
Efficient Homomorphic Encryption on Integer
Vectors and Its Applications

Hongchao Zhou and Gregory Wornell
Dept. Electrical Engineering and Computer Science

Massachusetts Institute of Technology
Cambridge, MA 02139

Email: {hongchao,gww}@mit.edu

Abstract—Homomorphic encryption, aimed at enabling com-
putation in the encrypted domain, is becoming important to a
wide and growing range of applications, from cloud computing
to distributed sensing. In recent years, a number of approaches
to fully (or nearly fully) homomorphic encryption have been
proposed, but to date the space and time complexity of the
associated schemes has precluded their use in practice. In
this work, we demonstrate that more practical homomorphic
encryption schemes are possible when we require that not all
encrypted computations be supported, but rather only those of
interest to the target application. More specifically, we develop
a homomorphic encryption scheme operating directly on integer
vectors that supports three operations of fundamental interest in
signal processing applications: addition, linear transformation,
and weighted inner products. Moreover, when used in combina-
tion, these primatives allow us to efficiently and securely compute
arbitrary polynomials. Some practically relevant examples of
the computations supported by this framework are described,
including feature extraction, recognition, classification, and data
aggregation.

I. INTRODUCTION

Homomorphic encryption techniques hold the promise of
enabling truly secure ways to gather, share, and process
information in distributed settings. For instance, in data cloud
applications, users typically want to keep their data private
while still allowing remote servers to perform tasks such as fil-
tering or search. As another example, in biometric authentica-
tion applications, users want to successfully authenticate with
remote servers while maintaining the privacy of their requests.
Finally, in remote and distributed sensing applications, there
is a need to be able fuse and process acquired data directly in
the encrypted domain, sometimes while further disguising the
nature of such processing.

The notion of homomorphic encryption—encryption that
supports computation on encrypted data—dates back to late
1970’s [1]. Later, homomorphic encryption schemes that sup-
port either addition or multiplication operations (but not both)
were proposed by, e.g., Goldwasser and Micali [2], El-Gamal
[3], and Paillier [4]. A key breakthrough was the relatively
recent development by Gentry of a fully homomorphic en-
cryption (FHE) scheme [5], which is capable of evaluating an
arbitrary function in the encrypted domain. Since then, several
variants and improvements on Gentry’s method have been

This work was supported in part by Draper Laboratory through the UR&D
Program and by AFOSR under Grant No. FA9550-11-1-0183.

developed; see, e.g., [6]–[14]. Among them, the Brakerski-
Gentry-Vaikuntanathan (BGV) scheme [9] is among the most
promising (somewhat) FHE scheme. However, it is still rather
impractical due to its high computational complexity and large
communication cost [15].

Several aspects of current homomorphic encryption schemes
make them difficult to realize in practice. First, most ho-
momorphic encryption schemes are bit-by-bit encryption
schemes, i.e., each ciphertext represents a single bit. The
advantage of such a bit-by-bit encryption scheme is that it is
easy to be fully homomorphic: if the scheme supports both
binary addition and multiplication operations on encrypted
bits, then it can compute an arbitrary Boolean function in
the encrypted domain. This is because any Boolean function
can be represented by a collection of binary addition and
multiplication operations. At the same time, however, bit-
by-bit encryption makes the practical applications of homo-
morphic encryption problematic, since it significantly reduces
the storage and communication efficiency and increases the
computational time. For example, in data-cloud applications,
where users store their private data in remote servers, it
is unacceptably inefficient to store each single bit with an
entire ciphertext of thousands (or more) bits. Furthermore,
bit-by-bit encryption schemes require applications to convert
computation tasks into binary addition and multiplication op-
erations, which makes the computation more complex—even
for simple elementary operations such as the multiplication
of two 8-bit integers, its execution demands hundreds of bit
operations with multiplication depth of 16 [15]. And we know
that, for homomorphic encryption, it is much more difficult
to handle multiplications than additions, especially when the
multiplication depth is large.

In order to reduce the complexity of homomorphic compu-
tation, several ciphertext-packing techniques have been devel-
oped to combine multiple ciphertexts into a single ciphertext.
In [16], Smart and Vercauteren develop a technique to pack
ciphertexts based on polynomial-CRT. In [17], Yasuda, et al.,
develop a technique to pack ciphertexts based on ideal lattices
and apply it to biometrics. In [18], Cheon, et al., extend
the scheme of van Dijk, et al., [12] to support encrypting
and processing a binary vector. In [11], Naehrig, Lauter, and
Vaikuntanathan present a ciphertext-packing technique whose
security is based on the Ring Learning With Errors (Ring

LWE) problem. A similar ciphertext-packing technique whose
security is based on the Learning With Error (LWE) problem,
was introduced by Peikert, Vaikuntanathan and Waters (PVW)
[19]. Later, Brakerski, Gentry and Halevi [20] showed how
to apply the PVW technique to perform SIMD-type (Single
Instruction Multiple Data) operations, and their goal was trying
to parallelize any given repeated operations, by encrypting
multiple bits within the same ciphertext and performing the
same operations on these bits. However, these techniques have
their application limitations, and they still need to decompose
computation tasks into many binary operations. Even with
these techniques, the computation and communication require-
ments are still difficult to accommodate in most practical
applications.

In this paper, we approach the problem from a somewhat
different perspective. In particular, while almost all the current
homomorphic encryption schemes are aimed at enabling arbi-
trary computation tasks so as to be “universal,” we instead
restrict our attention to important and broadly useful—but
more limited—classes of computation tasks in order to obtain
schemes more amenable to implementation in practice. More
specifically, we develop an efficient homomorphic encryption
scheme that encrypts data directly in the form integer vectors,
and supports practically important forms of computation on
such data in the encrypted domain. Without the need to
decompose the processing of such data into binary operations,
the computational complexity is significantly reduced.

The paper is organized as follows. Section II describes the
scenario of interest with applications in cloud storage and
sensing systems. Section III presents a scheme that encrypts
integer vectors directly, as a natural extension of the recently
developed homomorphic encryption schemes based on the
learning with errors (LWE) formalism. In Section IV, we
demonstrate that this scheme supports three types of funda-
mental operations on integer vectors in the encrypted domain:
addition, linear transformation, and weighted inner products.
Used in combination, these allow us to efficiently compute an
arbitrary polynomial in a secure manner. Section V provides
examples of the kinds of practical computations possible with
this scheme, including feature extraction, recognition, classifi-
cation, and data aggregation. Finally, Section VI contains some
concluding remarks.

II. APPLICATION SCENARIO

In this section, we introduce a scenario that has important
applications in cloud storage and sensing systems. However,
before that, we first describe the different but more traditional
scenario that has been the focus of much of the homomor-
phic encryption literature to date. As depicted in Fig. 1,
in this traditional scenario there are two parties involved
in a computational procedure process. The user (party B)
sends an encrypted request x, which is some privacy-sensitive
information like biometrics or medical records, to the server
(Party A). The server has the processing algorithm f , but
cannot or does not want to disclose f to the user due to some

Fig. 1. A homomorphic-encryption scenario widely studied in literatures.

Fig. 2. A homomorphic-encryption scenario considering in the current paper.

computational or privacy reasons. As a result, the server com-
putes f(x) in the encrypted domain, and returns the encrypted
answer to the user. This scenario has promising applications
in search engines, biometric authentication, privacy-protected
face recognition, etc. [21]

By contrast, in this paper our interest is in the scenario
depicted in Fig. 2. In this scenario, party A receives or
stores the encryption of a large amount of data x, which is
confidential and can be decrypted only by party B, e.g., x is a
user’s private data stored in data clouds in the encrypted form.
Some time, Party B wants to get some information f(x) from
x without revealing the function f to party A, e.g., performing
search. A trivial approach is that party A sends the whole
encryption of x back to party B directly, and party B evaluates
the function f based on the received encryption of x. However,
this approach is not wise in most applications, since the data
x is large and the communication between the two parties is
not cheap. Hence, we consider the following approach: party
B sends an encrypted version of f to party A, and party A
performs certain processes (without knowing x and f) and
returns a small amount of encrypted data back to party B,
from which party B further obtains the result f(x).

An important difference between the scenario depicted in
Fig. 2 and that in Fig. 1 is that, in the new scenario, the
processing function f is known by party B, which also owns
the secret key. This property allows us to directly perform
operations on integer vectors in the encrypted domain, such
as linear transformations and weighted inner products (see
Section IV), but these operations are much more difficult to
implement in the scenario of Fig. 1, where the processing
function f and the secret key are separated. There is another
benefit of the property: if f(x) contains some operations
that are difficult to realize in the encrypted domain, these
operations can be executed at the side of party B. For example,
assume that f(x) is a linear classifier such that f(x) = 0 if
and only if w · x < t for a constant t; otherwise, f(x) = 1.
In this case, w · x can be computed in the encrypted domain

at the party A side, and the comparison between w · x and t
can be performed at the party B side.

The scenario of Fig. 2 is applicable to a wide range of con-
texts involving data clouds and sensor networks. Depending
on specific applications, there are a few factors that should be
considered. They include: 1) the privacy requirement of x and
f , namely, how secure the encryptions of x and f are; 2) the
storage cost of x, i.e., the number of encrypted bits required
to represent x; 3) the computation cost of f , i.e, the amount
of computations needed at party A and party B for computing
f(x) in the encrypted domain; and 4) the communication cost,
i.e., the number of transmitted bits between party A and party
B. In what follows, we describe several application examples
of the scenario.

A. Encrypted Cloud Storage

A major concern of users when weighing the adoption of
cloud data storage solutions, such as provided by companies
such as Dropbox, Google, and Microsoft, is the loss of
privacy of their data. Homomorphic encryption can help users
preserve the privacy while allowing them to perform certain
computations on their own data or to retrieve some useful
information. Here, we treat party A as the server and party B
as the end user, where x is the user’s private data stored at
the server in the encrypted form. The user may want to get
some information from x, e.g., searching with a private query
string.

B. Medical Records Storage

One example of encrypted cloud storage is the private cloud
medical records storage system discussed in [11]. All data for
a patient’s medial records stored in the system is encrypted
by the healthcare providers. The patient can share or access
the records by sharing the secret key with trusted providers.
While the amount of medical records for a patient is usually
big, the trusted providers may only want to get some useful
information extracted from the patient’s records. In this case,
the storage system is party A, and the trusted providers are
party B in Fig. 2.

C. Sensor Networks

In sensor networks or other sensing systems, especially
those related to military applications, sensed data is expected
to be protected (encrypted) immediately when it is generated
at sensors, and the base station is interested in only a small
amount of information from the sensed data, e.g., some
features of a sensed image or some statistics about the data.
Hence, certain computations are required to perform at the
sensors and relay nodes for data processing and aggregation
to reduce the communication load. Here, the sensors and relay
nodes are the party A, and the base station is the party B.
This problem, secure aggregation in sensor networks, has been
studied in [22], but their adopted encryption scheme only
supports addition operations, which limits its applications in
sensor networks. In contrast, the encryption scheme studied in
the current paper can support much wider computation tasks.

III. ENCRYPTION SCHEME

A. Encryption Scheme

The encryption scheme that we study is a natural extension
of the PVW scheme [19] from binary vectors to integer
vectors. We let x ∈ Zm

p be the integer vector to encrypt, and it
has length m and alphabet size p. Let c ∈ Zn

q be the ciphertext
of x with length n > m and alphabet size q � p. Typically, q
is super-polynomial in the ciphertext length n. The secret key
is a matrix S ∈ Zm×n

q , and it satisfies

Sc = qk+ wx+ e, (1)

for some integer vector k and noise vector e. Here, w is an
integer parameter such that w > 2|e|. We call the maximum
absolute value of the entries in a vector v or a matrix M as
its magnitude, denoted by |v| or |M|.

The process of encrypting x is to find a ciphertext c such
that Sc satisfies (1) for some integer vector k and noise vector
e. For the convenience of description, we first present the
decryption process, as follows, and then present the public-
key encryption process in Section III-C.

According to (1), decryption of ciphertext c based on the
secret key S is done by computing

x = dSc
w
cq, (2)

where dacq means the nearest integer to a with modulus q.
The decryption succeeds if the magnitude of e, i.e., |e|, is
smaller than w

2 . In order to further support computations in
the encrypted domain, we assume that both |S| and |e| are
much smaller than w.

B. Key-Switching Technique

In [7], Brakerski and Vaikuntanathan introduced a very
useful re-linearization technique that can switch the secret key
in the PVM scheme to any other secret key when they are both
vectors. Later, Brakerski, Gentry and Halevi developed a tech-
nique to switch two secret keys of matrices [20]. In general,
Brakerski and Vaikuntanathan’s re-linearization method has
two steps, and we apply it to switch a secret key S ∈ Zm×n

q

to another secret key S′ ∈ Zm×n′

q as follows, and meanwhile,
we get a new ciphertext c′ that still encrypts the same integer
vector x.

1) Step 1: Switch the secret key S to an intermediate
secret key S∗ such that its corresponding new ciphertext
c∗ has a much smaller magnitude than c. The idea is to
represent each element ci in c with a binary vector (its binary
representation), hence it results in a new ciphertext c∗ with
|c∗| = 1. Assume that ci = bi0 + bi12 + ... + bi(`−1)2

`−1,
then by writing each ci as [bi0, bi1, ..., bi(`−1)]

T , we get c∗.
For instance, given a ciphertext c = [1, 5]T ∈ Z2

8, we convert
it to c∗ = [1, 0, 0, 1, 0, 1]T . Now, we construct a secret key
S∗ ∈ Zm×n` such that

S∗c∗ = Sc. (3)

This can be done by replacing each element Sij in S with
a vector [Sij , Sij2, ..., Sij2

`−1]. For example, if the original

secret key is S = [4, 3; 1, 2] ∈ Z2×2
8 , then the new secret key

is S∗ = [4, 8, 16, 3, 6, 12; 1, 2, 4, 2, 4, 8]. It is easy to check
that, in the above example, S∗c∗ = Sc is satisfied.

2) Step 2: Switch the intermediate secret key S∗ ∈ Zm×n`

to the desired secret key S′ ∈ Zm×n′

q . In order to do this, we
construct an integer matrix M ∈ Zn′×n` such that

S′M = S∗ +E mod q (4)

for a noise matrix E with small magnitude. If S′ = [I,T] with
an identity matrix I, this integer matrix M can be constructed
by

M =

(
−TA+ S∗ +E

A

)
mod q, (5)

where A ∈ Z(n′−m)×n`
q is a random matrix.

Then we define a new ciphertext

c′ = Mc∗ mod q, (6)

which can be further written as

c′ = qk∗ +

(
−TAc∗ + S∗c∗ +Ec∗

Ac∗

)
, (7)

where k∗ is an integer vector, and |k∗| is much smaller than
q when |T| and |S| are much smaller than q.

For this new group of secret key S′ and ciphertext c′, they
satisfy

S′c′ = qS′k∗ + Sc+Ee∗ = qk′ + wx+ e′, (8)

with
k′ = k+ S′k∗, e′ = e+Ec∗. (9)

Both k and e are specified in (1), and Ec∗ is the additional
noise vector introduced by the key-switching process. Since
|S′|, |k∗|, |e|, |E|, and |c∗| are much smaller than q, |k′| and
|e′| are also much smaller than q. We can correctly obtain x
by decrypting c′ with the new secret key S′. Therefore, we
have successfully switched the secret key S to a new secret
key S′, and meanwhile the original ciphertext c is converted
to a new ciphertext c′.

To implement the key-switching technique in the scenario
depicted in Fig. 2. Party B first generates the key-switching
matrix M based on the two secret keys S and S′, and then
sends M to party A. With the received matrix M, party A
computes the new ciphertext c′ based on (6). We see that
the key-switching matrix forms a public key. In fact, this
key-switching technique plays an important role in both the
encryption process and the computation process, which will
be further discussed.

C. Security and Encryption

The security of the encryption relies on the security of
the key-switching matrix (matrices) M, which is based on
the hardness assumption of the extended Learning With Error
(LWE) problem: It is difficult to get S′ from S and M by
solving (4), where both S′ and E are random matrices with
elements independently drawn from a noise distribution χ on
Zq . In fact, this problem is equivalently difficult as the standard

LWE problem [20], [23], which tries to get a vector s′ from
s and M by solving

s′M = s+ e mod q (10)

when s′ is a uniform random vector and e is a noise vector.
The process of encrypting an integer vector x can be done

based on the key-switching technique. Let I be an m × m
identity matrix, then I(wx) = wx, which is actually in the
form of (1) with a zero noise vector. In a sense, we can treat I
as a secret key and wx as a ciphertext, although both are not
secret, and hence we can switch I to a secret key S with the
key-switching technique, and by which we get a new ciphertext
c instead of wx. The ciphertext c is an encryption of x based
on the secret key S. We see that this is a public-key encryption
scheme, since we can use the key-switching matrix M as the
public key to generate the ciphertext c, and this public key M
can be constructed based on the secret key S.

IV. OPERATIONS ON ENCRYPTED DATA

In this section, we describe three types of fundamental
operations on integer vectors that can be easily performed
based on the encryption scheme described above, including
addition, multiplication, and weighted inner products. Many
practical tasks can be represented by a combination of these
three types of fundamental operations. We demonstrate that
given the encrypted integer vectors, any polynomial (within
a certain degree) on integers can be computed secretly and
efficiently in the scenario of Fig. 2.

A. Three Fundamental Operations

Let x1,x2 be two integer vectors, then the three types
of fundamental operations are: (1) addition, i.e, x1 + x2,
which requires x1 and x2 having the same length; (2) linear
transformation, i.e., Gx1 for an arbitrary matrix G, and (3)
weighted inner products, i.e., {xT

1 Hjx2} for a group of weight
matrices {Hj}. Here, we assume that all the values appeared
in these operations are between zero and b qw c, i.e., there are
no integer overflows in our computation.

Let c1, c2 be the two ciphertexts of the integer vectors
x1,x2 with secret keys S1,S2, respectively, and they satisfy

Sici = qki + wxi + ei, (11)

with |Si|, |ki| and |ei| much smaller than q. In what follows,
we demonstrate how these three types of fundamental opera-
tions work.

1) Addition Operation: The addition operation x1 + x2 is
straightforward: if c1 and c2 have the same secret key, i.e.
S1 = S2 = S, then c′ = c1 + c2 mod q is an encryption of
x1 + x2, since

Sc′ = qk′ + w(x1 + x2) + (e1 + e2), (12)

where k′ is an integer vector with a small magnitude. However,
x1 and x2 may have different secret keys, so the first thing
that we need to do is to switch one secret key to the other, e.g.,
from S1 to S = S2. Note that if S1 and S2 are correlated, for
the purpose of guaranteeing security, we should create a new

secret key S and switch both S1 and S2 to S. We use c′1 and
c′2 to denote the ciphertexts obtained after key switching, and
they satisfy Sc′i = qk′i +wxi + e′i with |k′i| and |e′i| small. If
we let c′ = c′1 + c′2 mod q, then

Sc′ = qk′ + w(x1 + x2) + e′ (13)

with |k′| ≤ |k′1|+ |k′2| and e′ = e′1 + e′2. Hence, c′ is a valid
encryption of x1 + x2.

There is a special case: if one wants to compute x1+a with
a constant vector a, which is known by public, then a valid
encryption of x1 + a is c = c1 + w[aT , 0, ..., 0]T mod q. It
works since in our construction the secret key S is in the form
of [I,T] with an identity matrix I, and hence Sc = Sc1+wa.

2) Linear Transformation: The linear transformation Gx1

follows the observation that

GSc1 = qGk1 + wGx1 +Ge1. (14)

So if |G| is much smaller than q, we can treat c′ = c1 as the
ciphertext of Gx1, with secret key S′ = GS.

There is a special case: if one wants to compute ax1 for a
small integer a known by public, then its ciphertext is

c = ac1 mod q. (15)

3) Weighted Inner Products: A group of weighted inner
products {xT

1 Hjx2} can be computed by applying the tech-
nique for multiplication via tensor products in [7]. Note that

(S1c1)
THj(S2c2) = vec(ST

1 HjS2) · vec(c1cT2), (16)

where vec(A) denote the vector that consists of all the entries
in a matrix A. Substituting Sici with (11) in the left side of
the above equation, we get

(S1c1)
THj(S2c2)

=q(qkT
1 Hjk2 + wkT

1 Hjx2 + wxT
1 Hjk2)

+ w2(xT
1 Hjx2) + (qkT

1 Hje2 + qeT1 Hjk2

+ wxT
1 Hje2 + weT1 Hjx2 + eT1 Hje2). (17)

Let s′j = vec(ST
1 HjS2)

T be the jth row of the new secret

key S′, and let c′ = dvec(c1c
T
2)

w cq be the new ciphertext.
Assume that q = wl+ r with an integer l and a very small

remainder r. Since |k1|, |k2|, |Hj |, |e1|, |e2| are much smaller
than w, we have

s′jc
′ = qk′j + w(xT

1 Hjx2) + e′j , (18)

where k′j is an integer, and k′j , e
′
j are much smaller than w.

By decrypting c′ with the secret key S′, we can compute the
group of weighted inner products {xT

1 Hjx2}.
So far, the dimension of the ciphertext c′ is big: it is

the square of the original dimension n. Fortunately, the key-
switching technique can be used to reduce this dimension,
by switching the secret key S′ to a new secrete key, and
meanwhile, the dimension of the ciphertext is reduced to n.
As a result, we get the final ciphertext Mdvec(c1c

T
2)

w cq , where
M is the key-switching matrix.

We see that the noise magnitude grows much faster in the
weighted-inner-products operations than that in the addition
and linear-transformation operations. In addition, to perform a
weighted-inner-products operation, it takes O(n3) times; and
as a contrast, it only takes O(n2) time for an addition or
linear-transformation operation. So, in practice, we need to
minimize the number (in particular the depth) of weighted-
inner-products operations in computation.

B. Polynomial Computation

Based on the three types of fundamental operations above,
we can compute an arbitrary polynomial (within a certain de-
gree) on integers efficiently. For instance, in order to compute
x22−4x1x3 with each variable an integer of 8 bits, the bit-by-bit
encryption schemes require 322 binary addition operations and
302 binary multiplication operations [15], with computation
depth 43 and multiplication depth 16. However, with the
encryption scheme on integer vectors, this function can be
computed with a single weighted-inner-products operation
xTH1x by simply setting

H1 =

 0 0 −2
0 1 0
−2 0 0

 .

In fact, an arbitrary degree-2 polynomial can be computed
based on a single weighted-inner-products operation. In order
to do this, we need to execute the operation on [1,xT]T instead
of x, since every degree-2 polynomial can be represented by
[1,xT]H[1,xT]T for some matrix H. If the ciphertext of x
is c with a secret key S, then the ciphertext of [1,xT]T is
[w, cT]T with a secret key

S′ =

(
1 0
0 S

)
. (19)

It is also worth mentioning that the structure of the
weighted-inner-products operation allows us to parallelize
the computation of multiple distinct polynomials, and hence
reducing the computational time. For example, if we want to
compute 2x31 + x1x2x3 − 2x3 + 4x33, we can first compute
[2x21, x1x2,−2, 4x23] with a weighted-inner-products opera-
tion, and based on which we further compute 2x31+x1x2x3−
2x3+4x33 = [2x21, x1x2,−2, 4x23]·[x1, x3, x3, x3] with another
weighted-inner-products operation.

In general, for an arbitrary polynomial of degree d > 0, we
can compute it with dlog2 de weighted-inner-products opera-
tions and some number of addition and linear-transformation
operations. But, how to divide a computation task into the
three types of fundamental operations to minimize the compu-
tation and communication cost is still an interesting unsolved
problem.

To compute a polynomial in the encrypted domain, party B
first generates all the secret keys and key-switching matrices
ahead, and then sends the key-switching matrices to party A,
as the public key. Based on the key-switching matrices, party
A can further evaluate the polynomial. When there is only a
single ciphertext stored at or received by party A, this approach
is less efficient than transmitting the ciphertext directly to party

B. It becomes very useful when the number of the ciphertexts
is large and we have to execute the same computation on these
ciphertexts, since we can keep using the same set of key-
switching matrices, i.e., the public key.

C. Secrecy Analysis

As described in Section II, in many applications, party B
wants to preserve the privacy of the processing function f to
party A. Here, we show that the encrypted computation based
on the three types of fundamental operations can actually
achieve this goal, i.e., the processing function f is secret to
party A in the computation process. The only information that
party A (see Fig. 2) can get is the order of the types of the
performed operations, not their exact expressions. For instance,
in the example of computing x22 − 4x1x3 in the previous
subsection, party A only knows that the computation is in
the form of xTH1x (without knowing what H1 is), i.e., the
computation function is a homogeneous polynomial of degree
2.

Specifically, for an addition operation x1 + a, if a is
an encrypted parameter from party B, then party A cannot
determine a; for a linear-transformation operation Gx1, party
A cannot get the transformation matrix G; and similarly, the
matrices {Hj} are secret to party A in a weighted-inner-
products operation {xT

1 Hjx2}. Composing these three types
of operations result in a polynomial, and party A knows
nothing about the coefficients of the polynomial and the
number of terms in the polynomial. For instance, in the
example of computing 2x31 + x1x2x3 − 2x3 + 4x33 in the
previous subsection, party A only knows that the processing
function is a degree-3 polynomial, and nothing more, since
any degree-3 polynomial can be realized with the same set of
fundamental operations by choosing different parameters, i.e.,
a, G, and {Hj} in the fundamental operations.

From the discussion above, we see that party B preserves the
privacy of all the coefficients in the polynomial to party A, and
in this sense, the computation is secret. In fact, by adding few
redundant operations, we can guarantee that the information
known by party A about the polynomial is nothing more than
the degree of the polynomial. Assume that the processing
function f is a polynomial on the elements of an integer vector
x, which is encrypted as a ciphertext c with a secret key S.
According to (19), we can get a new ciphertext c′ that encrypts
[1,xT]T with a secret key S′. If we evaluate the polynomial f
based on the encryption of [1,xT]T instead of the encryption
of x, then we can prove that party A knows at most the degree
of the polynomial. For instance, in the first example above, in
order to compute x22 − 4x1x3, we can perform the operation
[1,xT]H2[1,x

T]T with

H2 =

(
0 0
0 H1

)
,

and in this case party A only knows that the processing
function is a degree-2 polynomial – nothing else.

V. EXAMPLES OF SUPPORTED PROCESSING

In this section, we describe several examples of computation
tasks based on homomorphic encryption, including feature ex-
traction, recognition, classification, and data aggregation. The
computational complexity of these tasks can be significantly
reduced with encryptions and computations on integer vectors
in the scenario of Fig. 2.

A. Feature Extraction

Let x ∈ Zm be a long integer vector, such as an image,
whose encryption is stored at party A, e.g., data servers and
sensor nodes, and only party B has the secret key. Party B
is interested in getting the feature of x, i.e., y = Gx with
a feature matrix G ∈ Zl×m (l � m). But party B does not
want to let party A know what feature it is interested in. Our
goal is to generate an encryption of the feature y at party A
while keeping the feature matrix G confidential.

Let c be the ciphertext of x with a secret key S. According
to the analysis for linear-transformation operations, see (14),
c is also a ciphertext of y but with another secret key GS.
Since y is much shorter than x, we can use the key-switching
technique to reduce the dimension of the ciphertext c. As a
result, we switch the secret key GS to S′, and convert the
ciphertext c to a new ciphertext c′ such that c′ is much shorter
than c.

In most applications, the vector x is very long, and it
is represented by multiple ciphertexts c1, c2, ..., ck, with ci
encrypts xi. The feature of x is

y =

k∑
i=1

Gixi (20)

for a collection of feature matrices {Gi}. We see that the
ciphertext of Gixi is ci with secret key GiS. Since all the
k ciphertexts have distinct secret keys, in order to continue
to perform addition operations over them, we need to switch
these secret keys to a common secret key, denoted by S′. With
this new secret key, the ciphertext of Gixi is converted to c′i
instead of ci. Finally, we obtain c′ =

∑k
i=1 c

′
i mod q as a

valid encryption of y, and its secret key is S′.
Let’s consider the following concrete example. Assume that

x is an image of 214 pixels with each pixel represented by an
integer of 8 bits. It is divided into 27 vectors, denoted by
x1,x2, ...,x27 , each contains 27 pixels and is encrypted by a
ciphertext of length 28. Assume that the length of the feature
y is 10, then we have 27 feature matrices with each matrix
Gi ∈ Z10×27

28 .
We construct each ciphertext ci (that encrypts xi) with

the following parameters: the constant w = 220 and the
modulus q ≈ 250. Both the secret keys and noise matrices
are generated based on a noise distribution χ, which is the
uniform distribution on Z4. After the initial encryption (before
performing linear transformations), it has

Sci = qki + wxi +E1x
∗
i , (21)

where S is the secret key, ki is an integer vector, E1 ∈ Z27×210
4

is a noise matrix, and x∗i ∈ {0, 1}2
10

is the binary represen-
tation of xi. Then we apply linear transformation and key
switching, by which, the ciphertext ci is converted into a new
ciphertext c′i of length 28 with a new secret key S′. According
to the analysis for the key-switching technique,

S′c′i = qk′i + wGixi + (GiE1x
∗
i +E2c

∗
i), (22)

where E2 ∈ Z10×(28∗50)
4 is a noise matrix and c∗i ∈ {0, 1}2

8∗50

is the binary representation of ci. We see that the noise part
is ei = GiE1x

∗
i +E2c

∗
i , and its magnitude is

|ei| ≤ 27 × 210 × 4× 28 + 28 × 50× 4 ≈ 227. (23)

Although |ei| is possible to be larger than w, it is much smaller
than |Gixi|. Since we are only interested in the significant bits
of the elements in the feature y, the effect of the noise part
is actually ignorable. Finally, by adding all the ciphertexts c′i
with 1 ≤ i ≤ 27, we get the ciphertext c for y such that

S′c = qk+ wy + e, (24)

with k an integer vector, |y| ≤ 230, |e| ≤ 234, and w|y| ≤
250 ≈ q. Typically, |wy| � |e|, hence y can be obtained with
sufficient precision by decrypting c.

In this example, it requires roughly 200K bytes space to
store a 16 KB image. The communication cost of each key-
switching matrix is at most 16 KB (when the random matrix
A in (5) is created with pseudo random bits). Hence, the total
communication cost is about 2 MB, which is a reasonable
amount of cost for large cloud storage applications, where a
user stores, e.g., more than 10 GB of images. In a sense, the
transmitted data (key-switching matrices) can be considered as
the encryption of the feature matrices, and the communication
cost is only 12 times of the total size of the feature matrices.
In addition, the computation cost is about 50 times of that in
the plaintext domain, which is usually acceptable in practical
applications.

B. Recognition

In the scenario of Fig. 2, assume that party A has the
encryptions of a collection of integer vectors x1,x2, . . . ,xk.
Party B wants to check whether there is a vector xi that is
similar to a private vector a, i.e., ‖xi−a‖ ≤ t for a threshold
t, where ‖xi − a‖ is the Euclid distance between xi and a.
The question is how to compute ‖xi − a‖ in the encrypted
domain when both xi and a are encrypted, so that party A
only needs to transmit the encryption of ‖xi − a‖ to party B.

For convenience, we write xi as x. Since

‖x− a‖2 = xTx+ aTa− 2aTx, (25)

we can compute xTx, aTa, and aTx, respectively, based on
weighted-inner-products operations. The secret key for xTx

is vec(STS) and the ciphertext is dvec(cxcx
T)

w cq; similarly,
the secret key for aTa is vec(STS) and the ciphertext is
dvec(caca

T)
w cq; the secret key for aTx is vec(STS) and the

ciphertext is dvec(cacx
T)

w cq . Since they have the same secret

key, we can directly perform addition operations on them. As
a result, we get the ciphertext of ‖x− a‖2, which is

c′ =

⌈
vec(cxcx

T + caca
T − 2cacx

T)

w

⌋
q

, (26)

and the secret key is vec(STS). Now, the dimension of the
ciphertext is still too high, we can further apply the key-
switching technique to reduce the dimension.

In what follows, we provide an example: the integer vector
x is in Z27

26 , and the length of its ciphertext cx is 28. The
noise distribution χ is the uniform distribution on Z4. Based
on these parameters, the ciphertext cx satisfies

Scx = qk1 + wx+ e1, (27)

with |k1| ≤ 6 ∗ 216 and |e1| ≤ 6 ∗ 29. Then, we let w ≈
260 and q = 220w, and we compute xTx in the encrypted
domain based on a weighted-inner-products operation. As a
result, we get a secret key s′ = vec(STS), and the ciphertext
of xTx is c′x = dvec(cxcx

T)
w cq . According to the analysis for

the weighted-inner-products operation, we have

s′c′x = qk2 + wxTx+ e2, (28)

where k2 is an integer and |e2| ≤ 2 ∗ 220 ∗ 27|k1| ∗ |e1| ≤
259 < w. It implies that xTx can be correctly decrypted from
c′x based on the secret key s′. The same analysis applies to
all the terms in ‖x− a‖2 = xTx+ aTa− 2aTx, and in this
case, it is good to set w ≈ 260 and q = 220w with ciphertext
length n = 256 and integer-vector length m = 128. Although
there will be an extra noise introduced by the next-step key
switching, the magnitude of the extra noise is much smaller
than that of e2, hence ignorable in our analysis.

Our observation is that if we modify the encryption process,
then the computation can be further simplified. Instead of en-
crypting x, we assume that x′ = (1,xTx,xT)T is encrypted.
If we define a′ = (aTa, 1,−2aT)T for party B, then we can
get ‖x−a‖2 = a′

T
x′. It implies that ‖x−a‖2 can be computed

based on a single linear-transformation operation on x′ with a
transform matrix G = a′, where a′ is only known by party B.
This method is computationally much more efficient than the
method above, as linear-transformation operations are much
simpler to implement than weighted-inner-product operations.

C. Classification

Classification has many important applications in data
clouds and sensing systems. For example, in email services, a
user may want to know whether an encrypted email at server
is a spam or not; and in sensor monitoring networks, the base
station may want to determine the existence of certain events,
such as fires, in a specific area.

A simple and widely-used classifier is a linear classifier:
given a vector x ∈ Zm

p , the classifier outputs 0 if and only
w · x ≤ t for a weight vector w and a threshold t, i.e, it is
described by a function

f(x) =

{
0 if w · x ≤ t
1 otherwise. (29)

In order to apply linear classification for spam or event
detection, the user or the base station only needs to collect
w · x instead of the original long vector x. Actually, w · x
can be computed with a single linear-transformation operation,
where wT is the transformation matrix from the user or the
base station. The computation process is simple and efficient.

Furthermore, we can implement a more sophisticated non-
linear classifier by replacing w ·x with a degree-2 polynomial
on x. Such a classifier can be designed based on the sup-
port vector machines (SVM), and the corresponding degree-2
polynomial can be evaluated based on a single weighted-inner-
products operation.

D. Data Aggregation

With the concerns of data security and privacy, in sensor net-
works, it is desired to encrypt data immediately at the sensor
nodes when the data is generated, and the encryption process
is based on a public key broadcasted by the base station. The
encrypted data is aggregated from thousands of nodes to the
base station via multiple hops. With limited communication
bandwidth and energy constraints, data processing is necessary
at relay nodes to reduce the amount of transmitted data.

Assume that each sensor node detects an integer value,
encrypts it and sends it to the base station. Some relay nodes
may receive multiple ciphertexts c1, c2, . . . , ck from different
sensor nodes, representing integer values x1, x2, . . . , xk, re-
spectively. The question is that how to pack them together to
form a single ciphertext c′, which encrypts (x1, x2, . . . , xk).

Let’s consider a secret key S and a ciphertext c constructed
as follows:

c =

c1
c2
...
ck

 , S =

s, 0, . . . , 0
0, s, . . . , 0

...
0, 0, . . . , s

 , (30)

where s is the secret key of the original ciphertexts
c1, c2, . . . , ck. It is easy to see that

Sc = w(x1, x2, ..., xk)
T + e mod q (31)

with a noise vector e. It is clear to see that c is a ciphertext of
(x1, x2, ..., xk)

T , but its dimension is k times of the original
dimension n. With the key-switching technique, we can reduce
the dimension of the ciphertext by converting c to a new
ciphertext c′. As a result, we have packed a collection of
ciphertexts c1, c2, . . . ,xk as a single ciphertext c′.

In some other occasions, the base station may be only
interested in the statistics of the sensed values, such as
their mean, max and distribution. In order to extract these
information, we adopt another way of encrypting the sensed
values: at a sensor node, instead of encrypting a sensed value
xi, we represent xi as a binary vector and encrypt this binary
vector. Specifically, let xi be an integer in Zp, e.g., p = 128,
we encode xi into xi ∈ {0, 1}p such that only the (xi + 1)th
entry in xi is 1 and all other entries are 0s, and then we encrypt
xi with a ciphertext ci. For example, if a sensor node detects
xi = 3 ∈ Z8, then xi = [0, 0, 0, 1, 0, 0, 0, 0]. If a relay node

receives a collection of ciphertexts, denoted by c1, c2, . . . , ck,
it simply fuses them by adding them together, i.e., it generates
and forwards a new ciphertext

c =

k∑
i=1

ci mod q. (32)

Finally, the base station obtains a ciphertext c′ that encrypts
an integer vector n′ with n′ =

∑
i xi, which represents the

frequencies of all the integers in Zp detected by the sensor
nodes. Based on the frequency vector n′ = [n1, n2, ..., np], the
base station can obtain the statistics of all the sensed values,
including the mean, max, variance, etc. For example, the mean
is

mean(x) =

∑p
j=1(j − 1)nj∑p

j=1 nj
; (33)

and the max is

max(x) = max{j : 1 ≤ j ≤ p, nj > 0} − 1. (34)

VI. CONCLUDING REMARKS

In this paper, we studied a homomorphic encryption scheme
on integer vectors, as a natural extension of the recently
developed homomorphic encryption schemes based on the
learning with errors (LWE) assumption. In contrast to previous
work, we focused on a new scenario that has wide applications
in data clouds and sensing systems. We demonstrated that, in
this scenario, the encryption scheme supports three types of
fundamental operations on integer vectors, and based on which
we can compute an arbitrary polynomial on integers within
a certain degree efficiently and secretely. In addition, we de-
scribed a few examples of computation tasks, including feature
extraction, recognition, classification, and data aggregation. A
strong implication of this paper is that although it is difficult
to construct universal homomorphic-encryption schemes for
general computations in practice, for some specific applica-
tions we may find simple homomorphic-encryption schemes
with reasonable communication and computation costs.

The work in this paper also brings us many interesting
problems that require further studies. For example, how to
divide a computation task into the three types of fundamen-
tal operations that minimize the overall communication and
computation cost? How to reduce the public-key size, i.e.,
the total size of the key-switching matrices? Can any task
be represented as polynomials modulus l for an integer l, and
what is the best presentation?

ACKNOWLEDGMENT

The authors thank Venkat Chandar for useful technical
discussions.

REFERENCES

[1] R. L. Rivest, L. Adleman, and M. L. Dertouzos, “On data banks and
privacy homomorphisms,” in Foundations of Secure Computation, R.
Demillo, D. Dobkin, A. Jones, and R. Lipton, Eds. New York: Academic,
pp. 169–180, 1978.

[2] S. Goldwasser and S. Micali, “Probabilistic encryption and how to play
mental poker keeping secret all partial information,” in Proc. STOC,
ACM, pp. 365–377, 1982.

[3] Taher El-Gamal, “A public key cryptosystem and a signature scheme
based on discrete logarithms,” in Proc. CRYPTO, pp. 10–18, 1984.

[4] P. Paillier, “Public-key cryptosystems based on composite degree resid-
uosity classes,” in EUROCRYPT, pp. 223–238, 1999.

[5] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Proc.
STOC’09, pp. 169–178.

[6] C. Aguilar-Melchor, P. Gaborit, and J. Herranz, “Additively homomor-
phic encryption with d-operand multiplications,” in Proc. CRYPTO’10
(LNCS) vol. 6223, pp. 138–154.

[7] Z. Brakerski and V. Vaikuntanathan, “Efficient fully homomorphic
encryption from (standard) LWE,” in Proc. 2011 IEEE 52nd Annu. Symp.
on Foundations of Computer Science, pp. 97106.

[8] Z. Brakerski and V. Vaikuntanathan, “Fully homomorphic encryption
from ring-LWE and security for key dependent messages,” in Proc.
Advances in Cryptology, (CRYPTO 2011), vol. 6841, pp. 505–524.

[9] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(Leveled) fully homo-
morphic encryption without bootstrapping, in Proc. 3rd Innovations in
Theoretical Computer Science Conf., 2012, pp. 309–325.

[10] J.-S. Coron, A. Mandal, D. Naccache, M. Tibouchi, “Fully homomorphic
encryption over the integers with shorter public keys,” in CRYPTO’2011
(LNCS) vol. 6841, pp. 487–504, 2011.

[11] M. Naehrig, K. Lauter, and V. Vaikuntanathan, “Can homomorphic
encryption be practical?” in Proc. ACM Workshop on Cloud Computing
Security, 2011.

[12] M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, “Fully homo-
morphic encryption over the integers,” in EUROCRYPT’2010 (LNCS)
vol. 6110, pp. 24–43.

[13] C. Gentry, S. Halevi, and V. Vaikuntanathan, “A simple BGN-type
cryptosystem from LWE,” in Proc. EUROCRYPT’2010 (LNCS) vol.
6110, pp. 506–522.

[14] C. Gentry, S. Halevi, and N. Smart, “Homomorphic evaluation of the
AES circuit,” in Proc. CRYPTO’2012, (LNCS) vol. 7417, pp. 850–867,
2012.

[15] C. Aguilar-Melchor, S. Fau, C. Fontaine, G. Gogniat, and R. Sirdey,
“Recent advances in homomorphic encryption,” IEEE Signal Processing
Magazine, pp. 108–117, March 2013.

[16] N. P. Smart and F. Vercauteren, “Fully homomorphic SIMD operations,”
Designs, Codes and Cryptography, Springer, issn 0925-1022, 2012.

[17] M. Yasuda, T. Shimoyama, J. Kogure, K. Yokoyama, and T. Koshiba,
“Packed homomorphic encryption based on ideal lattices and its appli-
cation to biometrics,” Security Engineering and Intelligence Informatics
(LNCS) vol. 8128, pp. 55–74, 2013.

[18] J. H. Cheon, J.-S. Coron, et al., “Batch fully homomorphic encryption
over the integers,” in Advances in Cryptology - EUROCRYPT’2013,
(LNCS) vol. 7881, pp. 315–335, 2013.

[19] C. Peikert, V. Vaikuntanathan, and B. Waters, “A framework for efficient
and composable oblivious transfer,” In CRYPTO’08, (LNCS) vol. 5157,
pp. 554–571, 2008.

[20] Z. Brakerski, C. Gentry, and S. Halevi, “Packed ciphertexts in LWE-
based homomorphic encryption,” in Public-Key Cryptography - PKC,
(LNCS) vol. 7778, pp. 1–13, 2013.

[21] R. L. Lagendijk, Z. Erkin, and M. Barni, “Encrypted signal processing
for privacy protection,” IEEE Signal Processing Magazine, pp. 82–105,
Jan. 2013.

[22] R. Riggio, and S. Sicari, “Secure aggregation in hybrid mesh/sensor
networks,” in Proc. International Conference on Ultra Modern Telecom-
munications & Workshops, 2009.

[23] B. Applebaum, D. Cash, C. Peikert, and A. Sahai, “Fast cryptographic
primitives and circular-secure encryption based on hard learning prob-
lems,” in CRYPTO’09, (LNCS) vol. 5677, pp. 595–618, 2009.

