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Abstract—This paper presents a novel encoding algorithm for 1l. M ATRIX TRANSFORMATION AND ¢-FOLD DISPERSION
QC-LDPC codes constructed from Reed-Solomon codes. The

encoding is performed in the transform domain via Galois Consider the QC matri¥l consists ofim x n circulants,

Fourier transformation. Message bits are encoded in sections Ago Aor - Ao

corresponding to sub-matrices of the parity-check matrix in re Arr e As

the transform domain. Because of the structure of the parity- H2 A, ] = 1,0 1,1 Ln—1 )
- 2,7 . . . bl

check matrices of these LDPC codes, the encoding can be : : . :
ea§i!y implemented with some linear-feedback shift registers, thus Ao A s A
efficiently reduces the hardware cost. m—=1,0 £m-1,1 m—1n-1

Index Terms—LDPC codes, RS codes, encoding complexity, whereA, ; is ¢ x ¢ circulant. For simplicity, we assume that
matrix transformation, Galois Fourier transform. g = 2° —1, which is reasonable for practical QC-LDPC codes,
wheres is a positive integer. It can be easily generalized when
g is an odd factor oR2° — 1. Let o be a primary element in
GF(g). Define theq x ¢ Vandermonde matriy/ = [«~%/] and
the following row and column permutations,, , , for the
mq X ng QC matrix,
In recent years, low-density parity-check (LDPC) codes in {

I. INTRODUCTION

quasi-cyclic (QC) form have been deeply investigated §1]-[ WT B m (.Z)’I N LZ./qJ ’ 8 i ¢ < ma,

A number of QC-LDPC codes have been constructed and T = n(j)qu Li/al, S J<ng

shown good error performance. Based on their QC structuvghere (:)  denotes the smallest positive integer conjugate to
the computational complexity and memory cost of LDP mod q. Then, the GFT of (1) is

encoders can be efficiently reduced [10],[11]. RS-based@DP _ . ) 11 1
codes are a sub-class of QC-LDPC codes [12]. They aretl = diag(V, V..., V)Hdiag(V—" . V—,... . V7).
constructed algebraically based on the parity-check oestri m n

of RS codes. It has been shown that this class of QC-LDRoreover, we define the matrix transformationifas
codes have good error-performance and structural property .

e.g., minimum distance and girth [12] [13]. Moreover, their H = H7 7" = diag (Bg,By,-- ,Bg-1),  (2)
algebraic nature is even stronger in the matrix transfaonat where B;'s, 0 < ¢ < ¢, are matrices in GRj. Let m’ be

domain via Galois Fourier transform (GFT). the integer such that — m’ equals to the minimum rank
In this paper, we propose an novel algorithm to encodg B,'s for 0 < ¢ < ¢. SupposeD;'s are m’ x n matrices

RS-based LDPC codes by adopting their transform doqun'Hch define the null spaces (Bt’S, ie., DtBT — 0 and

algebraic property. The transform domain generator meric.ank(D,) + rank(B;) = n. We can construct the diagonal

of RS-based LDPC codes can be constructed as a grigay

of generator matrices of RS codes. Hence, we encode the G = diag (Dy, Dy, -, D, 1).

message bits to a transformed codeword with RS encoders.

Then, we devise a simple and fast post-processing to transf@en, them’q x ng matrix

the codeword binary. The computational complexity of the G = Gt F 3)

encoding can be reduced to about 20% or even below 10%

compared to traditional time domain encoding. Moreovetgefines the null space d.

due to the structure of RS codes and conjugacy constraintf H in (1) is binary, the diagonal submatrices in the trans-

in the transform domain, the encoding processing can fagm domain will satisfy the following conjugacy constrain

simply implemented with some linear-feedback shift regist [12],

(LFSRS). B2, = By?, (4)




where o denotes the Hadamard power, i.e., the entry atill space is given by
location (7, j) of By, is the square of the entry at location

(i,7) of B,. Therefore, we can partitioB,’s into conjugacy go’t 91t -1 1 (1) 8
classes based on the constraint. In each conjugacy class, ) — ?(70.,26 gm—2t  gm—1 7
matrices are the Hadamard powers of each other. We call : : :
the matrix with the smallest index conjugacy represergativ 0 0 9ot g1t 1

in each conjugacy class. _ o 8) _
In addition, if H in (1) consists of circulant permutationWhere g; is the coefficient of the generator polynomial

circulants (CPMs) and zero matrices (ZMs), the conjugagé(m) = JI(z + B"). Then, we obtain the cyclic form

constraint becomes =1 . .
generator matrix of the RS-based LDPC codes in the transform

B, = BY". () domain,
Dy O (0]
In this case,B; is called the base matrix in the transform . O D, 0
domain. MoreoverH can be directly derived from its base G= ) ) 9)
matrix and vise versa. Actually, for each locatign;) (0 < : : 3
i <m,0 < j<n)whereA,; has an 1 in the-th (0 < 0O O Dy

e < q) position of the first row, the component @, at

”?e_s"?‘mg Ig(r:]atlofn I8 if Ay IS a |ZM’£’1. at tTe Iocaltlon Motivated by the simple implementation of encoding for RS
(¢,) is 0. Therefore, we can simply obtain a large class %des, we propose to encode the RS-based LDPC codes with

algebra QC-LDPC codes hased on the construction of tthre transformed generator matrix. Hence, the codeworden th

base matrices by replacing the components in the base Elr‘mrit?ansform domain can be easily obtained with RS encoders.

IV. ENCODING IN TRANSFORMDOMAIN

with corresponding CPMs/ZMs. This construction is refdrre

to asg-fold dispersion [12].

IlIl. RS-BASEDLDPC CoDES

Let n be a prime factor off = 2° —1 and2® — 1 = ¢n. Let
« be a primitive element of GE|. Supposes = a¢, then the
following matrix

1 ﬂ 2 ﬁnfl
2 2\2 2\n—1
B 1 5 (5%) :(ﬁ ) C®
.1 ﬁm (Bm)Q .(ﬂm)n—l

wherel < m < n, can be dispersed to theq x ng parity-
check matrix of an LDPC code with girth at least 6 [12]
Since B defines the null space of a cyclic RS code who
generator polynomial has, 32,..., 3™ as roots, this type of

LDPC codes are called RS-based LDPC codes. The matti

transformation ofH can be derived as

H ™ = diag(Bo,B1,...,B4_1),

whereB; is the base matrix, also denoted Bs and B; =
B°%, t=0,1,...,q— 1. Itis straightforward that it =0 or ¢
is divisible byn, B, is an all “1” matrix so that its null space
is given by

0
1

o O
o O

11
0 1
D,

()
0 00 11
Otherwise,B; defines a cyclic , n» — m) RS code whose
generator polynomial hast, 3%,..., ™ as roots. Thus, its

Consider the RS-based LDPC code constructed from (6).
Supposed thaim is a binary message of length- Since
mG -HT = 0, mG produces a transform domain codeword.
According to the structure ofs (9), we can splitm into ¢
sectionsmg, my,--- ,m,_;. The length of each sectiom,
is equal tor; = rankD,), 0 < ¢t < ¢. Thus, the encoding
of m with G can be considered as encoding 1af,'s with
D;’s. However, théD,’s in (7) and (8) produce non-systematic
codewords. Hence, we apply the systematic forniDgfs in
the encoding processing.

Moreover, thanks to the conjugacy constraint (4), we just
take into account the conjugacy representative®gt. Let
[ be any nonnegative integer. Suppo&gty,...,tx_1 are
the A non-negative integers less thanthat satisfy¢; =
min {(2'¢;),}, 0 < i < A. Then, Dy,,Dy,,...,D;, , are
the A\ conjugacy representatives in the transform domain of

€. Assumet is the integer equal tonin {(2't),}, i.e., t €

1o, t1, ..y ta—1}. Let D, denote the conjugacy representative
of D, andg,(z) be the generator polynomial &,. Then, we
have D, = D;. Hence, the encoding is based Bn’s. For
instance, supposm; = [m;;], 0 <i <r. If t=0o0rtis

divisible by n, the codeword section is

ét = [Z me g mt].
i

Otherwise,¢; is generated based on polynomial calculations
[14]. Let m(x) and ¢;(x) , respectively, be the polynomial
representation ofm; andc;. We have

(10)

éi(x) = 2" "my(x) + («"7"'my(z)) mod g (x).  (11)

However, the codeword in the transform domain calculat-
ed by (10) and (11) may not satisfy the conjugacy constraint
and thus produce non-binary codeword in the time domain.
Thus, we perform post-processing émy bases of sub-fields.



TABLE |
COMPLEXITY OF ETD AND TRADITIONAL ENCODING

H \ Bit Operations

Step 1) gk(n — k)log, q
ETD Step 2) n(2q — \) log3 q + nqlog, q
Step 3) ng?(logy )2 3
Overall | qk(n — k)logy q + n(2g — ) log2 ¢ + nqlogs q + ng?(log, q)os2 H

Traditional EncodingH Overall \ 2¢%k(n — k)

Let n; be the number of components in the conjugacy class
with representativd,,. Then,»; divides ¢ and GF{;) is a
subfield of GF§). Supposeg; o, 5i1,---,Bin—1 IS & bases
spanning GFf{;). Then, we mapc to ¢ with the following
equation [15],

oK

ni—1
é(Quti)q'n+j = (Z ﬂi,lé(2lt,,)q~n+j) . (12)

=0

c Mapping c

— and —
Inverse FT
It is obviously that¢ satisfies the conjugacy constraint. This

is because, giveri and j, for all y's that0 < p < n;,
é(g,bti)q.nﬂ»’s make up a conjugacy class, i.é(gti)q.nﬂ- =
éfi_nﬂ-. Moreover, supposeén is mapped fronm by bases of
sub-fields. The mapping from to m, as well as¢ to ¢, is
one to one, and we have= mG [15]. Then,é¢HT = 0 and
thus, ¢ is also a transformed codeword of.

To sum up, we derive Algorithm 1 to encode RS-based Fig. 1. The block diagram of the ETD for RS-based LDPC codes.
LDPC codes.

Algorithm 1 Encoding in Transform Domain (ETD) Thanks to the conjugacy constraint, we only need one LFSR
Input: for each conjugacy class, which contaipgA components
Messagem; on average. Because there aré: integers less than q and
Transformed generator matri%; divisible byn, we need aboutg/n)/(¢/A) = A/n LFSR’s for
Output: the first type and abodyy—q/n)/(q/\) = A(n—1)/n LFSR’s
Binary codewordc; for the second type. Therefore, the hardware implememtatio
Steps: of the first step of ETD only costs less tham registers,
1) Calculatec with (10) and (11). Galois field multipliers and Galois field adders.

2) Calculate¢ with (12).
3) Inverse Galois Fourier transform froénto binary code-
word c,

Example 1. Consider the LDPC code C constructed by an
(63,30)-RS code in GF(63). Then, n = 63, ¢ = 63, k =
q—1 2078, k ~ 33 and A\ = 13. Thus, ETD requires 772178 bit
Ciq+i = Z élnﬂa“. operations while the traditional encoding requires 7858620
1=0 bit operations. In other words, the computational complexity
of ETD is only 0.098 of the traditional one.

Table | lists the computational complexity of Algorithm 1.
Since the length ofm; is depend onr;, we usek = k/q V. CONCLUSION
as the overall information section length for the estimatio
For comparison, we also list the traditional encoding algo- In this paper we proposed a novel encoding algorithm
rithm ¢ = mG. Approximately, the proposed algorithm isfollowing GFT approach for RS-based LDPC codes. The
cube complexity, while the traditional algorithm is biquat® encoding takes advantages of the encoding of RS codes. Its
complexity. Moreover, ETD for RS-baed LDPC codes can lmmputational complexity is much lower than the traditiona
simply implemented based on LFSRs, as shown in Figuretiime domain encoders. Apparently, this approach is alsi-ava
For the first type ofD; (7), just one register and one binaryable to other cyclic-code-based QC-LDPC codes [8], [9] with
adder are required. For the second typeDnf (8), we need a slight modification. The implementation of general enngdi
n—ry registers, Galois field multipliers and Galois field addersf these types of LDPC codes can be significant reduced.
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