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Abstract—Fair resource allocation in OFDMA networks is
studied in this paper. We propose a distributed algorithm requir-
ing minimum inter-cell information that embodies the principle
of balancing advantaged and disadvantaged user traffic flows. A
simple interference deterministic channel model assuming zero
queuing delay is used. We propose a hybrid power and bandwidth
allocation algorithm. A two-dimensional simulation conducted
on both uniform and random-sized-cells shows the benefits are
significant when fair allocations are desired.

Index Terms—dynamic bandwidth allocation, power control,
OFDMA, fair resource allocation, distributed algorithm

I. INTRODUCTION

In recent years, there has been increasing research interest

in fair resource allocation in OFDMA wireless networks.

While there are many results on the topic, the best schemes

remain elusive. This is because different quality-of-service

(QoS) requirements are used among existing studies, where the

solution is usually application dependent. The major difficulty

in dynamic channel and power allocation comes from interfer-

ence coupling; resource allocation decisions for one user affect

the others. Users that generate high interference to neighboring

cells slow convergence of distributed schemes since other users

must react to their changed resources with changes of their

own. Further, as these are typically the users farther from their

base stations and thus in need of more resources, fair allocation

of rates also tends to reduce the overall capacity. Complicating

matters further, the effectiveness of particular heuristics such

as interference avoidance (e.g., in dynamic channel allocation)

vs. interference averaging (e.g., as in CDMA) depends on

the load of the network. Finally, in comparing algorithms,

the appropriate quality of service measure depends upon the

type of traffic (data vs. media). We believe that the most

important application is that of high loading of media traffic,

since without the ability to queue data it presents the most

difficult resource decisions. At low loading, resources are more

abundant and performance will only improve.

The novelty of our work is to propose a new distributed

hybrid dynamic reallocation algorithm for bandwidth and

power. It has the following features: i) It targets reduced user

data rate variance rather than higher cell throughput. Low data

rate variance is desirable in multimedia applications. ii) Our

algorithm is non-iterative, to produce fast convergence. iii) The

algorithm is truly distributed. It adapts to dynamic traffic load,

and requires minimum inter-cell information exchange. We

simulated the algorithm in a 2-dimensional large scale network

consisting of 100 cells for both uniform-sized-cells (USC) and

random-sized-cells (RSC). This provides robustness against

cell edge effects.

In multi-cell OFDMA networks, uplink and downlink dy-

namic resource allocation differ in how they contribute in-

terference into neighboring cells. We focus analysis on the

uplink in this paper. However, simulations were done on both

the uplink and downlink, showing improved QoS in both

directions.

In our study, a simple interference channel model based

upon the deterministic channel model is used. The variance

of averaged user flow data rate is used as the measurement

of fairness. Our goal is to achieve a high flow rate with

low variance. We first review the literature on this topic in

section II, and present our formulation of the problem in

section III-B. Then optimization principles are derived from

the formulation in section III-C. Based on these principles, a

distributed power control and bandwidth allocation algorithm

is designed in section IV. Finally, evaluation is done by

simulating the algorithm in 2-dimensional USC and RSC, and

results are explained in section V. For RSC, base stations are

randomly located according to a Poisson point process (PPP)

following the model for the node locations used in [1], [2]

and [3]. We present our conclusions and suggestions for future

work in section V.

II. LITERATURE SURVEY

The majority of prior research on the resource allocation for

inter-cell interference (ICI) reduction. Most of the proposed

algorithms can be grouped by the following criteria: static or

dynamic algorithm, centralized or distributed, iterative or non-

iterative.

Fixed sub-channel allocation (FCA), fractional frequency

reuse (FFR) and soft frequency reuse (SFR) are static band-

width allocation algorithms. They reduce ICI by pre-planning

the bandwidth among adjacent cells [4], [5], [6] and [7]. Fixed

sub-channel allocation algorithms have low spectral efficiency,

since they do not dynamically adapt to network traffic load

variation. Dynamic channel allocation (DCA) techniques were

invented to address this issue. Channel segregation (CS) is

such an algorithm explained in [4]. CS prioritizes all sub-

channels and employs a learning algorithm to update the



sub-channel priorities according to the sub-channel historical

utility information.

For multi-cell networks, resource allocation performed by

centralized authorities. One way to do it is to organize cells

into clusters and have the radio network controller (RNC)

allocate sub-channels to users in different cells. RNC will

make sure two adjacent cells do not allocate the same sub-

channel to their users [8]. A similar approach is taken by [9].

The difference is that [9] only assigns disjoint sub-channels to

cell edge users. Users in the cell center area can be assigned

any sub-channels. The requirement of using a centralized

network controller limits its application to networks like femto

cells and sensor networks. Therefore distributed resource

allocation algorithms are favored in general. There are two

major approaches; game-theory-based and graph-based [10].

Game-theory-based algorithms usually define utility function,

action set and players corresponding to user data rate, resource

allocation and network node or users respectively [11], [12]

and [13]. The game solution is usually obtained by an iterative

algorithm, which is in general inefficient. A graph-based sub-

channels and power joint allocation algorithm is described

in [14]. Users are represented by nodes in the graph. Two

users are connected by an edge if they may interfere each

other. Then the graph is colored and sub-channels are allocated

according to colors to avoid interference. The computational

complexity of this algorithm is very high when the number of

users and channels become large.

Most optimizations are implemented by an iterative algo-

rithm [15], [16], [17], [18], [19] and [20]. Iterative algorithms

may need to reduce traffic load or sacrifice optimality to

guarantee convergence, since they are sensitive to channel

dynamics. However, they are scalable and are widely used

in power control and channel assignments.

Algorithms differ according to the QoS measurements being

optimized. Meeting a target transmission rate for all users is

used by [15]. This is appropriate for data traffic with queuing.

However, for delay sensitive traffic, i.e. multimedia traffic

flows, low variance is preferred. A fairness index in terms of

rate proportional constraints is used in [21]. The max fairness

is achieved when all users have the same data rate.

The common issue the various resource algorithms address

is the need to meet some QoS constraint for all users in the

face of vastly different losses to the home base station and

interference effects on neighbors, generally with users near

cell centers having high SNR and low interference effects, and

users near the edges having low SNR and large interference

effects. Power control to equalize SNRs (and thus rates) has

only polynomial complexity, but exacerbates the interference

problem in precisely the users who most contribute to it, and

due to the logarithmic dependence of maximum rate on SNR,

extract an exponential price in total interference. Allocating

extra channels (bandwidth) to such users by contrast linearly

increases rate with only a linear increase in interference, but

inherits an NP hard allocation problem. This motivates treating

outer users (near the cell boundaries) differently than inner

users, but fixed re-use for outer users can be inefficient and in

any case is not practical for irregularly shaped and sized cells

as are common in urban areas. Therefore, we seek means to

capture this intuition with a distributed algorithm.

A more subtle issue is the question of what traffic loading

a resource allocation algorithm should be optimized for. At

low loading, there are many possible solutions, and all will

work well since resources are plentiful. Whether one works

better than another in this regime is not that important; the

regime that causes blocking and dropping of transmission

is high loading. This makes avoidance strategies markedly

less effective and shows the cost of fixed re-use approaches.

Therefore, in the results presented in this paper we consider

high loading, and attempt to apply the intuition discussed

above to design low complexity distributed algorithms that

mitigate as far as possible the interference being caused to

nearby cells while providing fairness of service.

III. PROBLEM FORMULATION AND ANALYSIS

A. System Model

We describe the problem in three aspects: user traffic model,

channel model, and optimization goal.

The Erlang loss model is used for the user traffic model.

User flows arrival independently following a Poisson process.

User traffic is not queued, meaning if the user arrives when

there is no vacant channel, it will be blocked and lost. The

amount of data in each flow is exponentially distributed. User

flows are uniformly scattered in a cell. A user flow retires

when all its data are transmitted, and releases all resources

allocated to it.

In a multi-cell OFDMA network, each cell has a fixed

number of channels. Transmission over a channel is further

divided into time slots (ticks). We have selected the simplest

model that captures the fact that some users are geographically

advantaged, and that thus demands resource allocation if

fairness is to be achieved. It includes only distance loss and

interference. The model assumes that transmission is at the

Shannon capacity, limited by interference, or alternatively,

the limits of linearity of the receiver (in our case, 10 bits).

The interference and linearity limits mean that noise can be

neglected, as for the deterministic channel model. The model

implicitly assumes that a high diversity order is achieved to

ameliorate multipath fading, so that the latter is neglected.

While shadowing losses would change the results somewhat,

distance loss is far more important in its effects. Similarly the

arrival model was selected as being particularly simple, but

also a reasonable match to media traffic, which is more chal-

lenging for networks than data due to its latency constraints.

Most of proposed models use different objective functions

that fall into two major categories: marginal rate (MA) and

rate adaptive (RA) [22]. MA attempts to minimize the total

transmit power while providing the required QoS for each

user. The RA objective is to maximize the total data rate

of the system with a constraint on the total transmit power.

We take a different approach. Our optimization goal is to

minimize the user flow rate variance, and improve network

data throughput by means of reducing ICI. [23] summarizes



different ICI coordination methods. However, these methods

exchange indication signaling between cells, which is what we

try to avoid here.

B. Formulation

To formulate the problem, we start from TX bits com-

putation. We use a simple path loss model p
d4 , where p

is transmission power and d is the distance between the

transmitter and receiver. For each channel the number of TX

bits is log(1 + p
d4c ). c is the interference level seen at the

receiver. Current technology limits low-cost radios to support

digital modulation formats of 6 bits per symbol or less; based

on technological trends, we will suppose that up to 10 bits is

plausible in the medium term. Hence, the equation to calculate

rate is r = min(10, log(1+ p
d4c )), where r is the instantaneous

rate, number of TX bits for one channel in a tick.

The “min” function makes this formulation hard to analyze.

In order to eliminate “min”, we introduce the noise floor

n0 = pmax

210−1 , where pmax is the max user transmission power

possible. When the channel interference level is 0, the max

number of bits that can be transmitted is 10. The user rate

becomes r = log(1 + αip/ai

d4

i
(ck+n0)

)).

The major optimization goal is to improve fairness among

multiple users. We achieve this by minimizing the difference

δ = ru − rn, where ru is the user average data rate and

rn is the average traffic rate of entire network. rn is the

only information the algorithm requires from other cells in

the same network. With the knowledge of the difference, we

define excess bits e = δ ∗ t, where t is the total time ticks

a user flow has transmitted up to the moment. We determine

the disadvantaged user flows by checking if the excess bits are

below a threshold, which is negative.

Assume there are n active users in the cell, and the same

number of channels in use. The algorithm runs an optimiza-

tion in every tick. The power control and channel allocation

problem is formulated as:

min

n∑

i=1

αip

(D − di)4
(1)

subject to:

n∑

k=1

aiklog(1 +
αip/ai

d4i (ck + n0)
) = −ei (2)

n∑

i=1

aik = 1 (k = 1, 2, · · · , n) (3)

n∑

k=1

aik = ai (4)

0 < αip ≤ pmax (5)

p - default flow transmission power

pmax - flow transmission power upper limit

αi - flow transmission power scaler

ck - interference level of sub-channel k

ei - excess bits for flow i

aik - channel k allocation indicator, aik ∈ 1, 0
rik - flow i’s rate on sub-channel k

AB

scheme I

scheme II

c2 c1

c1 c2

channel assignment

d1d2

Fig. 1. Two users two channels assignment

di - the distance between user i to its BS

D - Distance between the BS to its nearest neighbor BS

Equation (2) is to make disadvantaged flows catch up to

the average if they are lagging behind. This is to minimize

user flow rate variance. Equation (3) guarantees one channel

is allocated only to one flow. Equation (5) defines the dynamic

range of power control. αi and aik are optimization variables.

The objective function minimizes the total interference power

a cell emits to the environment. We hypothesize that minimiz-

ing the interference will improve the data throughput of the

whole network. The major difference between the uplink and

downlink models is in how the interference gets calculated.

For uplink interference, sources are flows in other cells, and

the distance of interest is from sources to the BS tower in the

neighboring cell. For the downlink, BS towers interfere with

users in neighboring cells.

C. Formulation Analysis

The idea behind the model is to find the optimal channel

assignment to satisfy equation (2) and minimize total inter-

ference power emitted into the environment. Both channel

assignment and di determine αi to achieve optimality. One

major challenge here is the channel state (CS) estimation. The

CS of a sub-channel is hard to predict because dynamically

reallocating sub-channels and power changes it. The algorithm

proposed in [24] simply applies CS measured in the previous

time tick into the next tick’s resource reallocation calculation.

1) Channel Assignment Principle: Instead of finding the

optimal solution, we try to establish optimization principles

through simplified examples and design a heuristic algorithm

based on these principles. These principles apply to both the

uplink and downlink. However, the following discussion is

based on the uplink.

First, assume there are two channels allocated to two users A

and B at locations d1, d2 in a cell. They are both disadvantaged

users. In other words, their excess bits are negative and below

a threshold. Without loss of generality, let channel interference

levels be c1, c2, (c1 < c2). Figure 1 describes the example. The

objective function then becomes min α1p
(D−d1)4

+ α2p
(D−d2)4

. We

have two possible channel allocation schemes: 1. c1 → A,

c2 → B; 2. c2 → A, c1 → B. Since there is only one channel

assigned to each user, according to (4) we obtain a1 = a2 = 1.

Next, we compute the power scaler α1, α2 for the two schemes

respectively.



Scheme I: solve equation (2). We have:

∵ log(1 +
α1p

d41(c1 + n0)
) = −e1 ∴

α1p

d41(c1 + n0)
= 2−e1 − 1

α1p = d41(c1 + n0)(2
−e1 − 1) α1 = d41(2

−e1 − 1)(c1 + n0)/p

Similarly α2 = d42(2
−e2 − 1)(c2 + n0)/p

The objective function for scheme I becomes:

V1 = α1
p

(D − d1)4
+ α2

p

(D − d2)4

=
d41(2

−e1 − 1)(c1 + n0)

(D − d1)4
+

d42(2
−e2 − 1)(c2 + n0)

(D − d2)4

Let F1 =
d4

1

(D−d1)4
(2−e1 − 1), F2 =

d4

2

(D−d2)4
(2−e2 − 1). The

objective function can be rewritten as: V1 = F1(c1 + n0) +
F2(c2 + n0).

Scheme II

α1 = d41(2
−e1 − 1)(c2 + n0)/p

α2 = d42(2
−e2 − 1)(c1 + n0)/p

The objective function for scheme II becomes:

V2 = α1
p

(D − d1)4
+ α2

p

(D − d2)4

= F1(c2 + n0) + F2(c1 + n0)

Schemes I and II are the only two possibilities for channel

assignment in this example. We should choose I if V1 < V2

and II otherwise. Without loss of generality, we assume e1 <
e2 < 0, d1 > d2. This means A is further away from the BS

than B and its average flow rate is lower than B’s. With this

assumption, the following inequalities hold:

∵(
d1

D − d1
)4 > (

d2
D − d2

)4, (2−e1 − 1) > (2−e2 − 1) ∴ F1 > F2

∵c1 < c2, c1 − c2 < 0 ∴ F1(c1 − c2) < F2(c1 − c2)

F1c1 − F1c2 < F2c1 − F2c2 ⇒ F1c1 + F2c2 < F1c2 + F2c1

F1c1 + F2c2 + (F1 + F2)n0 < F1c2 + F2c1 + (F1 + F2)n0

F1(c1 + n0) + F2(c2 + n0) < F1(c2 + n0) + F2(c1 + n0)

∴V1 < V2

The above derivation shows that assigning the cleaner

channel (channel with lower interference level, c1 in this case)

to the disadvantaged user (A) yields a better objective function.

Therefore we can conclude that allocating cleaner channels

to disadvantaged flows reduces the overall interference power

the cell produces to neighbors. This is because most of the

disadvantaged users are in remote locations around the cell

edge. Cleaner channels in general indicates that it is not

used by neighbor cells or the users are far from the cell

boundary. Hence transmitting on it will not introduce effective

interference to neighbors. Note that this heuristic is the basis

for avoidance strategies and methods such as assigning non-

trivial channel re-use distances to flows near cell boundaries.

It also supports strategies such as pairing users near cell

boundaries with those near base stations in nearby cells.

2) Hybrid Optimization Principle: To further increase the

QoS and capacity, we introduce power control to form a hybrid

optimization method. A similar approach is used in [25]. There

are two power control schemes, signal-interference-ratio (SIR)

based, and distance-based-power-control (DPC). We discuss

the two schemes in turn.

Given user flow location, SIR based power control is a rate

based algorithm. Since dynamic-channel-reallocation (DCR) is

rate based, power control based on SIR measurement is an en-

hancement of channel reallocation rather than an independent

optimization. Because user flows with lower rates already get

more and cleaner channels after DCR, and TX bits are capped

at 10 bits/tick, SIR based power control does not gain much.

Our simulation results presented in section V support this.

DPC, on the other hand, is in general an orthogonal opti-

mization to DCR. A user may determine its distance to a BS

by measuring downlink signal power loss. The concern for

this scheme is that user flows near the cell border would get

more TX power, and introduce more interference to neighbor

cells. We analytically show the effect of DPC in a simplified

example.

Assume there are two cells (c1, c2) adjacent to each other.

Power scalar = d4. P is default TX power. There are flows f1,

f2 in c1 and c2. Let d = distance(f1, c1), αd = distance(f2,

c2).(α > 0), and g = distance(f1,f2)

The interference from f1 to c2 without power control is:

I =
P

(αd+ g)4
(6)

With power control it is:

Ip =
d4P

(αd+ g)4
(7)

TX power for f2 is P for default and (αd)4P with power

control adjustment. The corresponding SIR for f2 is:

SIR =
P

(αd)4I
=

(αd+ g)4

(αd)4
(8)

SIRp =
(αd)4P

(αd)4Ip
=

(αd+ g)4

d4
(9)

Compare SIRs with and without power control:

SIRp

SIR
=

(αd+ g)4

d4
(αd)4

(αd+ g)4
= α4 (10)

The result shows for α > 1, (f2 is farther away from c2

than f1 to c1), f2’s SIR still increases even if f1 increases

its power. Therefore we conclude that remote flows always

benefit from loss based power control in a network. Based

on this conclusion, we can reasonably believe that DPC is

beneficial in two aspects. First, it helps further reduce the

user flow rate variance. This is because remote users are

more likely to be disadvantaged ones. Second, increasing TX



power of remote users improves their flow rate, and hence

improves network throughput. We will show this matches to

our simulation results.

These comments may strike the reader as contradictory

to our claims regarding the use of bandwidth allocation to

minimize ICI, since power control necessarily increases it.

However, when we have already allocated channels in order

to minimize ICI, the dynamic range of power control is

reduced and the interference has less effect: channels have

been allocated to minimize interference coupling. The overall

network capacity for fair allocation of rates may be higher

or lower, depending on the difference in rate benefit to the

user gaining power vs. the users whose rate is decreased via

the resulting increased interference. The result depends upon

loading and the assumed propagation conditions. Simulations

are required to determine the best balance between bandwidth

and power allocation for a given scenario.

Given these heuristics we design a DCR and DPC hybrid

optimization algorithm, which is described in more detail in

following section.

IV. POWER CONTROL AND BANDWIDTH ALLOCATION

HYBRID OPTIMIZATION ALGORITHM

Based on the formulation and analysis presented in section

III, the hybrid optimization algorithm we propose consists of

three sub-algorithms. Every cell in the network runs them

independently. NetAvgRate is the network average traffic rate

known by all cells. FlowAvgRate is the user average data rate.

Algorithm 1: Flow Sorting Algorithm

1: for all flow in cell do

2: compute flow average rate FlowAvgRate

3: compute network average rate NetAvgRate

4: if flow’s FlowAvgRate = 0 then

5: Save flow into Rate0FlowSet

6: end if

7: end for

8: for all flows /∈ Rate0FlowSet do

9: TxTime = current time - flow arrive time

10: ExcessBits = FlowAvgRate - NetAvgRate

11: ExcessBits = ExcessBits * TxTime

12: if flow’s ExcessBits ≤ LowThreshold then

13: Save it into SlowFlowSet

14: else if ExcessBits ≥ HiThreshold then

15: Save it into HiFlowSet

16: else

17: Save it into MidFlowSet

18: end if

19: end for

The sorting algorithm divides all the active flows in

a cell into four sets. They are Rate0FlowSet, HiFlowSet,

MidFlowSet, and SlowFlowSet, respectively. Flows in

Rate0FlowSet, are most likely newly arrived user flows. They

have zero data transmission. HiFlowSet and SlowFlowSet, as

their names suggest, contain advantaged and disadvantaged

flows. LowThreshold and HiThreshold are two tunable param-

eters.

Algorithm 2: Channel Reallocation Algorithm

1: for all flow ∈ Rate0FlowSet do

2: Assign one channel to each flow

3: end for

4: for all flow ∈ HiFlowSet do

5: Deprive channel from flow

6: add the channel into ChannelPool

7: end for

8: NumOfOccupCHs = number of occupied channels

9: NumOfFlows = number of flows

10: if NumOfOccupCHs < NumOfFlows then

11: Diff = NumOfFlows - NumOfOccupCHs

12: pick up Diff vacant channels

13: add these channels into ChannelPool

14: end if

15: ChannelPoolSize = total number of channels in Chan-

nelPool

16: Sort channels in ChannelPool in ascending order of inter-

ference level

17: Sort flows in SlowFlowSet in ascending order of FlowAv-

gRate

18: TotSlowness =
∑

flow∈SlowFlowSet flows’ ExcessBits

19: for all flow ∈ SlowFlowSet do

20: NumChs = ChannelPoolSize × ExcessBits ÷ TotSlow-

ness

21: NumChs = ⌈ NumChs ⌉
22: Allocate NumChs of channels from ChannelPool top to

the flow

23: end for

Algorithm 2 implements the channel assignment principle. It

allocates channels with lower interference, and more channels

to slower flows. A high rate flow is deprived transmission

opportunity until it becomes a low rate flow. Flows with rate

in between remain unchanged. We will see from simulation

results that this algorithm reduces flow rate variance signifi-

cantly.

Algorithm 3: Distance Based Power Control Algorithm

1: for all flow ∈ SlowFlowSet do

2: D = flow distance to BS

3: S = D4

4: if S > PowerUpLimit then

5: Set flow TX power scaler = PowerUpLimit

6: else

7: Set flow TX power scaler = S

8: end if

9: end for

The DPC algorithm calculates the flow TX power scaler

directly from its distance to the BS. DPC runs after the channel

allocation algorithm to form the hybrid resource allocation



TABLE I
UNIFORM-SIZED-CELLS SIMULATION

Simulation

Case

DCR DPC Traffic load

(µ)

Block

Probability

Average Flow

Rate

Flow Rate

Variance

Uplink

off off 208 0.0103725 3.35845 4.68144

on off 195 0.0103518 2.19499 0.366221

off on 207 0.0109084 2.62311 1.29451

on on 207 0.010478 2.20599 0.153314

Downlink

off off 186 0.00986185 3.26002 5.29739

on off 166 0.0125137 1.86105 0.502044

off on 189 0.00995174 2.55796 1.50823

on on 185 0.01101372 1.89913 0.259036

TABLE II
RANDOM-SIZED-CELLS SIMULATION

Simulation

Case

DCR DPC Traffic load

(µ)

Block

Probability

Average Flow

Rate

Flow Rate

Variance

Uplink

off off 93 0.0100228 4.10052 7.05569

on off 83 0.010998 2.82515 3.52516

on on 93 0.0109574 2.41013 1.56038

algorithm.

V. SIMULATION

Much prior research has simulated multi-cell OFDMA

network resource allocation algorithms with 7 or even fewer

cells. In order to better evaluate the heuristic algorithm, we

simulate on a large scale network consisting of 100 cells for

USC and 91 cells for RSC. All cells work independently and

simultaneously. The results, however, are only collected from

36 cells also in the middle area of the network. Fig 3 shows the

layout of RSC with different cells marked by different colors.

This layout is generated according to PPP suggested in [1], [2]

and [3]. A square in the center area includes the cells, whose

performance statistics are collected during the simulation. We

use this method to mitigate the inaccuracy introduced by

cells at network edges. Given the computational complexity

of our simulation, we ran simulations on a computer cluster.

Simulations run for a predefined number of time ticks. User

flow averaged data rate, block probability and rate variance

are computed. We evaluate algorithm performance at a 1%
blocking rate, which is achieved by adjusting the traffic load

factor µ.

A. Uniform-sized-cells

Table I presents USC simulation configuration and results.

We can see that the user flow rate variance is significantly

reduced with our optimization. This is also shown in figure

2, which has two histogram plots of user flow rate. The rate

histogram with optimization turned off is on the left. The one

on the right is with DCR and DPC turned on. The results also

indicate that DCR plays a major role in optimization.
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B. Random-sized-cells
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Fig. 3. RSC network layout

The network layout for RSC is shown in figure 3. It is
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constructed by first generating BS’ positions following PPP.

Then for every potential MS location, we find its nearest BS

and mark it by the same color. All BS’ identification numbers

are noted in the layout. Table II shows uplink simulation

configuration and results. There is more than a 55% traffic

load drop from USC to RSC. This is because the ICI gets

worse in RSC. For USC, the flow rate variance drops 96.8%

when the hybrid algorithm is on. For RSC case, it is 78%.

Figure 4 shows the user flow rate distribution with and without

optimization. Overall our hybrid algorithm works better in

USC than RSC. This is because the geographical randomness

introduces extra variance in the flow rate. However, our hybrid

algorithm still shows significant improvement.

VI. CONCLUSION

Our analysis and the simulation results clearly shows that

in order to reduce the user flow rate variance in a multi-cell

OFDMA network while providing high throughput, the hybrid

bandwidth reallocation and power control algorithm performs

very well. The algorithm was successful in producing fair allo-

cations in a distributed fashion in conditions of high loading. In

the future, we plan to investigate additional impairments such

as user mobility in networks such as overlays of macro and

femto cells for which convergence time of resource allocation

becomes more critical. This may demand measures such as

mobility prediction and allocation of users among the layers

according to both resource availability and user velocity.
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