
Optimal Bounds on Approximation of Submodular
and XOS Functions by Juntas

Vitaly Feldman
IBM Research - Almaden

San Jose, CA, USA
Email: vitaly@post.harvard.edu

Jan Vondrák
IBM Research - Almaden

San Jose, CA, USA
Email: jvondrak@us.ibm.com

Abstract—We investigate the approximability of several classes
of real-valued functions by functions of a small number of
variables (juntas). Our main results are tight bounds on the
number of variables required to approximate a function f :
{0, 1}n → [0, 1] within `2-error ε over the uniform distribution:

• If f is submodular, then it is ε-close to a function of
O(1

ε2
log 1

ε
) variables. This is an exponential improvement

over previously known results [1]. We note that Ω(1
ε2

)
variables are necessary even for linear functions.

• If f is fractionally subadditive (XOS) it is ε-close to a
function of 2O(1/ε2) variables. This result holds for all
functions with low total `1-influence and is a real-valued
analogue of Friedgut’s theorem for boolean functions. We
show that 2Ω(1/ε) variables are necessary even for XOS
functions.

As applications of these results, we provide learning algorithms
over the uniform distribution. For XOS functions, we give a
PAC learning algorithm that runs in time 21/poly(ε)poly(n). For
submodular functions we give an algorithm in the more demand-
ing PMAC learning model [2] which requires a multiplicative
(1 + γ) factor approximation with probability at least 1 − ε
over the target distribution. Our uniform distribution algorithm
runs in time 21/poly(γε)poly(n). This is the first algorithm in the
PMAC model that can achieve a constant approximation factor
arbitrarily close to 1 for all submodular functions (even over the
uniform distribution). It relies crucially on our approximation
by junta result. As follows from the lower bounds in [1] both of
these algorithms are close to optimal. We also give applications
for proper learning, testing and agnostic learning with value
queries of these classes.

Index Terms—submodular; fractionally-subadditive; approxi-
mation; junta; PAC learning; testing

I. INTRODUCTION

In this paper, we study the structure and learnability of
several classes of real-valued functions over the uniform
distribution on the Boolean hypercube {0, 1}n. The primary
class of functions that we consider is the class of submodular
functions. Submodularity, a discrete analog of convexity, has
played an essential role in combinatorial optimization [3],
[4], [5]. Recently, interest in submodular functions has been
revived by new applications in algorithmic game theory as well
as machine learning. In machine learning, several applications
[6], [7] have relied on the fact that the information provided by
a collection of sensors is a submodular function. In algorithmic
game theory, submodular functions have found application as
valuation functions with the property of diminishing returns

[8]. Along with submodular functions, other related classes
have been studied in the context of algorithmic game theory
context: coverage functions, gross substitutes, fractionally sub-
additive (XOS) functions, etc. It turns out that these classes
are all contained in a broader class, that of self-bounding func-
tions, introduced in the context of concentration of measure
inequalities [9]. We refer the reader to Section II for definitions
and relationships of these classes.

Our focus in this paper is on structural properties of these
classes of functions, specifically on their approximability by
juntas (functions of a small number of variables) over the
uniform distribution on {0, 1}n. Approximations of various
function classes by juntas is one of the fundamental topics
in Boolean function analysis [10], [11], [12], [13] with a
growing number of applications in learning theory, compu-
tational complexity and algorithms [14], [15], [16], [17], [1].
A classical result in this area is Friedgut’s theorem [11] which
states that every boolean function f is ε-close to a function
of 2O(Infl(f)/ε2) variables, where Infl(f) is the total influence
of f (see Sec. IV-A for the formal definition). Such result
is not known for general real-valued functions, and in fact
one natural generalization Freidgut’s theorem is known not
to hold [16]. However, it was recently shown [1] that every
submodular function with range [0, 1] is ε close in `2-norm to
a 2O(1/ε2)-junta. Stronger results are known in the special case
when a submodular function only takes k different values (for
some small k). For this case Blais et al. prove existence of
a junta of size (k log(1/ε))O(k) [18] and Feldman et al. give
(2k/ε)5 bound [1].

As in [1], our interest in approximation by juntas is mo-
tivated by applications to learning of submodular and XOS
functions. The question of learning submodular functions from
random examples was first formally considered by Balcan
and Harvey [2] who motivate it by learning of valuation
functions. Reconstruction of submodular up to some multi-
plicative factor from value queries (which allow the learner
to ask for the value of the function at any point) was also
considered by Goemans et al. [19]. These works and wide-
spread applications of submodular functions have recently lead
to significant attention to several additional variants of the
problem of learning and testing submodular functions as well
as their structural properties [20], [21], [22], [23], [24], [25],
[1], [18]. We survey related work in more detail in Section

I-B.

A. Our Results

Our work addresses the following two questions: (i) what
is the optimal size of junta that ε-approximates a submodular
function, and in particular whether the known bounds are op-
timal; (ii) which more general classes of real-valued functions
can be approximated by juntas, and in particular whether XOS
functions have such approximations.

In short, we provide the following answers: (i) For sub-
modular functions, the optimal ε-approximating junta has size
O(1

ε2 log 1
ε). This is an exponential improvement over the

bounds in [1], [18] which shows that submodular functions
behave almost as linear functions (which are submodular) and
are simpler than XOS functions which require a 2Ω(1/ε)-junta
to approximate. This result is proved using new techniques.
(ii) All functions with range in [0, 1] and constant total `1-
influence can be approximated in `2-norm by a 2O(1/ε2)-
junta. We show that this captures submodular functions, XOS
and even self-bounding functions. This result is a real-valued
analogue of Friedgut’s theorem and is proved using the same
technique.

We now describe these structural results formally and then
describe new learning and testing algorithms that rely on them.

1) Structural results: Our main structural result is approx-
imation of submodular functions by juntas.

Theorem 1. For any ε ∈ (0, 1
2) and any submodular function

f : {0, 1}n → [0, 1], there exists a submodular function g :
{0, 1}n → [0, 1] depending only on a subset of variables J ⊆
[n], |J | = O(1

ε2 log 1
ε), such that ‖f − g‖2 ≤ ε.

In the special case of submodular functions that take values
in {0, 1, . . . , k} and ε being the disagreement probability our
result can be simplified to give a junta of size O(k log(k/ε)).
This is an exponential improvement over bounds in both [1]
and [18] (see Corollary 15 for a formal statement).

Our proof is based on a new procedure that selects variables
that are included in the approximating junta for a submodular
function f . We view the hypercube as subsets of {1, 2, . . . , n}
and refer to f(S∪{i})−f(S) as the marginal value of variable
i on set S. Iteratively, we add a variable i if its marginal
value is large enough with probability at least 1/2 taken over
sparse random subsets of the variables that are already chosen.
One of the key pieces of the proof is the use a “boosting
lemma1” on down-monotone events of Goemans and Vondrak
[26]. We use it to show that our criterion for selection of
the variables implies that, with very high probability over a
random and uniform choice of a subset of selected variables,
the marginal value of each of the variables that are excluded is
small. The probability of having small marginal value is high
enough to apply a union bound over all excluded variables.
Bounded marginal values are equivalent to Lipschitzness of
the function and allow us to rely on concentration of Lipschitz

1The terminology comes from [26] and has no connection with the notion
of boosting in machine learning.

submodular functions to replace the functions of excluded
variables by constants. Concentration bounds for submodular
functions were first given by Boucheron et al. [9] and are also
a crucial component of some of the prior works in this area
[2], [20], [1].

One application of this procedure allows us to reduce
the number of variables from n to O(1

ε2 log n
ε). This pro-

cess can be repeated until the number of variables becomes
O(1

ε2 log 1
ε).

Using a more involved argument based on the same ideas
we show that monotone submodular functions can with high
probability be multiplicatively approximated by a junta. For-
mally, g is an multiplicative (α, ε)-approximation to f over a
distribution D, if PrD[f(x) ≤ g(x) ≤ αf(x)] ≥ 1− ε. In the
PMAC learning model, introduced by Balcan and Harvey [2] a
learner has to output a hypothesis that multiplicatively (α, ε)-
approximates the unknown function. It is a relaxation of the
worst case multiplicative approximation used in optimization
but is more demanding than the `1/`2-approximation that is
the main focus of our work. We prove the following in the
full version [27]:

Theorem 2. For every monotone submodular function f :
{0, 1}n → R+ and every γ, ε ∈ (0, 1), there is a monotone
submodular function h : {0, 1}J → R+ depending only on
a subset of variables J ⊆ [n], |J | = O(1

γ2 log 1
γε log 1

ε) such
that h is a multiplicative (1 + γ, ε)-approximation of f over
the uniform distribution.

We then show that broader classes of functions such as
XOS and self-bounding can also be approximated by juntas,
although of an exponentially larger size. We denote by Infl1(f)
the total `1-influence of f and by Infl2(f) the total `22-influence
of f (see Sec. IV-A for definitions). We prove the result via the
following generalization of the well-known Friedgut’s theorem
for boolean functions.

Theorem 3. Let f : {0, 1}n → R be any function and
ε > 0. There exists a function g : {0, 1}n → R depending
only on a subset of variables J ⊆ [n], |J | = 2O(Infl2(f)/ε2) ·
(Infl1(f))3/ε4 such that ‖f−g‖2 ≤ ε. For a submodular, XOS
or self-bounding f : {0, 1}n → [0, 1], Infl2(f) ≤ Infl1(f) =
O(1), giving |J | = 2O(1/ε2).

Friedgut’s theorem gives approximation by a junta of size
2O(Infl(f)/ε2) for a boolean f . For a boolean function total
influence Infl(f) (also referred to as average sensitivity) is
equal to both Infl1(f) and Infl2(f) (up to a fixed constant
factor). Previously it was observed that Friedgut’s theorem
is not true if Infl2(f) is used in place of Infl(f) in the
statement [16]. However we show that with an additional
factor which is just polynomial in Infl1(f) one can obtain
a generalization. O’Donnell and Servedio [16] generalized
the Friedgut’s theorem to bounded discretized real-valued
functions. They prove a bound of 2O(Infl2(f)/ε2) ·γ−O(1), where
γ is the discretization step. This special case is easily implied
by our bound. Technically, our proof is a simple refinement
of the proof of Friedgut’s theorem.

The second component of this result is a simple proof that
self-bounding functions (and hence submodular and XOS)
have constant total `1-influence. An immediate implication
of this fact alone is that self-bounding functions can be
approximated by functions of O(1/ε2) Fourier degree. For
the special case of submodular functions this was proved
by Cheraghchi et al. also using Fourier analysis, namely, by
bounding the noise stability of submodular functions [22]. Our
more general proof is also substantially simpler.

We show that this result is almost tight, in the sense that
even for XOS functions 2Ω(1/ε) variables are necessary for
an ε-approximation in `1 (see Thm. 21). Thus we obtain an
almost complete picture, in terms of how many variables are
needed to achieve an ε-approximation depending on the target
function — see Figure 1.

2) Applications: We provide several applications of our
structural results to learning and testing. These applications
are based on new algorithms as well as standard approaches
to learning over the uniform distribution.

For submodular functions our main application is a PMAC
learning algorithm over the uniform distribution.

Theorem 4. There exists an algorithm A that given γ, ε ∈
(0, 1] and access to random and uniform examples of a sub-
modular function f : {0, 1}n → R+, with probability at least
2/3, outputs a function h which is a multiplicative (1 + γ, ε)-
approximation f (over the uniform distribution). Further, A
runs in time Õ(n2) · 2Õ(1/(εγ)2) and uses log(n) · 2Õ(1/(εγ)2)

examples.

The main building block of this algorithm is an algorithm
that finds an `2-approximating junta of size Õ(1/ε2) whose
existence is guaranteed by Theorem 1. The main challenge
here is that the criterion for including variables used in the
proof of Theorem 1 cannot be (efficiently) evaluated using
random examples alone. Instead we give a general algorithm to
find a larger approximating junta whenever an approximating
junta exists. This algorithm relies only on submodularity of the
function and in our case finds a junta of size Õ(1/ε5). From
there one can easily use brute force to find a Õ(1/ε2)-junta
in time 2Õ(1/ε2).

We show that using the function g returned by this building
block we can partition the domain into 2Õ(1/ε2) subcubes
such that on a constant fraction of those subcubes g gives
a multiplicative (1 + γ, ε) approximation. We then apply the
building block recursively for O(log(1/ε)) levels. We remark
that our PMAC algorithm does not use the multiplicative
approximation by a junta given in Theorem 2 since in this
case we do not know how to find an approximating junta from
random examples and it only applies to monotone submodular
functions.

In addition, the algorithm for finding close-to-optimal `2-
approximating junta allows us to learn properly (by outputting
a submodular function) in time 2Õ(1/ε2)poly(n). Using a stan-
dard transformation we can also test whether the input function
is submodular or ε-far (in `1) from submodular, in time
2Õ(1/ε2) · poly(n) and using just 2Õ(1/ε2) + poly(1/ε) log n

random examples. (Using earlier results, this would have been
possible only in time doubly-exponential in ε.)

Using the junta and low Fourier degree approximation for
self-bounding functions (Theorem 3), we give a PAC learning
algorithm for XOS functions.

Theorem 5. There exists an algorithm A that given ε > 0
and access to random uniform examples of an XOS function
f : {0, 1}n → [0, 1], with probability at least 2/3, outputs a
function h, such that ‖f − h‖1 ≤ ε. Further, A runs in time
2O(1/ε4)poly(n) and uses 2O(1/ε4) log n random examples.

In this case the algorithm is fairly standard: we use the fact
that XOS functions are monotone and hence their influential
variables can be detected from random examples (as for
example in [29]). Given the influential variables we can exploit
the low Fourier degree approximation to find a hypothesis
using `1 regression over the low degree parities (as done in
[1]).

This algorithm naturally extends to any monotone real-
valued function of low total `1-influence, of which XOS
functions are a special case. Using the algorithm in Theorem 5
we also obtain a PMAC-learning algorithm for XOS functions
using the same approach as we used for submodular functions.
However the dependence of the running time and sample
complexity on 1/γ and 1/ε is doubly-exponential in this case.
To our knowledge, this is the first PMAC learning algorithm
for XOS functions that can achieve constant approximation
factor in polynomial time for all XOS functions.

We give the details of these results and several additional
implications of our structural results to agnostic learning and
testing in the full version of this work [27].

B. Related Work

Reconstruction of submodular functions up to some multi-
plicative factor (on every point) from value queries was first
considered by Goemans et al. [19]. They show a polynomial-
time algorithm for reconstructing monotone submodular func-
tions with Õ(

√
n) factor approximation and prove a nearly

matching lower bound. This was extended to the class of
all subadditive functions in [23] which studies small-size
approximate representations of valuation functions (referred
to as sketches). Theorem 2 shows that allowing an ε error
probability (over the uniform distribution) makes it possi-
ble to get a multiplicative (1 + γ)-approximation using a
poly(1/γ, log (1/ε))-sized sketch. This sketch can be found
in polynomial time using value queries.

Balcan and Harvey initiated the study of learning submodu-
lar functions from random examples coming from an unknown
distribution and introduce the PMAC learning model described
above [2]. They give a factor

√
n PMAC learning algorithm

and show an information-theoretic factor- 3
√
n inapproxima-

bility for submodular functions. Subsequently, Balcan et al.
gave a distribution-independent PMAC learning algorithm for
XOS functions that achieves factor Õ(

√
n) approximation and

showed that this it is essentially optimal [24]. They also give
a PMAC learning algorithm in which the number of clauses

Class of functions junta size lower bound junta size upper bound
linear Ω(1/ε2) [Folkl., see also [27]] O(1/ε2) [Folkl.]

coverage as above O(1/ε2) [28]
submodular as above O(1/ε2 · log(1/ε)) [Thm. 1]

XOS and self-bounding 2Ω(1/ε) [Thm. 21] 2O(1/ε2) [Thm. 3]
constant total `1-influence 2Ω(1/ε) [11] 2O(1/ε2) [Thm. 3]
constant total `22-influence Ω(n) [16] n

Fig. 1. Overview of junta results: bounds on the size of a junta achieving an ε-approximation in `2 for a function with range [0, 1].

defining the target XOS function determines the complexity
and approximation factor that can be achieved (for polynomial-
size XOS functions it implies O(nβ)-approximation factor in
time nO(1/β) for any β > 0).

The lower bound in [2] also implies hardness of learning of
submodular function with `1(or `2)-error: it is impossible to
learn a submodular function f : {0, 1}n → [0, 1] in poly(n)
time within any nontrivial `1-error over general distributions.
We emphasize that these strong lower bounds rely on a very
specific distribution concentrated on a sparse set of points,
and show that this setting is very different from the setting of
uniform/product distributions which is the focus of this paper.

For product distributions, Balcan and Harvey show that
1-Lipschitz monotone submodular functions of minimum
nonzero value at least 1 have concentration properties imply-
ing a PMAC algorithm with a multiplicative (O(log 1

ε), ε)-
approximation [2]. The approximation is by a constant func-
tion and the algorithm they give approximates the function by
its mean on a small sample. Since a constant is a function
of 0 variables, their result can be viewed as an extreme case
of approximation by a junta. Our result gives multiplicative
(1 + γ, ε)-approximation for arbitrarily small γ, ε > 0. The
main point of Theorem 2, perhaps surprising, is that the
number of required variables grows only polynomially in 1/γ
and logarithmically in 1/ε.

Learning of submodular functions with additive rather than
multiplicative guarantees over the uniform distribution was
first considered by Gupta et al. who were motivated by
applications in private data release [20]. They show that
submodular functions can be ε-approximated by a collection
of nO(1/ε2) ε2-Lipschitz submodular functions. Concentration
properties imply that each ε2-Lipschitz submodular function
can be ε-approximated by a constant. This leads to a learning
algorithm running in time nO(1/ε2), which however requires
value queries in order to build the collection. Cheraghchi et
al. use an argument based on noise stability to show that
submodular functions can be approximated in `2 by functions
of O(1/ε2) Fourier degree [22]. This leads to an nO(1/ε2)

learning algorithm which uses only random examples and,
in addition, works in the agnostic setting. Most recently,
Feldman et al. show that the decomposition from [20] can
be computed by a low-rank binary decision tree [1]. They
then show that this decision tree can then be pruned to obtain
depth O(1/ε2) decision tree that approximates a submodu-
lar function. This construction implies approximation by a

2O(1/ε2)-junta of Fourier degree O(1/ε2). They used these
structural results to give a PAC learning algorithm running in
time poly(n) ·2O(1/ε4). Note that our multiplicative (1+γ, ε)-
approximation in this case implies O(γ + ε) `2-error (but
`2-error gives no multiplicative guarantees). In [1] it is also
shown that 2Ω(ε−2/3) random examples (or even value queries)
are necessary to PAC learn monotone submodular functions
to `1-error of ε. This implies that our learning algorithms
for submodular and XOS functions cannot be substantially
improved.

In a recent work, Raskhodnikova and Yaroslavtsev consider
learning and testing of submodular functions taking values
in the range {0, 1, . . . , k} (referred to as pseudo-Boolean)
[25]. The error of a hypothesis in their framework is the
probability that the hypothesis disagrees with the unknown
function. They build on the approach from [20] and obtain a
poly(n)·kO(k log k/ε)-time PAC learning algorithm using value
queries. In this special case the results in [1] give approxima-
tion of submodular functions by junta of size poly(2k/ε) and
poly(2k/ε, n) PAC learning algorithm from random examples.
In an independent work, Blais et al. prove existence of a
junta of size (k log(1/ε))O(k) and use it to give an algorithm
for testing submodularity using (k log(1/ε))Õ(k) value queries
[18].

It is interesting to remark that several largely unrelated
methods point to approximating junta being of exponential
size, namely, pruned decision trees in [1]; Friedgut’s theorem
based analysis in this work; two Sunflower lemma-style argu-
ments in [18]. However, unexpectedly (at least for the authors),
polynomial-size junta suffices.

C. Organization

Following preliminaries in Section II we present the proof
of our main structural result (Thm. 1) in Section III. In Section
IV we give the proof of Thm. 3 and describe an example of a
function that proves tightness of our bound for XOS functions.
The rest of the results appear in the full version of this work
[27].

II. PRELIMINARIES

First, we define submodular, fractionally subadditive and
subadditive functions. These classes are well known in combi-
natorial optimization and there has been a lot of recent interest
in these functions in algorithmic game theory, due to their
expressive power as valuations of self-interested agents.

Definition 6. A set function f : 2N → R is
• monotone, if f(A) ≤ f(B) for all A ⊆ B ⊆ N .
• submodular, if f(A∪B) + f(A∩B) ≤ f(A) + f(B) for

all A,B ⊆ N .
• fractionally subadditive, if f(A) ≤

∑
βif(Bi) whenever

βi ≥ 0 and
∑
i:a∈Bi

βi ≥ 1 ∀a ∈ A.
• subadditive, if f(A ∪ B) ≤ f(A) + f(B) for all A ⊆
B ⊆ N .

Submodular functions are not necessarily nonnegative, but
in many applications (especially when considering multiplica-
tive approximations), this is a natural assumption. All our
additive approximations are shift-invariant and hence also
apply to submodular functions with range [−1/2, 1/2] (and
can also be scaled in a straightforward way). Fractionally
subadditive functions are nonnegative by definition (by con-
sidering A = B1, β1 > 1). Fractionally subadditive functions
are known equivalently as XOS functions. This class includes
all (nonnegative) monotone submodular functions (but does
not contain non-monotone functions).

Next, we introduce self-bounding functions. Self-bounding
functions were defined by Boucheron, Lugosi and Massart [9]
as a unifying class of functions that enjoy strong concentration
properties. Self-bounding functions are defined generally on
product spaces Xn; here we restrict our attention to the
hypercube, so the reader can assume that X = {0, 1}. We
identify functions on {0, 1}n with set functions on N = [n]
in a natural way. By 0, we denote the all-zeroes vector in
{0, 1}n (corresponding to ∅).

McDiarmid and Reed [30] further generalized the notion of
self-bounding functions which we present here.

Definition 7. For a function f : {0, 1}n → R and any x ∈
{0, 1}n, let minxi

f(x) = min {f(x), f(x⊕ ei)}. f is (a, b)-
self-bounding, if for all x ∈ {0, 1}n and i ∈ [n],

f(x)−min
xi

f(x) ≤ 1, (1)
n∑
i=1

(f(x)−min
xi

f(x)) ≤ af(x) + b. (2)

We remark that condition (1) forces self-bounding functions
to be 1-Lipschitz. This is not important for our results, but we
keep the definition from [9] for consistency with the literature.

The class of (a, b)-self-bounding functions enjoys strong
(dimension-free) concentration bounds, with appropriate quan-
titative adjustments depending on a, b [30]. In this paper, we
are primarily concerned with (a, 0)-self-bounding functions,
to which we also refer as a-self-bounding functions. Note that
the definition implies that f(x) ≥ 0 for every a-self-bounding
function. Self-bounding functions include (1-Lipschitz) frac-
tionally subadditive functions. To subsume 1-Lipschitz non-
monotone submodular functions, it is sufficient to consider
the slightly more general 2-self-bounding functions - see [31].
The 1-Lipschitz condition will not play a role in this paper,
as we normalize functions to have values in the [0, 1] range.

The `1 and `2-norms of a f : {0, 1}n → R are defined
by ||f ||1 = Ex∼U [|f(x)|] and ||f ||2 = (Ex∼U [f(x)2])1/2,

respectively, where U is the uniform distribution.

Definition 8 (Discrete derivatives). For x ∈ {0, 1}n, b ∈
{0, 1} and i ∈ n, let xi←b denote the vector in {0, 1}n
that equals x with i-th coordinate set to b. For a function
f : {0, 1}n → R and index i ∈ [n] we define ∂if(x) =
f(xi←1)− f(xi←0). We also define ∂i,jf(x) = ∂i∂jf(x).

A function is monotone (non-decreasing) if and only if for
all i ∈ [n] and x ∈ {0, 1}n, ∂if(x) ≥ 0. For a submodular
function, ∂i,jf(x) ≤ 0, by considering the submodularity
condition for xi←0,j←0, xi←0,j←1, xi←1,j←0, and xi←1,j←1.

III. JUNTA APPROXIMATIONS OF SUBMODULAR
FUNCTIONS

Here we prove Theorem 1, a bound of Õ(1/ε2) on the
size of a junta needed to approximate a submodular function
bounded by [0, 1] within an additive error of ε. The core of
our proof is the following (seemingly weaker) statement. We
remark that logarithms in this paper are base 2.

Lemma 9. For any ε ∈ (0, 1
2) and any submodular function

f : {0, 1}J → [0, 1], there exists a submodular function h :
{0, 1}J → [0, 1] depending only on a subset of variables J ′ ⊆
J , |J ′| ≤ 128

ε2 log 16|J|
ε2 , such that ‖f − h‖2 ≤ 1

2ε.

Note that if |J | = n and ε = Ω(1), Lemma 9 reduces
the number of variables to O(log n) rather than a constant.
However, we show that this is enough to prove Theorem 1, ef-
fectively by repeating this argument. In fact, it was previously
shown [1] that submodular functions can be ε-approximated by
functions of 2O(1/ε2) variables. One application of Lemma 9
to this result brings the number of variables down to Õ(1

ε4),
and another repetition of the same argument brings it down
to O(1

ε2 log 1
ε). This is a possible way to prove Theorem 1.

Nevertheless, we do not need to rely on this previous result,
and we can easily derive Theorem 1 directly from Lemma 9
(see full version for the details). In the rest of this section,
our goal is to prove Lemma 9.

What we need. Our proof relies on two previously known
facts: a concentration result for submodular functions, and a
“boosting lemma” for down-monotone events.

Concentration of submodular functions. It is known that a
1-Lipschitz nonnegative submodular function f is concentrated
within a standard deviation of O(

√
E[f]) [9], [31]. This fact

was also used in previous work on learning of submodular
functions [2], [20], [1]. Exponential tail bounds are known in
this case, but we do not even need this. We quote the following
result which follows from the Efron-Stein inequality (see [1]
for a proof).

Lemma 10. For any α-Lipschitz monotone submodular func-
tion f : {0, 1}n → R+,

Var[f] ≤ αE[f].

For any α-Lipschitz (nonmonotone) submodular function f :
{0, 1}n → R+,

Var[f] ≤ 2αE[f].

Boosting lemma for down-monotone events. The following
was proved as Lemma 3 in [26].

Lemma 11. Let F ⊆ {0, 1}X be down-monotone (if x ∈ F
and y ≤ x coordinate-wise, then y ∈ F). For p ∈ (0, 1),
define

σp = Pr[X(p) ∈ F]

where X(p) is a random subset of X , each element sampled
independently with probability p. Then

σp = (1− p)φ(p)

where φ(p) is a non-decreasing function for p ∈ (0, 1).

a) The proof of Lemma 9: Given a submodular function
f : {0, 1}J → [0, 1], let F : [0, 1]J → [0, 1] denote the
multilinear extension of f : F (x) = E[f(x̂)] where x̂ has
independently random 0/1 coordinates with expectations xi.
We also denote by 1S the characteristic vector of a set S.

Algorithm 12. Given f : {0, 1}J → [0, 1], produce a small
set of important coordinates J ′ as follows (for parameters
α, δ > 0):
• Set S = T = ∅.
• As long as there is i /∈ S such that Pr[∂if(1S(δ)) > α] >

1/2, include i in S.
(This step is sufficient for monotone submodular func-
tions.)

• As long as there is i /∈ T such that Pr[∂if(1J\T (δ)) <
−α] > 1/2, include i in T .
(This step deals with non-monotone submodular func-
tions.)

• Return J ′ = S ∪ T .

The intuition here (for monotone functions) is that we
include greedily all variables whose contribution is significant,
when measured at a random point where the variables chosen
so far are set to 1 with a (small) probability δ. The reason
for this is that we can bound the number of such variables,
and at the same time we can prove that the contribution of
unchosen variables is very small with high probability, when
the variables in J ′ are assigned uniformly at random (this part
uses the boosting lemma). This is helpful in estimating the
approximation error of this procedure.

First, we bound the number of variables chosen by the
procedure. The argument is essentially that if the procedure
had selected too many variables, their expected cumulative
contribution would exceed the bounded range of the function.
This argument would suffice for monotone submodular func-
tions. The final proof is somewhat technical because of the
need to deal with potentially negative discrete derivatives of
non-monotone submodular functions.

Lemma 13. The number of variables chosen by the procedure
above is |J ′| ≤ 4

αδ .

Proof. For each i ∈ S, let S<i be the subset of variables in
S included before the selection of i. For a set R ⊆ S let R<i
denote R ∩ S<i. Further, for R ⊆ S, let us define R+ to be

the set where i ∈ R+ iff i ∈ R and ∂if(1R<i
) > α; in other

words, these are all the elements in R that have a marginal
contribution more than α to the previously included elements.

For each variable i included in S, we have by definition
Pr[∂if(1S<i(δ)) > α] > 1/2. Since each i ∈ S appears in
S(δ) with probability δ, and (independently) ∂if(1S<i(δ)) > α
with probability at least 1/2, we get that each element of S
appears in S(δ)+ with probability at least δ/2. In expectation,
E[|S(δ)+|] ≥ 1

2δ|S|. Also, for any set R ⊆ S and each i ∈
R+, submodularity implies that ∂if(1R+

<i
) ≥ ∂if(1S<i

) > α,
since R+

<i ⊆ R<i ⊆ S<i. Now we get that

f(R+) = f(0) +
∑
i∈R+

∂if(1R+
<i

) > α|R+|.

From here we obtain that

E[f(S(δ)+)] > αE[|S(δ)+|] ≥ 1

2
αδ|S|.

This implies that |S| ≤ 2
αδ , otherwise the expectation would

exceed the range of f , which is [0, 1].
To bound the size of T we observe that the function f̄

defined as f̄(1R) = f(1J\R) for every R ⊆ J is submodular
and for every i ∈ J , ∂if̄(1R) = −∂if(1J\R). The criterion
for including the variables in T is the same as criterion of
including the variables in S used for function f̄ in place of
f . Therefore, by an analogous argument, we cannot include
more than 2

αδ elements in T , hence |J ′| = |S ∪ T | ≤ 4
αδ .

The next step in the analysis replaces the condition used
by Algorithm 12 by a probability bound exponentially small
in 1/δ. The tool that we use here is the “boosting lemma”
(Lemma 11) which amplifies the probability bound from 1/2
to 1/21/(2δ), as the sampling probability goes from δ to 1/2.

Lemma 14. With the same notation as above, if δ ≤ 1/2, then
for any i ∈ J \ J ′

Pr[∂if(1J′(1/2)) > α] ≤ 2−1/(2δ)

and
Pr[∂if(1J\J′(1/2)) < −α] ≤ 2−1/(2δ).

Proof. Let us prove the first inequality; the second one will be
similar. First, we know by the selection rule of the algorithm
that for any i /∈ J ′,

Pr[∂if(1S(δ)) > α] ≤ 1/2.

By submodularity of f we get that for any i /∈ J ′,

Pr[∂if(1J′(δ)) > α] ≤ 1/2.

Denote by F ⊆ {0, 1}J′ the family of points x such
that ∂if(x) > α. By the submodularity of f , which is
equivalent to partial derivatives being non-increasing, F is
a down-monotone set: if y ≤ x ∈ F , then y ∈ F . If
we define σp = Pr[J ′(p) ∈ F] as in Lemma 11, we have
σδ ≤ 1/2. Therefore, by Lemma 11, σp = (1 − p)φ(p)

where φ(p) is a non-decreasing function. For p = δ, we
get σδ = (1 − δ)φ(δ) ≤ 1/2, which implies φ(δ) ≥ 1/(2δ)

(note that (1 − δ)1/(2δ) ≥ 1/2 for any δ ∈ [0, 1/2]). As
φ(p) is non-decreasing, we must also have φ(1/2) ≥ 1/(2δ).
This means σ1/2 = (1/2)φ(1/2) ≤ 1/21/(2δ). Recall that
σ1/2 = Pr[J ′(1/2) ∈ F] = Pr[∂if(1J′(p)) > α] so this
proves the first inequality.

For the second inequality, we denote similarly F = {F ⊆
J ′ : ∂if(1J\F) < −α}. Again, this is a down-monotone
set by the submodularity of f . By the selection rule of the
algorithm, σδ = Pr[J ′(δ) ∈ F] = Pr[∂if(1J\J′(δ)) < −α] ≤
Pr[∂if(1J\T (δ)) < −α] ≤ 1/2. This implies by Lemma 11
that σ1/2 = Pr[J ′(1/2) ∈ F] ≤ 1/21/(2δ). This proves the
second inequality.

Proof of Lemma 9. Given a submodular function f :
{0, 1}J → [0, 1], we construct a set of coordinates J ′ ⊆ J
as described above, with parameters α = 1

16ε
2 and δ =

1/(2 log 16|J|
ε2). Lemma 13 guarantees that |J ′| ≤ 4

αδ =
128
ε2 log 16|J|

ε2 .
Let us use xJ′ to denote the |J ′|-tuple of coordinates of

x indexed by J ′. Consider the subcube of {0, 1}J where the
coordinates on J ′ are fixed to be xJ′ . In the following, all
expectations are over a uniform distribution on the respective
subcube, unless otherwise indicated. We denote by fxJ′ the
restriction of f to this subcube, fxJ′ (xJ̄′) = f(xJ′ , xJ̄′).
We define h : {0, 1}J → [0, 1] to be the function obtained
by replacing each fxJ′ by its expectation over the respective
subcube:

h(x) = E[fxJ′] = E
y
J̄′

[f(xJ′ , yJ̄′)].

Obviously h depends only on the variables in J ′ and it is easy
to see that it is submodular with range in [0, 1]. It remains to
estimate the distance of h from f . Observe that

‖f − h‖22 = E
x

[(f(x)− h(x))2]

= E
xJ′

E
y
J̄′

[(f(xJ′ , yJ̄′)− h(xJ′ , yJ̄′))
2]

= E
xJ′

E
y
J̄′

[(fxJ′ (yJ̄′)−E[fxJ′])
2]

= E
xJ′

[Var[fxJ′]].

We partition the points xJ′ ∈ {0, 1}J
′

into two classes:
1) Call xJ′ bad, if there is i ∈ J \ J ′ such that
• ∂if(xJ′) > α, or
• ∂if(xJ′ + 1J\J′) < −α.
In particular, we call xJ′ bad for the coordinate i where
this happens.

2) Call xJ′ good otherwise, i.e. for every i ∈ J \J ′ we have
• ∂if(xJ′) ≤ α, and
• ∂if(xJ′ + 1J\J′) ≥ −α.

Consider a good point xJ′ and the restriction of f to the
respective subcube, fxJ′ . The condition above means that for
every i ∈ J \ J ′, the marginal value of i is at most α at the
bottom of this subcube, and at least −α at the top of this
subcube. By submodularity, it means that the marginal values

are between [−α, α], for all points of this subcube. Hence,
fxJ′ is a α-Lipschitz submodular function. By Lemma 10,

Var[fxJ′] ≤ 2αE[fxJ′] ≤
1

8
ε2

considering that α = 1
16ε

2 and fxJ′ has values in [0, 1].
If xJ′ is bad, then we do not have a good bound on the

variance of fxJ′ . However, there cannot be too many bad
points xJ′ , due to Lemma 14: Observe that the distribution
of xJ′ , uniform in {0, 1}J′ , is the same as what we denoted
by 1J′(1/2) in Lemma 14, and the distribution of xJ′ + 1J\J′
is the same as 1J\J′(1/2). By Lemma 14, we have that for
each i ∈ J \ J ′, the probability that xJ′ is bad for i is at
most 2 ·21/(2δ) = ε2

8|J| . By a union bound over all coordinates
i ∈ J \ J ′, the probability that xJ′ is bad is at most 1

8ε
2.

Now we can estimate the `2-distance between f and h:

‖f − h‖22 = E
xJ′∈{0,1}J

′
[Var[fxJ′]]

≤ Pr[xJ′ is bad] · 1 + Pr[xJ′ is good] ·
· E
good xJ′∈{0,1}J

′
[Var[fxJ′]]

≤ Pr[xJ′ is bad] + max
good xJ′∈{0,1}J

′
[Var[fxJ′]]

≤ 1

8
ε2 +

1

8
ε2 =

1

4
ε2.

Hence, we conclude that ‖f − h‖2 ≤ 1
2ε as desired.

We now briefly examine the special case of a submodular
function taking values in {0, 1

k ,
2
k , . . . , 1} for some integer

k. This is just a scaled version of the pseudo-boolean case
considered in [25] and [18]. By choosing α = 1

k+1 and
δ = 1/ log (2|J |/ε) in the proof above we will obtain that
α-Lipschitz function must be a constant (and, in particular,
independent of all the variables in J \J ′). This means that we
obtain exact equality for all but the “bad” values of xJ′ . The
fraction of such values is at most 2·21/δ ·|J | ≤ ε and therefore
the submodular function h(x) = f(xJ ,1J\J′) equals f with
probability at least 1− ε. As before, after one application we
get a O(k · log (n/ε))-junta and by repeating the application
we can obtain a O(k · log (k/ε))-junta.

Corollary 15. For any integer k ≥ 1, ε ∈ (0, 1
2) and any

submodular function f : {0, 1}n → {0, 1, . . . , k}, there exists
a submodular function g : {0, 1}n → {0, 1, . . . , k} depending
only on a subset of variables J ⊆ [n], |J | = O(k log k

ε), such
that PrU [f 6= g] ≤ ε.

IV. APPROXIMATION OF LOW-INFLUENCE FUNCTIONS BY
JUNTAS

Here we show how structural results for submodular
(weaker than the one in Section III), XOS and self-bounding
functions can be proved in a unified manner using the notion
of total influence.

A. Preliminaries: Fourier Analysis

We rely on the standard Fourier transform representation
of real-valued functions over {0, 1}n as linear combina-
tions of parity functions. For S ⊆ [n], the parity func-
tion χS : {0, 1}n → {−1, 1} is defined by χS(x) =
(−1)

∑
i∈S xi . The Fourier expansion of f is given by f(x) =∑

S⊆[n] f̂(S)χS(x). The degree of highest degree non-zero
Fourier coefficient of f is referred to as the Fourier degree
of f . Note that Fourier degree of f is exactly the polynomial
degree of f when viewed over {−1, 1}n instead of {0, 1}n
and therefore it is also equal to the polynomial degree of f
over {0, 1}n. Let f : {0, 1}n → R and f̂ : 2[n] → R be its
Fourier transform. The spectral `1-norm of f is defined as
||f̂ ||1 =

∑
S⊆[n] |f̂(S)|.

Observe that ∂if(x) = 2
∑
S3i f̂(S)χS\{i}(x), and

∂i,jf(x) = 4
∑
S3i,j f̂(S)χS\{i,j}(x).

We use several notions of influence of a variable on a real-
valued function which are based on the standard notion of
influence for Boolean functions (e.g. [32], [33]).

Definition 16 (Influences). For a real-valued f : {0, 1}n →
R, i ∈ [n], and κ ≥ 0 we define the `κκ-influence of variable
i as Inflκi (f) = ‖ 1

2∂if‖
κ
κ = E[| 12∂if |

κ]. We define Inflκ(f) =∑
i∈[n] Inflκi (f) and refer to it as the total `κκ-influence of f .

For a boolean function f : {0, 1}n → {0, 1}, Infl(f) is defined
as 2Infl1(f) and is also referred to as average sensitivity.

The most commonly used notion of influence for real-valued
functions is the `22-influence which satisfies

Infl2
i (f) =

∥∥∥∥1

2
∂if

∥∥∥∥2

2

=
∑
S3i

f̂2(S) .

From here, the total `22-influence is equal to Infl2(f) =∑
S |S|f̂2(S).

B. Self-bounding Functions Have Low Total Influence

A key fact that we prove is that submodular, XOS and self-
bounding functions have low total `1-influence.

Lemma 17. Let f : {0, 1}n → R+ be an a-self-bounding
function. Then Infl1(f) ≤ a · ‖f‖1. In particular, for XOS
f : {0, 1}n → [0, 1], Infl1(f) ≤ 1. For a submodular f :
{0, 1}n → [0, 1], Infl1(f) ≤ 2.

Proof. We have

Infl1(f) =
1

2

n∑
i=1

E[|f(xi←1)− f(xi←0)|]

=

n∑
i=1

E[(f(x)− f(x⊕ ei))+]

where x ⊕ ei is x with the i-th bit flipped, and (•)+ =
max{•, 0} is the positive part of a number. (Note that each
difference |f(xi←1) − f(xi←0)| is counted twice in the first
expectation and once in the second expectation.) By using

the property of a-self-bounding functions, we know that∑n
i=1(f(x)− f(x⊕ ei))+ ≤ af(x), which implies

Infl1(f) =

n∑
i=1

E[(f(x)−f(x⊕ei))+] ≤ aE[|f(x)|] = a‖f‖1.

Finally, we recall that an XOS function is self-bounding and
a non-negative submodular function is 2-self-bounding (see
[31]).

We note that for functions with a [0, 1] range, Infl2(f) ≤
Infl1(f), hence the above lemma also gives a bound on
Infl2(f). It is well-known that functions of low total `22-
influence can be approximated by low-degree polynomials. We
recap this fact here.

Lemma 18. Let f : {0, 1}n → R be any function and let d be
any positive integer. Then

∑
S⊆[n],|S|>d f̂(S)2 ≤ Infl2(f)/d.

Proof. From the definition of Infl2
i (f), we get that Infl2(f) =∑

S⊆[n] |S|f̂(S)2. Hence∑
S⊆[n], |S|>d

f̂(S)2 ≤ 1

d
Infl2(f) .

This gives a simple proof that submodular and XOS func-
tions are ε-approximated in `2 by polynomials of degree 2/ε2

(which was proved for submodular functions in [22]). We
next show a stronger statement, that these functions are ε-
approximated by 2O(1/ε2)-juntas of Fourier degree O(1/ε2).

C. Friedgut’s Theorem for Real-Valued Functions

As we have shown in Lemma 17, self-bounding functions
have low total `1-influence. A celebrated result of Friedgut
[11] shows that any Boolean function on {0, 1}n of low
total influence is close to a function that depends on few
variables. It is therefore natural to try and apply Friedgut’s
result to our setting. A commonly considered generalization of
Boolean influences to real-valued functions uses `22-influences
which can be easily expressed using Fourier coefficients (e.g.
[34]). However Friedgut-style result is not true for real-valued
functions when `22-influences are used [16], [27]. This issue
also arises in the problem of learning real-valued monotone
decision trees by O’Donnell and Servedio [16]. They overcome
the problem by first discretizing the function and proving that
Friedgut’s theorem can be extended to the discrete case (as
long as the discretization step is not too small). The problem
with using this approach for submodular functions is that it
does not preserve submodularity and can increase total influ-
ence of the resulting function to Ω(

√
n) with discretization

parameter necessary for the approach to work (consider for
example a linear function 1

n

∑
i xi).

Here we instead prove a generalization of Friedgut’s the-
orem to all real-valued functions. We show that Friedgut’s
theorem would hold for real-valued functions if the total `κκ-
influence is small in addition to total `22-influence for any
constant κ ∈ [1, 2). Self-bounding functions have low total

`1-influence and hence for our purposes κ = 1 would suffice.
We prove the slightly more general version as it could be
useful elsewhere (and the proof is essentially the same).

Theorem 19. Let f : {0, 1}n → R be any function and ε, κ ∈
(0, 1). Let d = 2 · Infl2(f)/ε and let

I = {i ∈ [n] | Inflκi (f) ≥ α} for

α =
(
(κ− 1)d−1 · ε/(2Inflκ(f))

)κ/(2−κ)
.

Then for the set Id = {S ⊆ I | |S| ≤ d} we have∑
S 6∈Id f̂(S)2 ≤ ε.

To obtain Theorem 3 from this statement we use it with
ε2 error and note that g =

∑
S∈Id f̂(S)χS is a function of

Fourier degree d that depends only on variables in I . Further,
‖f − g‖22 ≤ ε2 and the set I has size of at most

|I| ≤ Inflκ(f)/α = 2O(Infl2(f)/ε2)·ε2κ/(2−κ)·(Inflκ(f))2/(2−κ).
(3)

Also note that Theorem 19 does not allow us to directly bound
|I| in terms of Infl1(f) since it does not apply to κ = 1.
However for every κ ∈ [1, 2], Inflκ(f) ≤ Infl1(f) + Infl2(f)
and therefore we can also bound |I| using equation (3) for
κ = 4/3 and then substituting Infl4/3(f) ≤ Infl1(f)+ Infl2(f).
This gives the proof of Theorem 3 (first part). The second part
of Theorem 3 now follows from Lemma 17.

Our proof of Theorem 19 is a simple modification of the
proof of Friedgut’s theorem from [35] and can be found in
the full version of the work [27]. For functions that have low
total `1-influence we also easily obtain the following corollary
of Th. 19.

Corollary 20. Let f : {0, 1}n → [0, 1] be any function and
ε > 0. For d = 2 · Infl1(f)/ε2 and α = 2−4d let

I = {i ∈ [n] | Infl1
i (f) ≥ α}.

There exists a function p of Fourier degree d over variables
in I , such that ‖f − p‖2 ≤ ε and ‖p̂‖1 ≤ 2O(Infl1(f)2/ε4).

D. Lower Bound On Junta Size For XOS Functions

Here we prove that Theorem 3 is close-to-tight and, in
particular, Theorem 1 cannot be extended to XOS functions.
In fact, we show that 2Ω(1/ε) variables are necessary for an ε-
approximation to an XOS function. Our lower bound is based
on the Tribes DNF function studied by Ben-Or and Linial [32]
with AND replaced by a linear function. The Tribes DNF was
also used by Friedgut to prove tightness of his theorem for
boolean functions [11].

Theorem 21. Suppose that n = ab where b = 2a and consider
an XOS function

f(x) =
1

a
max

1≤j≤b

∑
i∈Aj

xi

where (A1, . . . , Ab) is a partition of [n] into sets of size |Aj | =
a. Then every function g : {0, 1}n → R that depends on fewer
than 2a−1 variables has ‖f − g‖1 = Ω(1/a).

ACKNOWLEDGEMENTS

We would like to thank Seshadhri Comandur, Pravesh
Kothari and the anonymous FOCS referees for their comments
and useful suggestions.

REFERENCES

[1] V. Feldman, P. Kothari, and J. Vondrák, “Representation, approximation
and learning of submodular functions using low-rank decision trees,”
COLT, 2013.

[2] M. Balcan and N. Harvey, “Submodular functions: Learnability, struc-
ture, and optimization,” CoRR, vol. abs/1008.2159, 2012, earlier version
in STOC 2011.

[3] J. Edmonds, “Matroids, submodular functions and certain polyhedra,”
Combinatorial Structures and Their Application.

[4] L. Lovász, “Submodular functions and convexity,” Mathematical Pro-
grammming: The State of the Art, pp. 235–257, 1983.

[5] A. Frank, “Matroids and submodular functions,” Annotated Biblogra-
phies in Combinatorial Optimization, pp. 65–80, 1997.

[6] C. Guestrin, A. Krause, and A. Singh, “Near-optimal sensor placements
in gaussian processes,” in ICML, 2005, pp. 265–272.

[7] A. Krause, C. Guestrin, A. Gupta, and J. Kleinberg, “Near-optimal
sensor placements: maximizing information while minimizing commu-
nication cost,” in IPSN, 2006, pp. 2–10.

[8] D. J. L. B. Lehmann and N. Nisan, “Combinatorial auctions with
decreasing marginal utilities,” Games and Economic Behavior, vol. 55,
pp. 1884–1899, 2006.

[9] S. Boucheron, G. Lugosi, and P. Massart, “A sharp concentration
inequality with applications,” Random Struct. Algorithms, vol. 16, no. 3,
pp. 277–292, 2000.

[10] N. Nisan and M. Szegedy, “On the degree of boolean functions as real
polynomials,” Computational Complexity, vol. 4, pp. 462–467, 1992.

[11] E. Friedgut, “Boolean functions with low average sensitivity depend on
few coordinates,” Combinatorica, vol. 18, no. 1, pp. 27–35, 1998.

[12] J. Bourgain, “On the distribution of the fourier spectrum of boolean
functions,” Israel Journal of Mathematics, vol. 131(1), pp. 269–276,
2002.

[13] E. Friedgut, G. Kalai, and A. Naor, “Boolean functions whose Fourier
transform is concentrated on the first two levels,” Adv. in Appl. Math,
vol. 29, 2002.

[14] I. Dinur and S. Safra, “On the hardness of approximating minimum
vertex cover,” Annals of Mathematics, vol. 162, 2005.

[15] R. Krauthgamer and Y. Rabani, “Improved lower bounds for embeddings
into L1,” in SODA, 2006, pp. 1010–1017.

[16] R. O’Donnell and R. Servedio, “Learning monotone decision trees in
polynomial time,” SIAM J. Comput., vol. 37, no. 3, pp. 827–844, 2007.

[17] P. Gopalan, R. Meka, and O. Reingold, “DNF sparsification and a faster
deterministic counting algorithm,” in CCC, 2012, pp. 126–135.

[18] E. Blais, K. Onak, R. Servedio, and G. Yaroslavtsev, “Concise repre-
sentations of discrete submodular functions,” 2013, personal communi-
cation.

[19] M. Goemans, N. Harvey, S. Iwata, and V. Mirrokni, “Approximating
submodular functions everywhere,” in SODA, 2009, pp. 535–544.

[20] A. Gupta, M. Hardt, A. Roth, and J. Ullman, “Privately releasing
conjunctions and the statistical query barrier,” in STOC, 2011, pp. 803–
812.

[21] C. Seshadhri and J. Vondrák, “Is submodularity testable?” in Innovations
in computer science, 2011, pp. 195–210.

[22] M. Cheraghchi, A. Klivans, P. Kothari, and H. Lee, “Submodular
functions are noise stable,” in SODA, 2012, pp. 1586–1592.

[23] A. Badanidiyuru, S. Dobzinski, H. Fu, R. Kleinberg, N. Nisan, and
T. Roughgarden, “Sketching valuation functions,” in SODA, 2012, pp.
1025–1035.

[24] M. Balcan, F. Constantin, S. Iwata, and L. Wang, “Learning valuation
functions,” COLT, vol. 23, pp. 4.1–4.24, 2012.

[25] S. Raskhodnikova and G. Yaroslavtsev, “Learning pseudo-boolean k-
DNF and submodular functions,” in SODA, 2013.

[26] M. Goemans and J. Vondrák, “Covering minimum spanning trees of
random subgraphs,” Random Struct. Algorithms, vol. 29, no. 3, pp. 257–
276, 2006.

[27] V. Feldman and J. Vondrák, “Optimal bounds on approximation of
submodular and xos functions by juntas,” CoRR, vol. abs/1307.3301,
2013.

[28] V. Feldman and P. Kothari, “Learning coverage functions,” arXiv, CoRR,
vol. abs/1304.2079, 2013.

[29] R. Servedio, “On learning monotone DNF under product distributions,”
Information and Computation, vol. 193, no. 1, pp. 57–74, 2004.

[30] C. McDiarmid and B. Reed, “Concentration for self-bounding functions
and an inequality of talagrand,” Random structures and algorithms,
vol. 29, pp. 549–557, 2006.

[31] J. Vondrák, “A note on concentration of submodular functions,” 2010,
arXiv:1005.2791v1.

[32] M. Ben-Or and N. Linial, “Collective coin flipping, robust voting
schemes and minima of banzhaf values,” in FOCS, 1985, pp. 408–416.

[33] J. Kahn, G. Kalai, and N. Linial, “The influence of variables on Boolean
functions,” in FOCS, 1988, pp. 68–80.

[34] I. Dinur, E. Friedgut, G. Kindler, and R. O’Donnell, “On the Fourier
tails of bounded functions over the discrete cube,” in STOC, 2006, pp.
437–446.

[35] I. Dinur and E. Friedgut, “Lecture notes for analytical methods
in combinatorics and computer-science (lect 5),” 2005, available at
http://www.cs.huji.ac.il/˜analyt/.

