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Abstract—Inspired by the parallels between information cod-
ing in morphogenesis and information coding in computer
communication, we introduce a new model for coupled discrete
memoryless channels in which the error probability of one
channel depends on the output of the other channel. The model is
motivated by a type of cell-cell communication. It is shown that
coupling will lead to higher sum capacities with both optimal
input distribution and with uniform input distribution under
joint coding. Thereby, nature can achieve more than the sum
of the individual capacities (synergistic effect). We compare this
result with the maximum achievable sum capacity by arbitrary
ideal coupling using Majorization theory. Finally, we illustrate
the model with applications from wireless communications.

I. INTRODUCTION

The development of multicellular organisms requires the

cooperation and coordination of neighbouring cells [1]. Cell-

cell coordination and specification depends on extracellular

signals transmitted through signal transduction pathways [2].

Recently, it was observed in [3] that cell-cell signalling is

close to the information theoretic model of communication

which was developed in [4]. In this regard, several information

theoretical based approaches were proposed to model, analyse

an design the inter-cellular communications (see e.g. [5], [6],

[7] for recent reviews).

Recently, parallels have been identified between cell fate

decision making and information coding in computer commu-

nication [8]. An important concept is positional information

that is necessary for pattern formation robustness. Signal

transduction pathways process the received signal in such a

way that increase the fidelity of cell fate specification [2], [9].

Positional information, in terms of the communication theory

view, can be interpreted as the encoding of multiple time-

varying signals measured in bits [10]. The latter coincides with

the channel capacity as the maximum number of bits which

can be reliably transmitted over an asymptotic large number

of channels.

In this paper, we introduce a new model for coupled discrete

memoryless channels (DMC) motivated by the interaction

between different signal transduction pathways. We claim that

The authors gratefully acknowledge support from the German Excellence
Initiative via the Cluster of Excellence EXC 1056 Center for Advancing
Electronics Dresden (cfAED).

this kind of cell-cell communication induces a synergistic

effect that leads to increased information rates. We support

the latter statement by using a specific cell fate specification

pathway, the Notch-Delta.

In the proposed model, the error probability (or fidelity)

of one channel depends on the output of the other channel.

It is shown that coupling will lead to higher sum capacities

with both optimal input distribution and with uniform input

distribution. Thereby, we achieve more than the sum of the

individual capacities.

Note that the channel models can be also formulated using

continuous input and output distributions, e.g., by additive

white Gaussian noise channels with different error variances

as fidelity parameter. The choice depends on which model fits

better to the noise process in signal transduction pathways.

Therefore, we study the achievable rates of a hybrid model

with DMC and Gaussian channel as a special case. A similar

synergistic effect can be observed here and the DMC can

be used to ’activate’ the Gaussian channel. The relation to

resource allocation in heterogeneous wireless networks is also

briefly mentioned.

A. Biological motivation: The Notch-Delta interaction

The Notch-Delta signalling pathway aims at the specifica-

tion of a cell’s fate. It is responsible for the mutual inactivation

between interacting cells which results in a pattern formation

in a multicellular context [11]. The whole process is based

on a lateral inhibition mechanism where a cell tending to

adopt a particular fate inhibits its interacting neighbours from

following the same fate [12]. Thus, according to the above

mechanism, a cell’s fate affects the fate of its interconnected

cells. In this paper, we explore, through a simple mathematical

model of Notch-Delta communication with noise, the condi-

tions which increase the fidelity of a cell to finally adopt a

specific fate.

Mathematical models of Notch-Delta signalling have been

introduced to investigate the underlying mechanisms of the

interaction [11] as well as the pattern formation potential [13].

Here, we model the effective lateral inhibition of Notch-Delta

interaction, similar to the one introduced in [13]: Delta in one



cell activates Notch in its neighboring cells [14]. Notch, inside

a cell, is suppressed by Delta activity [15] (Figure 1).

Fig. 1. Notch-Delta signalling pathway in neighboring cells.

Denoting the levels of Notch and Delta in a cell i by Ni

and Di respectively, we write

dNi

dt
= αD̄ + ηint(t)− k1Ni, (1a)

dDi

dt
=

1

1 + βNi
h
− k2Di = f(Ni, Di), (1b)

where D̄ denotes the mean value of the levels of Delta activity

in the cells which interact with the cell i, D̄ = 1
|Ni|

∑

j∈Ni
Dj ,

where Ni denotes the neighbourhood of cell i and |Ni|
specifies the number of its neighbours. Parameters k1, k2
are the intracellular degradation rates of Notch and Delta

respectively and β, h are positive constants. Parameter α
models the strength of the interaction which we assume it is

a normal random variable written as: α = λ+ ηext(t), where

ηext(t) ∼ N (0, σ2
ext) represents the extrinsic noise. Similarly,

ηint represents the intrinsic noise of the interaction of Notch

and Delta inside the cell which we also assume it is a normal

random variable, ηint(t) ∼ N (0, σ2
int). Let k = ext, int we

have

Et[ηk(t1)ηk(t2)] = σ2
kδ(t1 − t2), (2)

where Et denotes averaging over time.

Please note that both intrinsic and extrinsic noise can deviate

from the assumption of normality. The extrinsic noise refers

to the fluctuations in receiving free Delta (D̄) by a cell. The

intrinsic noise characterizes the involved stochasticity in the

intracellular gene regulation of Notch-Delta expression.

Separating the deterministic and stochastic part of (1a) we

derive the following equations

dNi

dt
= λD̄ − k1Ni + D̄ηext(t) + ηint(t), (3a)

dDi

dt
= f(Ni, Di). (3b)

As we can see from equation (3a), the total noise can

be expressed as the sum of the intrinsic and extrinsic noise,

η(t) = D̄ηext(t) + ηint(t). The fidelity maximization (which

here is equivalent with the total noise minimization) occurs

only when the intrinsic and extrinsic noise are negatively

correlated.

A plausible question is what biological mechanisms underlie

this noise minimization. As it has been shown in [16], the neg-

ative correlation between the internal and external signalling

has a characteristic time that is associated with a time delay

in the inhibition process. In other words, when a cells detects

an excess of free Delta, i.e. all Notch receptors are occupied

at its membrane, then it produces more receptors. This state

has been characterized as a receiver one. In the contrary, when

Notch receptors are in excess the cell destroys part of them

resulting in the production and release of Delta (sender state)

[11]. This correlation has been also identified in further gene

regulation systems [17].

The above provides an illustrative answer to the question

how a cell that experiences noisy signals and process them in

a stochastic way decides for its fate so robustly.

B. System Model

Based on the observation in the previous subsection, we

present our system model in Figure 2 for the general commu-

nications scenario over K parallel coupled links.
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Fig. 2. General system model of K parallel coupled BSCs.

The model in Figure 2 is described on the upper boundary

with its operational meaning from information coding in

morphogenesis and pattern formation. On the lower boundary

its operational meaning from information coding in computer

communications is displayed.

The position to be encoded into K concentration expres-

sions is χ. The corresponding concentrations (codewords)

are x1, ..., xK . The encoding can be done jointly for all K
parallel channels. They enter the set of parallel BSCs which

introduce the noise during the reception of the concentra-

tions. Their fidelities are coupled by the output concentrations

y = [y1, ..., yK ]. The concentration yk is then measured at the

output of BSC k and a joint decoder produces an estimate of

the position χ̂ or a function which corresponds to the position

dependent response of the cell f(χ̂). In the following, we

describe the operation of the coupling based on the multi-

channel signal transduction.



II. MULTI-CHANNEL SIGNAL TRANSDUCTION

In general, multiple signal transduction pathways are ac-

tive in parallel. Interestingly, they do influence each other

by positive or negative effects on the receptor fidelity and

the equivalent noise in the signal pathways [2]. In order to

understand the design decision of such parallel multi-channel

communications, we study the capacity of independent as well

as coupled parallel channels. Then, we show that by smart

influencing each others fidelity, the capacity of two channels

can be more than the sum of their individual capacities.

A. Maximum Sum Capacity of Coupled Parallel BSCs

To motivate the model and problem statement, let us start

with the analysis of K independent parallel binary symmetric

channels (BSC) with error probability of ǫ1, ..., ǫK . Collect

the error probabilities in a vector ǫ = [ǫ1, ..., ǫK ]. The sum

capacity of these channels is given by [18]

C(ǫ) =

K∑

k=1

CBSC(ǫk) =

K∑

k=1

(1−Hb(ǫk)) , (4)

with binary entropy function Hb(x) = −x log2 x − (1 −
x) log2(1 − x). The optimal input distribution to achieve the

capacity in (4) is a uniform input distribution on each parallel

channel. Furthermore, independent coding can be applied on

each parallel channel.

In order to understand the impact of coupling, we allow to

choose the error probabilities freely under a sum constraint,

i.e.,
∑K

k=1 ǫk = const. and 0 ≤ ǫk ≤ 1/2 and ask about

the maximum and minimum achievable sum rate. The floor

function is denoted by ⌊·⌋.

Proposition 1. The sum capacity of K parallel BSCs with

error probabilities ǫ ∈ E(c) = {ǫ ∈ R
+
0 : 0 ≤ ǫk ≤

0.5,
∑K

k=1 ǫk = c ≤ 1/2K} is upper and lower bounded by

K
(

1−Hb

( c

K

))

= C
( c

K
1

)

≤ C(ǫ)

≤ C([1/2, ..., 1/2
︸ ︷︷ ︸

L

, c− L/2, 0..., 0])

= K − L+ 1−Hb(c− L/2), (5)

where L = ⌊2c⌋.

As special cases of Proposition 1, the following two cases

are:

• if c = 1/2K then upper and lower bound are equal and

the sum capacity is equal to zero, because C(121) =
C(1/2, ..., 1/2) = 0.

• if c ≤ 1/2 then the upper bound simplifies to

C(c, 0, ..., 0) = K −Hb(c).

We observe from (5) that for K identical parallel BSCs

the worst case lower bound is achieved. A much higher

performance could be achieved if the fidelity of one channel

is reduced and the fidelity of another channel is increased.

Note that these upper and lower bounds are derived under the

ideal assumption that the error probability of one BSC can be

traded for the error probability of another parallel BSC.

In [19], the channel polarization technique is described for

a set of N binary input channels. For growing N a similar

observation as in the upper bound in (5) is obtained: A subset

of channels approaches the rate one and the other subset

approaches zero rate. The main difference is that there special

channel codes are applied whereas in our model the coupling

is created from the channel itself.

In the following subsections, we develop models for coupled

BSC and test whether the achievable sum rates are close to

the theoretical upper bound in (5).

B. Coupled BSC Model

We consider the following set of two coupled BSCs: BSC1

and BSC2 each with error probability ǫ. We have described

in Subsection I-A, and it is observed in [2] and [9] , that the

presence of one signal can influence the detection fidelity of

the other signal.

Fig. 3. The proposed coupled BSC model for the interaction between different
signalling pathways.

We use the model in Figure 3: There are two different

BSC available, a high fidelity and a low fidelity model. If

the receiver one observes a signal from source two y2 = 1,

the fidelity for detecting a signal from source one x1 is high,

if the signal of source two is absent y2 = 0, the fidelity for

detecting the signal from source one is low. The corresponding

transfer matrices for the BSC1 are

W
(y2=0)
1 =

(
1− ǫ ǫ
ǫ 1− ǫ

)

W
(y2=1)
1 =

(
1− δ δ
δ 1− δ

)

(6)

with low fidelity ǫ and high fidelity δ, 0 < δ < ǫ ≤ 1/2. The

same model applies for the second BSC

W
(y1=0)
2 = W

(y2=0)
1 , W

(y1=1)
2 = W

(y2=1)
1 . (7)

We note that each individual channel considered separately

belongs to the class of arbitrarily varying channels (AVC) [20]

because the channel state y2 for BSC1 changes from channel



use to channel use in an unknown manner. The state is not

known a priori at the transmitter side when the codeword is

constructed. The following results are known from [21] about

the capacities of AVC: If the channel is symmetrizable the

channel capacity is zero. Otherwise it is given by the following

max-min problem

C = max
p(x)

min
p(y)

I(x1; y1) = C(ǫ),

because both channels with low and high fidelity achieve

capacity with uniform input distribution. We state this obser-

vation informally: If independent coding is applied over both

AVC, the benefits from coupling cannot be realized.

C. Joint Coding Achieves Larger Sum Rates

The situation changes significantly if joint coding over both

parallel channels is used. Therefore, let us consider the super

channel W which is constructed as follows: The input is a

vector of two bits x1, x2 (and has thereby four states) and

the output is a vector of two bits y1, y2 (also four states). An

input (0, 0) to this super channel leads with a probability of

(1−ǫ)(1−ǫ) to the output (0, 0) and with a probability of (1−
ǫ)ǫ to the output (0, 1). All other conditional probabilities are

computed analogously. The resulting corresponding transfer

matrix is illustrated in Table I.

The mutual information depends on the channel probabili-

ties ǫ, δ and the input distribution p = [p1, p2, p3, p4] indicated

by C(ǫ, δ,p) = I(x;y). The maximum mutual information

corresponding to the following programming problem

max
p≥0,||p||=1

C(ǫ, δ,p) (8)

with

C(ǫ, δ,p) =

4∑

k=1

pkD(wk||pW) (9)

with wk as k-th row of the channel matrix W . The capacity

in (8) can be computed numerically by the Blahut-Arimoto

algorithm [18]. To gain further insights into the optimal input

distribution, we prove the following characterization.

Proposition 2. The optimal input distribution for the DMC

with channel transfer matrix in Table I has the following

properties:

1) The inputs (0, 1) and (1, 0) have the same probability,

i.e., p2 = px(x = [0, 1]) = px(x = [1, 0]) = p3.

2) For large differences ∆ = 2(ǫ−δ) > ∆̃, the input (0, 0)
gets zero probability, i.e., p1 = px(x = [0, 0]) = 0.

The first statement in Proposition 2 follows from the sym-

metry of the second and third row in the channel matrix.

The second statement is intuitive. It says that the larger the

fidelity difference ∆ = 2(ǫ − δ) is, the more likely it is to

receive a y1 = 1 or y2. Since the input (0, 0) does only

marginally contribute to the state (1, 1), it is switched off

for large ∆ > ∆̃. Note that the second statement is not a

contradiction to the result in [22] because the input distribution
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Fig. 4. Capacity and achievable rate with uniform distribution of two coupled
BSC with ǫ = 0.4 and ǫ1 = 0.2, respectively.

between the remaining states (0, 1), (1, 0), (1, 1) is still to be

optimized.

In Subsection II-E, numerical simulations illustrate the

theoretical characterization from above and show the optimal

power allocation found by the Blahut-Arimoto algorithm.

D. Uniform Input Distribution

As a special case, the input distribution to the coupled BSCs

in Figure 3 is assumed to be uniform, i.e., p1 = p2 = p3 =
p4 = 1

4 . This input distribution is robust against the channel

parameters δ, ǫ. Then, the following transmission rates are

achievable.

Proposition 3. The sum rate achievable over the DMC

characterized by the channel transfer matrix in Table I with

uniform input distribution is the sum rate of the two channels

Wy2=0
1 and Wy2=1

1 , i.e.,

C(ǫ, δ, 1/4 · 1) = C(ǫ) + C(δ).

This shows that for the combined coupled BSC channels a

uniform distribution is sufficient to obtain the sum rate results

predicted and envisaged in Proposition 1 if ǫ and δ are sum

constrained.

E. Numerical Illustration

For a fair comparison, we normalize the error probabilities ǫ
and δ in the model above. In particular, we increase the fidelity

in one channel state by the same amount ∆ as we decrease

the fidelity ∆ in the other state, for BSC1 ǫ = ǫ1 + ∆ and

δ = ǫ1−∆. Note that the channel in Table I is not symmetric.

The resulting channel matrix as a function of ǫ and ∆ is given

by equation (10) on the top of the next page.

For ∆ = 0, the sum capacity of two independent parallel

BSC is achieved. In Figure II-E, it can be observed that even

with the suboptimal uniform input distribution, the achievable

rate is increasing with the coupling ∆. The additional gain

by an optimal input distribution increases with increasing ∆.

Therefore, we conclude with the statement: The capacity of

coupled BSCs can be larger than the sum of the individual

capacities.



0 1 2 3

(x1, x2)/(y1, y2) (0, 0) (0, 1) (1, 0) (1, 1)
0 (0, 0) (1 − ǫ)2 (1− δ)ǫ (1− δ)ǫ δ2

1 (0, 1) (1 − ǫ)ǫ (1− δ)(1 − ǫ) ǫδ (1 − δ)δ
2 (1, 0) (1 − ǫ)ǫ ǫδ (1 − ǫ)(1 − δ) (1 − δ)δ
3 (1, 1) ǫ2 δ(1 − ǫ) δ(1 − ǫ) (1− δ)2

TABLE I
CHANNEL MATRIX OF COMBINED COUPLED PARALLEL BSCS BY JOINT CODING.







(1− ǫ1 −∆)2 (1− ǫ1 +∆)(ǫ1 +∆) (1 − ǫ1 +∆)(ǫ1 +∆) (ǫ1 −∆)2

(1 − ǫ1 −∆)(ǫ1 +∆) (1− ǫ1 +∆)(1 − ǫ1 −∆) (ǫ1 −∆)(ǫ1 +∆) (1 − ǫ1 +∆)(ǫ1 −∆)
(1 − ǫ1 −∆)(ǫ1 +∆) (ǫ1 −∆)(ǫ1 +∆) (1− ǫ1 +∆)(1− ǫ1 −∆) (1 − ǫ1 +∆)(ǫ1 −∆)

(ǫ1 +∆)2 (1− ǫ1 −∆)(ǫ1 −∆) (1 − ǫ1 −∆)(ǫ1 −∆) (1− ǫ1 +∆)2







. (10)
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Fig. 5. Optimal input distribution for two coupled BSC with ǫ1 = 0.25 and
0 ≤ ∆ ≤ 0.25, respectively. Note that p2 and p3 are equal and therefore
their curves are on top of each other.

In Figure II-E, the optimal input distribution for the two

coupled BSC with ǫ1 = 0.25 and varying δ is shown. For ∆
larger than 0.09, the first input (0, 0) is switched off p1 = 0
and only three inputs are active.

F. Extension to K coupled BSCs

For the extension to K parallel coupled BSCs, we model

the fidelity of channel k as a function of the output of all other

channels l 6= k as follows

ǫk(y−k) = ǫ+
∑

l 6=k

∆(1− 2yl) (11)

where ∆ > 0 is chosen such that all ǫk are non-negative and

smaller than or equal to 1/2. This gives the set of possible

fidelities

E = {ǫ1(y−1) : y−1 ∈ {0, 1}K−1}. (12)

We can enumerate the K unique elements in E = {ǫ1, ..., ǫK}.

The model in (11) assumes that the quality of transmission

and reception of channel k is improved when more “ones”

of the other channels are received properly. For example with

Here, y
−k is the vector which consists of all components of the vector y

except component k.

K = 3, the error probability of channel one is best, if on the

other two channels a 1 is received correctly. Based on (11) for

K = 3, we obtain the following three error probabilities (here

for channel k = 1)

ǫ1(y2, y3) = ǫ+







+2∆ y2 = 0, y1 = 0

0 y2 = 1, y1 = 0 ∨ y2 = 0, y1 = 1

−2∆ y2 = 1, y1 = 1

.

This generalizes the case with two BSCs from the last sub-

sections.

The resulting overall channel is described by the conditional

probability distribution

p(y|x) = p(y1, ..., yK |x1, ..., xK) =
K∏

k=1

(1− |yk − xk|+ (−1)yk−xk(ǫ+
∑

l 6=k

∆(1 − 2yl))), (13)

together with its input alphabet X = {1, ..., 2K} and output

alphabet Y = {1, ..., 2K}. Using the conditional probability in

(13), the channel matrix for any K can be easily constructed.

In order to obtain the channel matrix in (10), choose K = 2
and evaluate (13).

A generalization of Proposition 3 derives the sum rate for

general K achieved with uniform input distribution.

Proposition 4. The sum rate achievable over the coupled K
BSCs (or the equivalent DMC (X ,Y, p(y|x) in (13)) with

uniform input distribution is given by

R(K, ǫ,∆) =
2K

2K

K∑

l=1

(
K − 1

l− 1

)

· C(ǫl), (14)

with ǫl in (11).

For K = 2, the result from Proposition 3 follows. It is

interesting to note that for K > 2 the achievable sum rate does

not grow as expected from Proposition 1. The first decreasing

term 2K
2K and the sum of binomial coefficients

∑K

l=1

(
K−1
l−1

)

converges for K → ∞ to a constant value. This gives the

BSCs with medium fidelity much higher weight and the overall

performance converges to the average BSC.



K 2 3 4 5

R(K) with coupling 0.1984 0.2084 0.2188 0.2298

R(K)− R0 0.01 0.02 0.03 0.04

TABLE II
COMPARISON OF DIFFERENT NUMBER OF COUPLED BSCS:

K = {2, 3, 4, 5} WITH ǫ = 0.25 AND ∆ = 0.05.

For interpretation, this means that under the model assump-

tion of (11), nature could improve the gain by coupling using

more than two channels. Coupling more than two BSCs and

using a joint coding with uniform input distribution does

achieve higher coupling gains. However, there are overhead

costs associated with joint coding which might lower the

achieved gains.

In order to provide numerical evidence for the statement

above, we list the sum rate for fixed initial fidelity ǫ = 0.25
and fixed coupling ∆ = 0.05 for K = 2, 3, 4, 5 parallel links

in Table II-F. Note that we have normalized the sum rate for

a fair comparison. The rate achievable without coupling is

R0 = 1−Hb(0.25) = 0.1887 bits/s.

III. APPLICATIONS IN MOBILE COMMUNICATIONS

In wireless systems, it is usual to have different virtual chan-

nels with different properties for signalling, controlling and for

data transmission. For example in the LTE standard there are

DL-SCH: the DownLink Shared CHannel for downlink user

data or radio resource control messages, PBCH: the Physical

Broadcast CHannel which contains the Master Information

Block, and others [23].

In addition to these rather standard control channels, in

heterogeneous dense wireless networks, so called activation

channels are used to initiate wake-up mechanisms for femto-

cell or cellular base stations [24]. In general, we can imagine

a number of context information which are used on different

time scales to flexible switch between different transceiver and

radio access techniques. As one simple example, we consider

the case of activation of a Gaussian channel by a BSC.

A. Two Coupled Channels: DMC and Gaussian

In this section, we study the following two-channel setup:

one BSC is replaced by an additive white Gaussian channel

and its noise variance is determined by the output of the BSC.

Denote the input of the BSC as x0 and its output as y0.

The bitflip probability is ǫ. Denote the input of the Gaussian

channel as x and its output as y. The input variance of x is

restricted to E[|x|2] ≤ P = 1. The noise variance σ2
n depends

on the BSC output y0 and is given by

σ2
n =

{

σ2
0 y0 = 0

σ2
1 y0 = 1

, (15)

with instantaneous noise constraints

N ≤ σ2
0 ≤ σ2

1 ≤ N, (16)

and average noise variance

N0 = Ey0
[σ2

n] =
N +N

2
. (17)

Fix 0 ≤ ǫ ≤ 1 and N0, N,N . The average rate maximization

problem is formulated as

max
π,σ2

0
,σ2

1

π log

(

1 +
1

σ2
0

)

+ (1− π) log

(

1 +
1

σ2
1

)

s.t. πσ2
0 + (1− π)σ2

1 = N0

and ǫ ≤ π0 ≤ 1− ǫ

and N ≤ σ2
0 ≤ σ2

1 ≤ N. (18)

The probability of output y0 = 1 π0 is related to the input

distribution of the BSC via π0(p0) = ǫ + p0(1 − 2ǫ). from

0 ≤ p0 ≤ 1 follows ǫ ≤ π0 ≤ 1− ǫ. For solving (18), we note

that the function log(1+1/x) is convex in x. Furthermore, the

constraint set in (18) is convex and the objective linear in π
and convex in σ2

0 , σ
2
1 . Therefore, the optimal noise variances

are σ2
0 = N and σ2

1 = (N). The optimal input distribution for

the BSC is p0 = 1/2 and hence π0 = 1/2, too.

The resulting optimal average rate is given by

R̄ =
1

2
log

(

1 +
1

N

)

+
1

2
log

(

1 +
1

N

)

(19)

compared to the achievable average rate with constant noise

variance

R = log

(

1 +
1

N0

)

. (20)

The difference between R̄ and R is the same as the gap

applying Jensen’s inequality.

This example illustrates that similar to the coupled BSCs

in the previous section, a BSC with uniform input distribution

can also be used to activate a Gaussian channel with different

levels of noise variances. The large the noise variance differ-

ence is, the larger the coupling gain. In the ideal case, it could

be infinity for N = 0.

IV. CONCLUSIONS

In this work, we developed a new model for parallel coupled

channels based on observations from signal pathways between

interacting cells. The lateral inhibition mechanism results in a

channel model, where the output of one channel influences

the error performance of the other. In the ideal case, if

we could design arbitrary coupling, the maximum achievable

sum capacity is characterized based on Majorization theory

(Proposition 1). In order to realize the capacity gain over two

coupled channels, a joint coding over these two channels is

necessary. We describe the optimal input distribution (Propo-

sition 2) and compute the achievable sum capacity for uniform

input distribution (Proposition 3). Finally, the extension to K
parallel coupled channels is computed (Proposition 4). As one

interesting application in wireless communications, we study

the activation of a Gaussian channel via a parallel BSC.

There are many open challenges for future work. They in-

clude a coupled model for continuous (e.g. Gaussian) channels

and the optimization of the corresponding input distribution.

The scenario we considered is static. Therefore, another in-

teresting direction is to model the dynamic behaviour of the



coupled channels and characterize the steady state. This model

includes feedback because of the interactions between two

cells.

In biological terms, this work is a step towards revealing

the design principle of embryonic development. In particular,

it is interesting in understanding of how multicellular systems

process local information leading to emergent systems of

higher organization, such as tissues, organs, etc.

ACKNOWLEDGEMENTS

Eduard Jorswieck thanks Martin Mittelbach and Christian

Scheunert from the Communications Theory group, School of

Engineering Sciences at TU Dresden, for interesting discus-

sions about the information theoretic model and the achievable

sum rates. Haralambos Hatzikirou and Andreas Reppas thank

George Lolas for all the fruitful discussions regarding the

biological motivation of the model.

APPENDIX A

PROOF OF PROPOSITION 1

Proof. Note that the binary entropy function Hb(x) (as the

entropy itself) is a concave function of its argument. Therefore,

the function −Hb(x) is convex in x. We need the following

auxiliary result.

Lemma 1 (3.C.1 in [25]). If g : R → R is convex and twice

differentiable, then

φ(x) =
n∑

k=1

g(xk)

is Schur-convex.

From this follows that the sum capacity C(ǫ) is a Schur-

convex function. Therefore, the maximum is achieved for the

vector ǫ = [1, 0, ..., 0] and the minimum is achieved for the

uniform vector ǫ = [1/K, 1/K, ..., 1/K]. This explains the

lower bound in (5).

To prove the upper bound, we consider two cases. If c ≤
1/2 then Schur-convexity directly implies the upper bound. If

c > 1/2, then we define L = ⌊2c⌋ and argue that the vector

ǫ1 = {1/2, ..., 1/2, cL/2, 0, ..., 0 majorizes all other vectors

ǫ ∈ E(c).

APPENDIX B

PROOF OF PROPOSITION 2

Proof. For computation of the channel capacity, the following

characterization of the optimal input distribution from [26,

Proposition 5], which is based on the KKT optimality con-

ditions, is useful. Here wk is the k-th row of the channel

matrix W .

Proposition 5. Let the channel matrix W satisfy the condition

max
1≤i,j≤4

4∑

k=1

|wik − wjk| > 0 (21)

then the capacity and the solution to (8) is attained by p
∗ =

[p∗1, p
∗
2, p

∗
3, p

∗
4] if and only if

D(wi||p
∗W) = ζ, (22)

for some ζ > 0 and all i with p∗i > 0. Moreover the capacity

is equal to ζ.

The condition in (22) implies that for all active inputs,

it holds D(w1||p∗W) = D(w2||p∗W) = D(w3||p∗W) =
D(w4||p∗W). In particular, for the second and third row

D(w2||p∗W) = D(w3||p∗W) this implies

D(w2||p
∗W) =

4∑

i=1

w2i log
w2i

[p∗W ]i

=

4∑

i=1

w3i log
w3i

[p∗W ]i
= D(w3||p

∗W). (23)

From (23) with w21 = w31 and w24 = w34 it follows

w22 log
w22

[p∗W ]2
+ w23 log

w23

[p∗W ]3

= w32 log
w32

[p∗W ]2
+ w33 log

w33

[p∗W ]3
. (24)

With w22 = w33 = x and w23 = w32 = y and φ2 = [p∗W ]2
and φ3 = [p∗W ]3 it follows from (24)

x log x− x logφ2 + y log−y logφ3

= y log y − y log φ2 + x log x− x logφ3 (25)

and finally for arbitrary x 6= y it follows φ2 = φ3 and thereby

p2 = p3.

For the second part, we parametrize the input distribution

p(t) by 0 ≤ t ≤ 1 as

p(t) = [t, x, x, (1 − 2x− t)],

with 0 ≤ x ≤ 1/4. The mutual information is a concave

function of p [21, Lemma 3.5]. Therefore, it suffices to show

that

∂C(ǫ, δ,p(t))

∂t

∣
∣
∣
∣
t=0

≤ 0 (26)

for sufficient small δ > 0 to allocate zero probability to p1.

This is equivalent to

D(w1||pW) ≤ D(w4||pW) ⇐⇒

D(w1||x(w2 +w3) + (1− 2x)w4) ≤

D(w4||x(w2 +w3) + (1− 2x)w4). (27)

with w1 = [(1−ǫ)2, (1−ǫ)ǫ, (1−ǫ)ǫ, ǫ2], w2 = [(1−δ)ǫ, (1−
δ)(1−ǫ), ǫδ, δ(1−ǫ)], w3 = [(1−δ)ǫ, ǫδ, (1−ǫ)(1−δ), δ(1−ǫ)]
and w4 = [δ2, (1−δ)δ, (1−δ)δ, (1−δ)2]. For sufficiently small

δ, we verify that (27) holds.



APPENDIX C

PROOF OF PROPOSITION 3

Proof. The mutual information C(ǫ, δ,p) can be written as

C(ǫ, δ,p) = H(pW)−
4∑

k=1

pkH(wk). (28)

A simple inspection and taking the column sum of the prob-

abilities in Table I reveals for p = 1
41 that

H(1/4 · 1W) = H([1/4, 1/4, 1/4, 1/4]) = 2. (29)

The second term in (28) can be computed as follows

1

4

4∑

k=1

H(wk) =
1

4

4∑

k=1

4∑

l=1

wkl logwkl, (30)

which is the complete sum over the entropies of all 16 entries

of the channel matrix W . When we flip the sum over k and

l, we recognize the binary entropies Hb(ǫ) and Hb(δ), i.e.,

1

4

4∑

l=1

4∑

k=1

wkl logwkl

=
1

4
[2Hb(ǫ) + 2Hb(ǫ) + 2Hb(δ) + 2Hb(δ)]

= Hb(ǫ) +Hb(δ), (31)

where the first equality follows from the additivity property

of the entropy function, i.e., H([ab, (1 − a)b, a(1 − b), (1 −
a)(1 − b)]) = H(a, (1 − a)) + H(b, (1 − b)). Together with

the result in (29), we finally obtain

C(ǫ, δ,p) = 2−Hb(ǫ) +Hb(δ) = C(ǫ) + C(δ). (32)
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