of the
chain with initial distribution π0 (‘particles’). The reinforce-
ment learning particle filter/smoother is: for k = 1, 2, · · ·, do

1) STEP 1: This step evaluates the common normalizing
factor.

V̂ k+1
n (i) =

(
1− a(k)I{X̃k+1

n = i}
)
V̂ kn (i) + a(k)

×I{X̃k+1
n = i}

(
pθ̂k(X̃k+1

n+1, yn+1|i)
q(X̃k+1

n+1|i)

)

×
(
V̂ k+1
n+1 (X̃k+1

n+1)
)
, n < N, (2)

with terminal condition V̂ k+1
N (i) = 1.

2) STEP 2: This step evaluates unnormalized conditional
expectation of the log-likelihood at parameter θ = the
current estimate of θ∗.

Ṽ k+1
n (i)

=
(

1− a(k)I{X̃k+1
n = i}

)
Ṽ kn (i) + a(k)

×I{X̃k+1
n = i}

(
pθ̂k(X̃k+1

n+1, yn+1|i)
q(X̃k+1

n+1|i)

)

×
(

log pθ̂k(X̃k+1
n+1, yn+1|i)V̂ kn+1(X̃k+1

n+1)

+ Ṽ k+1
n+1 (X̃k+1

n+1)
)
, n < N, (3)

with terminal condition Ṽ k+1
N (i) = 0.

3) STEP 3: This step evaluates unnormalized conditional
expectation of the log-likelihood at parameter θ = a
perturbation of the current estimate of θ∗.

V̆ k+1
n (i)

=
(

1− a(k)I{X̃k+1
n = i}

)
V̆ kn (i) + a(k)

×I{X̆k+1
n = i}

(
pθ̂k(X̃k+1

n+1, yn+1|i)
q(X̃k+1

n+1|i)

)

×
(

log pθ̂k+δ(X̃
k+1
n+1, yn+1|i)V̂ kn+1(X̃k+1

n+1)

+ V̆ k+1
n+1 (X̃k+1

n+1)
)
, n < N. (4)

with terminal condition V̆ k+1
N (i) = 0.

Here {a(k)} is a positive sequence of step-sizes satisfying
the standard conditions:

∑
k a(k) =∞,

∑
k a(k)2 <∞. The

iteration (2) is nothing but a reinforcement learning scheme for
‘policy evaluation’ of the constant policy (here, uncontrolled)
Markov chain {X̃n} with transition matrix Q and the ‘finite
horizon cost’

N∏
m=1

(
pθ̂k(X̃m+1, ym+1|X̃m)

q(X̃m+1|X̃m)

)
.

It is a stochastic approximation scheme for solving the
corresponding ‘dynamic programming equation’ given by
V (·, N) ≡ 1 and for m < N ,

V̂ (i,m) =
∑
j∈S

q(j|i)
(
pθ̂k(j, ym+1|i)

q(j|i)

)
V̂ (j,m+ 1)

=
∑
j∈S

pθ̂k(j, ym+1|i)V̂ (j,m+ 1). (5)

The second expression on the right of (5) shows that

V̂ (i, 0) = P (Ym = ym, 1 ≤ m ≤ N |X0 = i)

for the Markov chain {Xm} with associated observation pro-
cess {Ym}, governed by transition probabilities pθ̂m(·, ·|·), 0 ≤
m < N . Note that

∑
i π0(i)V̂ (i, 0) is also the normalizing

factor for the passage from normalized to unnormalized filter
or smoother. On the other hand, (3) is a reinforcement learning
scheme for evaluating

E
[N−1∑
m=0

(
pθ̂k(X̃m+1, ym+1|X̃m)

q(X̃m+1|X̃m)

)
× log pθ̂k(X̃m+1, ym+1|X̃m)V̂ kn+1(X̃k+1

n+1)
]

(6)

for a Markov chain {X̃m} governed by the transition matrix
Q. To see this, note that (6) equals

∑
i π0(i)Ṽ (i, 0), where

Ṽ (i,m), i ∈ S, 0 ≤ m ≤ N , is given by the ‘dynamic



programming equation’

Ṽ (i,m)

=
∑
j

q(j|i)
(
pθ̂k(j, ym+1|i)

q(j|i)

)
log(pθ̂k(j, ym+1|i))

×V̂ kn+1(j) +
∑
j

q(j|i)
(
pθ̂k(j, ym+1|i)

q(j|i)

)
Ṽ (j,m+ 1)

=
∑
j

pθ̂k(j, ym+1|i) log(pθ̂k(j, ym+1|i))V̂ kn+1(j)

+
∑
j

pθ̂k(j, ym+1|i)Ṽ (j,m+ 1).

In view of the discussion in [8], section 3, bullet 2, the second
equality shows that

∑
i π0(i)Ṽ (i, 0) equals the finite horizon

cost

E
[(N−1∑

m=0

log pθ̂k(Xm+1, ym+1|Xm)

)
× I{Ym = ym ∀ m ≤ N}

]
, (7)

for the Markov chain {Xm} with associated observation
process {Ym}, governed by transition probabilities
pθ̂k(·, ·|·). Then (3) is precisely the asynchronous stochastic
approximation scheme to solve (6) or ipso facto, evaluate
(7), in other words, a reinforcement learning scheme for this
purpose.

Likewise, (4) is a reinforcement learning scheme for
exactly the same computation but with the ‘running
cost’ log pθ̂k(Xm+1, ym+1|Xm) in (7) replaced by
log pθ̂k+δ(Xm+1, ym+1|Xm).

For the ‘M’ step, let

Fk :=
π0Ṽ0

π0V̂0
, F ′k :=

π0V̆0

π0V̂0
.

Consider the approximate gradient ascent (Kiefer-Wolfowitz
scheme)

θ̂k+1 = θ̂k + b(k)

(
F ′k − Fk

δ

)
,

with b(k) = o(a(k)). The latter condition ensures that this
is a two time scale stochastic approxination ([6], Chapter
6) and standard analysis of this class of schemes ensures
that it tracks (within a certain approximation) the gradient
ascent for conditional expectation of the log-likelihood given
observations, as desired by the EM methodology.

III. EXAMPLE

In this section we present a simple example as ‘proof of
concept’. More extensive examples are being planned and
will be reported elsewhere.

Consider a queueing system

Qn+1 =
(
Qn −DnI{Xn > 0}+ ξn+1

)∧
100. (8)

Here, given 0 < b << a < 1,

• Dn (the departure process) is i.i.d., Dn = 1 with
probability µn ∈ {a, b}, n ≥ 0, and 0 otherwise,

• ξn (the arrival process) is i.i.d., ξn = 1 with probability
λ, b < λ < a and 0 otherwise,

• {µn} (the service rate) is an {a, b}-valued Markov chain
with two states: ‘working’ when µn = a and ‘faulty’
where µn = b.

Denote by p2(·|·) the transition probabilities of {µn}. We
have limited the maximum queue size to 100, i.e., assumed a
finite buffer of size 100. In case of buffer overflow, the extra
packets are assumed lost.

In this example the observed process is the queue length
{Qn} and the state process is {µn, Qn}. Comparing with our
earlier notation, the correspondence is:

Xn ←→ {µn, Qn}, Yn ←→ Qn.

Thus Xn ∈ {1, ...., 100} × {a, b} := S and Yn ∈
{1, ...., 100} := O. The transition probability function is:

p((u′, i′), ĩ|(i, u))

:= P (Xt+1 = (i′, u′), Yn+1 = ĩ|Xn = (u, i))

= p1(i′|i, u)p2(u′|u)δi′ ĩ,

where, for 0 < i < 100,

p1(i′|i, u) = λ(1− u), for i′ = i+ 1,

= (1− λ)u, for i′ = i− 1,

= uλ+ (1− u)(1− λ), for i′ = i,

= 0, otherwise,

for i = 0,

p1(i′|i, u) = λ(1− u), for i′ = i+ 1,

= u+ (1− u)(1− λ), for i′ = i,

= 0, otherwise,

and for i = 100,

p1(i′|i, u) = (1− λ)u, for i′ = i− 1,

= uλ+ (1− u), for i′ = i,

= 0, otherwise.

The nonlinear filter then turns out to be

νn+1(j, q) =
∑
i=a,b

νn(i, Qn)p((j,Qn+1), Qn+1|i, Qn) (9)

when q = Qn+1, otherwise νn+1(j, q) = 0.

The algorithm becomes: (We have suppressed the depen-
dence on queue length of V̂ kn , Ṽ

k
n , V̆

k
n , because this component

of the state is observed exactly and enters the computation only
parametrically.)



1) STEP 1: V̂ k+1
N (u) = 1 and for n < N ,

V̂ k+1
n (u)

=
(

1− a(k)I{µ̃k+1
n = u}

)
V̂ kn (u)

+ a(k)I{µ̃k+1
n = u}

×

(
pθ̂k((µ̃k+1

n+1, Qn+1), Qn+1|u,Qn)

q(µ̃k+1
n+1|u)

)

×
(
V̂ k+1
n+1 (µ̃k+1

n+1)
)
. (10)

2) STEP 2: Ṽ k+1
N (u) = 0 and for n < N ,

Ṽ k+1
n (u)

=
(

1− a(k)I{µ̃k+1
n = u}

)
Ṽ kn (u)

+ a(k)I{µ̃k+1
n = u} ×(

pθ̂k((µ̃k+1
n+1, Qn+1), Qn+1|u,Qn)

q(µ̃k+1
n+1|u)

)
×

(
log pθ̂k((µ̃k+1

n+1, Qn+1), Qn+1|u,Qn)

× V̂ kn+1(µ̃k+1
n+1) + Ṽ k+1

n+1 (µ̃k+1
n+1)

)
. (11)

3) STEP 3: V̆ k+1
N (u) = 0 and for n < N ,

V̆ k+1
n (u)

=
(

1− a(k)I{µ̃k+1
n = u}

)
V̆ kn (u)

+ a(k)I{µ̃k+1
n = u} ×(

pθ̂k((µ̃k+1
n+1, Qn+1), Qn+1|u,Qn)

q(µ̃k+1
n+1|u)

)
×

(
log pθ̂k+δ((µ̃

k+1
n+1, Qn+1), Qn+1|u,Qn)

× V̂ kn+1(µ̃k+1
n+1) + V̆ k+1

n+1 (µ̃k+1
n+1)

)
. (12)

We use the Kiefer-Wolfowitz type scheme proposed above
with truncation, i.e., we truncate the approximate empirical
gradient on both positive and negative sides at ±1 in order to
avoid numerical instabilities.

In the following sample plots, the various parameter values
are:
• The Markov chain is evaluated for N time steps and here
N = 30

• a = 0.8

• b = 0.1
• λ = 0.5
• The actual transition probabilities of the service rate chain

is
– Probabilty to go from a to b = 0.4 and to stay in a

= 0.6
– Probabilty to go from b to a = 0.7 and to stay in b

= 0.3
• The transition probabilities used in the importance sam-

pling measure are the same as the actual transition
probabilities of the service rate chain.

• δ = 0.01.
• a(n) = 1

1+d n
M e

for M = 1000.
• b(n) = 1

2+dm log m

N′ e
for n = mM ′,m = 0, 1, · · · , and 0

otherwise where M ′ = 500 and N ′ = 10.
The following figures show simulation results for N = 30

for three different initial guesses and two sets of observations.
Figures 1-3 correspond to one set of observations and figures
4-6 to the other. As seen in these figures, the scheme showed
consistent convergence, though to a value dependent on the
observation trace. We also experimented with N = 10 and 20
(not reported here). The accuracy of the estimate tended to
improve for higher N as expected.
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IV. CONCLUSIONS

We proposed and analyzed a simulation based EM algorithm
for parameter estimation in HMMs. This employed ideas from
reinforcement learning for variance reduction. The numerical
experiments presented here support the theoretical claims. This
opens up several possibilities for future research.

1) As it stands, the scheme is a computationally intensive,
off-line scheme. A good on-line variant would call for
possibly further approximations to lower the compu-
tational budget and acceleration methods to speed up
convergence. Ideas from reinforcement learning that can
be fruitfully imported are function approximation [3]
(Chapter 16), adaptive importance sampling [1], [8], and
split sampling [7].

2) More generally, this opens up the possibility of an alter-
native approach for reinforcement learning for Partially
Observed Markov Decision Processes (POMDPs). This
will be pursued in a sequel.
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