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Abstract—This paper presents a novel encoding algorithm for
QC-LDPC codes constructed from Reed-Solomon codes. The
encoding is performed in the transform domain via Galois
Fourier transformation. Message bits are encoded in sections
corresponding to sub-matrices of the parity-check matrix in
the transform domain. Because of the structure of the parity-
check matrices of these LDPC codes, the encoding can be
easily implemented with some linear-feedback shift registers, thus
efficiently reduces the hardware cost.

Index Terms—LDPC codes, RS codes, encoding complexity,
matrix transformation, Galois Fourier transform.

I. I NTRODUCTION

In recent years, low-density parity-check (LDPC) codes in
quasi-cyclic (QC) form have been deeply investigated [1]-[9].
A number of QC-LDPC codes have been constructed and
shown good error performance. Based on their QC structure,
the computational complexity and memory cost of LDPC
encoders can be efficiently reduced [10],[11]. RS-based LDPC
codes are a sub-class of QC-LDPC codes [12]. They are
constructed algebraically based on the parity-check matrices
of RS codes. It has been shown that this class of QC-LDPC
codes have good error-performance and structural property,
e.g., minimum distance and girth [12] [13]. Moreover, their
algebraic nature is even stronger in the matrix transformation
domain via Galois Fourier transform (GFT).

In this paper, we propose an novel algorithm to encode
RS-based LDPC codes by adopting their transform domain
algebraic property. The transform domain generator matrices
of RS-based LDPC codes can be constructed as a group
of generator matrices of RS codes. Hence, we encode the
message bits to a transformed codeword with RS encoders.
Then, we devise a simple and fast post-processing to transfer
the codeword binary. The computational complexity of the
encoding can be reduced to about 20% or even below 10%
compared to traditional time domain encoding. Moreover,
due to the structure of RS codes and conjugacy constraint
in the transform domain, the encoding processing can be
simply implemented with some linear-feedback shift registers
(LFSRs).

II. M ATRIX TRANSFORMATION AND q-FOLD DISPERSION

Consider the QC matrixH consists ofm× n circulants,

H
△
= [Ai,j ] =








A0,0 A0,1 · · · A0,n−1

A1,0 A1,1 · · · A1,n−1

...
...

. . .
...

Am−1,0 Am−1,1 · · · Am−1,n−1







, (1)

whereAi,j is q× q circulant. For simplicity, we assume that
q = 2s−1, which is reasonable for practical QC-LDPC codes,
wheres is a positive integer. It can be easily generalized when
q is an odd factor of2s − 1. Let α be a primary element in
GF(q). Define theq× q Vandermonde matrixV = [α−ij ] and
the following row and column permutationsπm,n,q for the
mq × nq QC matrix,

{
πi
m = m (i)q + ⌊i/q⌋ , 0 ≤ i < mq,

πj
n = n (j)q + ⌊j/q⌋ , 0 ≤ j < nq,

where(i)q denotes the smallest positive integer conjugate to
i mod q. Then, the GFT ofH (1) is

H
F = diag(V,V, . . . ,V

︸ ︷︷ ︸

m

)Hdiag(V−1,V−1, . . . ,V−1

︸ ︷︷ ︸

n

).

Moreover, we define the matrix transformation ofH as

Ĥ
△
= H

F,πm,n,q = diag (B0,B1, · · · ,Bq−1) , (2)

whereBt’s, 0 ≤ t < q, are matrices in GF(q). Let m′ be
the integer such thatn − m′ equals to the minimum rank
of Bt’s for 0 ≤ t < q. SupposeDt’s are m′ × n matrices
which define the null spaces ofBt’s, i.e., DtB

T

t = 0 and
rank(Dt) + rank(Bt) = n. We can construct the diagonal
array

Ĝ = diag (D0,D1, · · · ,Dq−1) .

Then, them′q × nq matrix

G = Ĝ
πm′,n,q,F (3)

defines the null space ofH.
If H in (1) is binary, the diagonal submatrices in the trans-

form domain will satisfy the following conjugacy constraint
[12],

B(2t)q = B
◦2
t , (4)



where ◦ denotes the Hadamard power, i.e., the entry at
location (i, j) of B(2t)q is the square of the entry at location
(i, j) of Bt. Therefore, we can partitionBt’s into conjugacy
classes based on the constraint. In each conjugacy class, the
matrices are the Hadamard powers of each other. We call
the matrix with the smallest index conjugacy representative
in each conjugacy class.

In addition, if H in (1) consists of circulant permutation
circulants (CPMs) and zero matrices (ZMs), the conjugacy
constraint becomes

Bt = B
◦t
1 . (5)

In this case,B1 is called the base matrix in the transform
domain. Moreover,H can be directly derived from its base
matrix and vise versa. Actually, for each location(i, j) (0 ≤
i < m, 0 ≤ j < n) whereAi,j has an 1 in thee-th (0 ≤
e < q) position of the first row, the component ofB1 at
the same location isαe; if Ai,j is a ZM, B1 at the location
(i, j) is 0. Therefore, we can simply obtain a large class of
algebra QC-LDPC codes based on the construction of their
base matrices by replacing the components in the base matrices
with corresponding CPMs/ZMs. This construction is referred
to asq-fold dispersion [12].

III. RS-BASED LDPC CODES

Let n be a prime factor ofq = 2s− 1 and2s− 1 = cn. Let
α be a primitive element of GF(q). Supposeβ = αc, then the
following matrix

B =








1 β β2 · · · βn−1

1 β2 (β2)2 · · · (β2)n−1

...
...

. ..
...

1 βm (βm)2 · · · (βm)n−1







, (6)

where1 < m < n, can be dispersed to themq × nq parity-
check matrix of an LDPC code with girth at least 6 [12].
SinceB defines the null space of a cyclic RS code whose
generator polynomial hasβ, β2, . . . , βm as roots, this type of
LDPC codes are called RS-based LDPC codes. The matrix
transformation ofH can be derived as

H
F,π = diag(B0,B1, . . . ,Bq−1),

whereB1 is the base matrix, also denoted asB, andBt =
B

◦t, t = 0, 1, . . . , q−1. It is straightforward that ift = 0 or t
is divisible byn, Bt is an all “1” matrix so that its null space
is given by

Dt =








1 1 0 . . . 0 0
0 1 1 . . . 0 0
...

...
.. .

...
0 0 0 . . . 1 1







. (7)

Otherwise,Bt defines a cyclic (n, n − m) RS code whose
generator polynomial hasβt, β2t, . . . , βmt as roots. Thus, its

null space is given by

Dt =








g0,t g1,t · · · gm−1,t 1 0 . . . 0
0 g0,t · · · gm−2,t gm−1,t 1 . . . 0
...

...
. . .

...
...

...
0 0 · · · · · · g0,t g1,t . . . 1







,

(8)
where gi,t is the coefficient of the generator polynomial

gt(x) =
m∏

l=1

(x + βtl). Then, we obtain the cyclic form

generator matrix of the RS-based LDPC codes in the transform
domain,

Ĝ =








D0 O · · · O

O D1 · · · O

...
...

. ..
...

O O · · · Dq−1







. (9)

IV. ENCODING IN TRANSFORMDOMAIN

Motivated by the simple implementation of encoding for RS
codes, we propose to encode the RS-based LDPC codes with
the transformed generator matrix. Hence, the codeword in the
transform domain can be easily obtained with RS encoders.

Consider the RS-based LDPC code constructed from (6).
Supposed thatm is a binary message of length-k. Since
mĜ · ĤT = 0, mĜ produces a transform domain codeword.
According to the structure of̂G (9), we can splitm into q
sectionsm0,m1, · · · ,mq−1. The length of each sectionmt

is equal tort = rank(Dt), 0 ≤ t < q. Thus, the encoding
of m with Ĝ can be considered as encoding ofmt’s with
Dt’s. However, theDt’s in (7) and (8) produce non-systematic
codewords. Hence, we apply the systematic form ofDt’s in
the encoding processing.

Moreover, thanks to the conjugacy constraint (4), we just
take into account the conjugacy representatives ofDt’s. Let
l be any nonnegative integer. Supposet0, t1, ..., tλ−1 are
the λ non-negative integers less thanq that satisfy ti =
minl{(2

lti)q}, 0 ≤ i < λ. Then, Dt0 ,Dt1 , ...,Dtλ−1
are

the λ conjugacy representatives in the transform domain of
G. Assumet̃ is the integer equal tominl{(2

lt)q}, i.e., t̃ ∈
{t0, t1, ..., tλ−1}. Let D̃t denote the conjugacy representative
of Dt andg̃t(x) be the generator polynomial of̃Dt. Then, we
have D̃t = Dt̃. Hence, the encoding is based oñDt’s. For
instance, supposemt = [mt,i], 0 ≤ i < rt. If t = 0 or t is
divisible by n, the codeword section is

c̃t = [
∑

i

mt,i

... mt]. (10)

Otherwise,c̃t is generated based on polynomial calculations
[14]. Let mt(x) and ct(x) , respectively, be the polynomial
representation ofmt andct. We have

c̃t(x) = xn−rtmt(x) +
(
xn−rtmt(x)

)
mod g̃t(x). (11)

However, the codeword̃c in the transform domain calculat-
ed by (10) and (11) may not satisfy the conjugacy constraint
and thus produce non-binary codeword in the time domain.
Thus, we perform post-processing onc̃ by bases of sub-fields.



TABLE I

COMPLEXITY OF ETD AND TRADITIONAL ENCODING

Bit Operations

ETD

Step 1) qk̄(n− k̄) log2 q

Step 2) n(2q − λ) log22 q + nq log2 q

Step 3) nq2(log2 q)
log2

3

4

Overall qk̄(n− k̄) log2 q + n(2q − λ) log22 q + nq log2 q + nq2(log2 q)
log2

3

4

Traditional Encoding Overall 2q2k̄(n− k̄)

Let ηi be the number of components in the conjugacy class
with representativeDti . Then,ηi divides q and GF(ηi) is a
subfield of GF(q). Supposeβi,0, βi,1, . . . , βi,ηi−1 is a bases
spanning GF(ηi). Then, we map̃c to ĉ with the following
equation [15],

ĉ(2µti)q·n+j =

(
ηi−1
∑

l=0

βi,lc̃(2lti)q·n+j

)2µ

. (12)

It is obviously thatĉ satisfies the conjugacy constraint. This
is because, giveni and j, for all µ’s that 0 ≤ µ < ηi,
ĉ(2µti)q·n+j ’s make up a conjugacy class, i.e.,ĉ(2ti)q·n+j =

ĉ2ti·n+j . Moreover, supposêm is mapped fromm by bases of
sub-fields. The mapping fromm to m̂, as well as̃c to ĉ, is
one to one, and we havêc = m̂Ĝ [15]. Then,ĉĤT = 0 and
thus, ĉ is also a transformed codeword ofm.

To sum up, we derive Algorithm 1 to encode RS-based
LDPC codes.

Algorithm 1 Encoding in Transform Domain (ETD)
Input:

Messagem;
Transformed generator matrix̂G;

Output:
Binary codewordc;

Steps:
1) Calculatẽc with (10) and (11).
2) Calculatêc with (12).
3) Inverse Galois Fourier transform from̂c to binary code-
word c,

cjq+i =

q−1
∑

l=0

ĉln+jα
il.

Table I lists the computational complexity of Algorithm 1.
Since the length ofmt is depend onrt, we usek̄ = k/q
as the overall information section length for the estimation.
For comparison, we also list the traditional encoding algo-
rithm c = mG. Approximately, the proposed algorithm is
cube complexity, while the traditional algorithm is biquadrate
complexity. Moreover, ETD for RS-baed LDPC codes can be
simply implemented based on LFSRs, as shown in Figure 1.
For the first type ofDt (7), just one register and one binary
adder are required. For the second type ofDt (8), we need
n−rt registers, Galois field multipliers and Galois field adders.

. . . Mapping

and

Inverse FT

...

Gate

Message m1

Parity 

digits

b1b0

...

Gate

Message mq

Parity 

digits

b1b0
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Parity 

digits

b0

Gate
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Parity 

digits

b0

. . .

. . .

0c

c c
1c
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b

Fig. 1. The block diagram of the ETD for RS-based LDPC codes.

Thanks to the conjugacy constraint, we only need one LFSR
for each conjugacy class, which containsq/λ components
on average. Because there areq/n integers less than q and
divisible byn, we need about(q/n)/(q/λ) = λ/n LFSR’s for
the first type and about(q−q/n)/(q/λ) = λ(n−1)/n LFSR’s
for the second type. Therefore, the hardware implementation
of the first step of ETD only costs less thanλn registers,
Galois field multipliers and Galois field adders.

Example 1. Consider the LDPC code C constructed by an
(63,30)-RS code in GF(63). Then, n = 63, q = 63, k =
2078, k̄ ≈ 33 and λ = 13. Thus, ETD requires 772178 bit
operations while the traditional encoding requires 7858620
bit operations. In other words, the computational complexity
of ETD is only 0.098 of the traditional one.

V. CONCLUSION

In this paper we proposed a novel encoding algorithm
following GFT approach for RS-based LDPC codes. The
encoding takes advantages of the encoding of RS codes. Its
computational complexity is much lower than the traditional
time domain encoders. Apparently, this approach is also avail-
able to other cyclic-code-based QC-LDPC codes [8], [9] with
a slight modification. The implementation of general encoding
of these types of LDPC codes can be significant reduced.
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