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Abstract— This paper investigates the behavior of the noisy
Min-Sum decoder over binary symmetric channels. A noisy
decoder is a decoder running on a noisy device, which may
introduce errors during the decoding process. We show that in
some particular cases, the noise introduce by the device can help
the Min-Sum decoder to escape from fixed points attractors,
and may actually result in an increased correction capacity with
respect to the noiseless decoder. We also reveal the existence
of a specific threshold phenomenon, referred to as functional
threshold. The behavior of the noisy decoder is demonstrated in
the asymptotic limit of the code-length, by using “noisy” density
evolution equations, and it is also verified in the finite-length case
by Monte-Carlo simulation.

I. INTRODUCTION

In traditional models of communication or storage systems
with error correction coding, it is assumed that the operations
of an error correction encoder and decoder are deterministic
and that the randomness exists only in the transmission or
storage channel. However, with the advent of nanoelectronics,
the reliability of the forthcoming circuits and computation
devices is becoming questionable. It is then becoming crucial
to design and analyze error correcting decoders able to provide
reliable error correction even if they are made of unreliable
components.

Over the last years, the study of error correcting decoders,
especially Low-Density Parity-Check (LDPC) decoders, run-
ning on noisy hardware attracted more and more interest
in the coding community. In [1], [2], analytical methods
have been proposed to evaluate the performance of one step
majority logic LDPC decoders constructed from faulty gates.
In [3] and [4] hardware redundancy is used to develop fault-
compensation techniques, able to protect the decoder against
the errors induced by the noisy components of the circuit.
In [5], a class of modified Turbo and LDPC decoders has
been proposed, able to deal with the noise induced by the
failures of a low-power buffering memory that stores the input
soft bits of the decoder. Very recently, the characterization of
the effect of noisy processing on message-passing iterative
LDPC decoders has been proposed. In [6], the concentration
and convergence properties were proved for the asymptotic
performance of noisy message-passing decoders, and density
evolution equations were derived for the noisy Gallager-A
and Belief-Propagation (BP) decoders. In [7]–[9], the authors
investigated the asymptotic behavior of the noisy Gallager-
B decoder defined over binary and non-binary alphabets. In
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all these papers the noisy implementation of the iterative
message passing decoders was emulated by passing each of
the exchanged messages through a noisy channel.

In our previous works [10], [11], we proposed various
error models for the arithmetic components of the Min-Sum
(MS) decoder and derived density evolution equations for the
noisy MS. In this paper, we further investigate the asymptotic
and finite-length behavior of the noisy MS decoder over the
Binary Symmetric Chanel (BSC). We refine the probabilistic
error models for the noisy MS decoder we used previously in
[10], [11], and discuss their symmetry properties. We conduct
a thorough asymptotic analysis of the noisy MS decoder
and highlights a wide variety of more or less conventional
behaviors. We also reveal the existence of a specific threshold
phenomenon, which is referred to as functional threshold.
Finally, the asymptotic results are also corroborated through
finite length simulations.

The paper is organized as follows. Section II discusses the
probabilistic error models and and explains the motivations
behind them. The noisy MS decoder is also introduced in this
section. Section III shortly discusses the density evolution for
the noisy MS decoder, and provides the notation and defi-
nitions required to understand the asymptotic analysis of the
noisy MS decoder, which is then conducted in Section IV. Fi-
nally, Section V corroborates the asymptotic analysis through
finite-length simulations, and Section VI concludes the paper.

II. PROBABILISTIC ERROR MODELS FOR THE NOISY
MIN-SUM DECODER

A. Noisy Message-Passing Decoders

The model for noisy Message-Passing (MP) decoders pro-
posed in [6] incorporates two different sources of noise: com-
putation noise due to noisy logic in the processing units, and
message-passing noise due to noisy wires (or noisy memories)
used to exchange messages between neighbor nodes.

The computation noise is modeled as a random variable,
which the variable-node or the check-node processing depends
on. Put differently, an outgoing message from a (variable or
check) node depends not only on the incoming messages to
that node, but also on the realization of a random variable,
which is assumed to be independent of the incoming messages.

The message-passing noise is simply modeled as a noisy
channel. Hence, transmitting a message over a noisy wire is
emulated by passing that message through the corresponding
noisy channel.



However, in [6] it has been noted that “there is no es-
sential loss of generality by combining computation noise
and message-passing noise into a single form of noise”.
Consequently, the approach adopted has been to merge com-
putation noisy into message-passing noise, and to emulate
noisy decoders by passing the exchanged messages through
different noisy channel models. Thus, the noisy Gallager-A
decoder has been emulated by passing the exchanged messages
over independent and identical BSC wires, while the noisy
BP decoder has been emulated by corrupting the exchanged
messages with bounded and symmetrically distributed additive
noise (e.g. uniform noise or truncated Gaussian noise).

The approach we follow in this work differs from the one
in [6] in that the computation noise is modeled at the lower
level of arithmetic and logic operations that compose the
variable-node and check-node processing units. This finer-
grained noise modeling is aimed at determining the level of
noise that can be tolerated in each type of operation. As the
main focus of this work is on computation noise, we shall
consider that messages are exchanged between neighbor nodes
through error-free wires (or memories). However, we note
that this work can readily be extended to include different
error models for the message-passing noise (as defined in [6]).
Alternatively, we may assume that the message-passing noise
is merged into the computation noise, in the sense that adding
noise in wires would modify the probabilistic model of the
noisy logic or arithmetic operations.

B. Probabilistic Error Models for Noisy Adders, Comparators
and XOR-gates

In this section we describe the probabilistic models for noisy
adders, comparators and xor-operators, that will be used in the
next section, in order to emulate the noisy implementation of
the finite-precision MS decoder.

1) Noisy Adder Model: We consider a θ-bit adder (θ ≥ 2).
The inputs and the output of the adder are assumed to be in
V = {−Θ, . . . ,−1, 0,+1, . . . ,+Θ}, where Θ = 2θ−1−1. For
inputs (x, y) ∈ V , the output of the noiseless θ-bit adder is
given by v = sV(x+ y), where sV : Z → V denotes the θ-bit
saturation map:

sV(z) = sgn(z) ·min(|z|,Θ) (1)

The output of the noisy adder will be defined by injecting
errors in the output of the noiseless one. Two main error
injection models will be used in this work, both of which
are based on a bitwise XOR operation between the noiseless
output v and an error e. The error e is assumed to be drawn
from an error set E ⊆ V , according to an error probability
distribution pE : E → [0, 1]. The two models differ in the
definition of the error set E , which is chosen such that the
bitwise XOR operation (i.e. the error injection) may or may
not affect the sign of the noiseless output. In the first case
the error injection model is said to be full-depth, while in the
second it is said to be sign-preserving.

We fix a signed number binary representation, which can be
any of the sign-magnitude, one’s complement, or two’s com-

plement representation. There are exactly 2θ signed numbers
that can be represented by θ bits in any of the above formats,
one of which does not belong to V (note that V contains only
2Θ+1 = 2θ − 1 elements for symmetry reasons!). We denote
this element by ζ. For instance, in two’s complement format,
ζ = −(Θ + 1), with binary representation 10 · · · 0.
Full-depth error injection: For this error model the error set is
E = V . For symmetry reasons, all errors e ̸= 0 are assumed to
occur with the same probability. It follows that pE(0) = 1−pa
and pE(e) =

pa

2Θ , ∀e ̸= 0, where pa > 0 is referred to as the
error injection probability. Finally, the error injection function
is defined by:

ı(v, e) =

{
v ∧ e, if v ∧ e ∈ V
e, if v ∧ e = ζ

(2)

Sign-preserving error injection: For this error model the error
set is E = {0,+1, . . . ,+Θ}. The error injection probability is
denoted by pa, and all errors e ̸= 0 are assumed to occur with
the same probability (for symmetry reasons). It follows that
pE(0) = 1 − pa and pE(e) = pa

Θ , ∀e ̸= 0. Finally, the error
injection function is defined by:

ı(v, e) =

 v ∧ e, if v ̸= 0 and v ∧ e ∈ V
±e, if v = 0
0, if v ∧ e = ζ

(3)

In the above definition, ı(0, e) is randomly set to either −e or
+e, with equal probability (this is due once again to symmetry
reasons). Note also that the last two conditions, namely v = 0
and v ∧ e = ζ, cannot hold simultaneously (since e ̸= ζ).

Finally, both of the above error injection models satisfy the
following symmetry condition:∑
{e| ı(v,e)=w}

pE(e) =
∑

{e| ı(−v,e)=−w}

pE(e), ∀v, w ∈ V (4)

A particular case in which the symmetry condition is
fulfilled is when ı(−v, e) = −ı(v, e), for all v ∈ V and
e ∈ E . In this case, the error injection model is said to be
highly symmetric. We note that both of the above models
are highly symmetric, if one of the sign-magnitude or the
one’s complement representation is used. In case that the two’s
complement representation is used, they are both symmetric,
but not highly symmetric.
Remark: It is also possible to define a variable depth error
injection model, in which errors are injected in only the λ least
significant bits, with λ ≤ θ [10]. Hence, λ = θ corresponds
to the above full-depth model, while λ = θ − 1 corresponds
to the sign-preserving model. However, for λ < θ − 1 such
a model will not be symmetric, if the the two’s complement
representation is used!

Finally, for any of the above error injection models, the
output of the noisy adder is given by:

apr(x, y) = ı (sV(x+ y), e) , (5)

where e is drawn randomly from E according to the probability
distribution pE . The error probability of the noisy adder, i.e.



Pr (apr(x, y) ̸= sV(x+ y)), assuming uniformly distributed
inputs, equals the error injection probability parameter pa.

Obviously, it would be possible to define more general
error injection models, in which the injected error depends
on the data (currently and/or previously) processed by the
adder. Such an error injection model would certainly be more
realistic, but it would also make very difficult to analytically
characterize the behavior on noisy MP decoders. As a side
effect, the decoding error probability would be dependent on
the transmitted codeword, which would prevent the use of the
density evolution technique for the analysis of the asymptotic
decoding performance (since the density evolution technique
relies on the all-zero codeword assumption).

2) Noisy Comparator Model: Let lt denote the noiseless
less than operator, defined by lt(x, y) = 1 if x < y, and
lt(x, y) = 0 otherwise. The noisy less than operator, denoted
by ltpr, is defined by flipping the output of the noiseless lt
operator, with some probability value that will be denoted in
the sequel by pc.

Finally, the noisy minimum operator is defined by:

mpr(x, y) =

{
x, if ltpr(x, y) = 1
y, if ltpr(x, y) = 0

(6)

3) Noisy XOR Model: The noisy XOR operator, denoted by
xpr, is defined by flipping the output of the noiseless operator
with some probability value, which will be denoted in the
sequel by px. It follows that:

xpr(x, y) =

{
x ∧ y, with probability 1− px

x ∧ y, with probability px
(7)

Assumption: We further assume that the inputs and the
output of the XOR operator may take values in either {0, 1}
or {−1,+1} (using the usual 0,1 to ±1 conversion). This
assumption will be implicitly made throughout the paper.

C. Nested Operators
For the Min-Sum decoding, several arithmetic/logic oper-

ations must be nested1 in order to compute the exchanged
messages. Since all these operations (additions, comparisons,
XOR) are commutative, the way they are nested does not have
any impact on the infinite-precision MS decoding. However,
this is no longer true for finite-precision decoding, especially
in case of noisy operations, and one needs an assumption about
how the above operators extend from two to more inputs.

Our assumption is the following. For n ≥ 2 inputs, we
randomly pick any two inputs and apply the operator on this
pair. Then we replace the pair by the obtained output, and
repeat the above procedure until there is only one output (and
no more inputs) left. The formal definition goes as follows. Let
Ω ⊂ Z and ω : Ω × Ω → Ω be a noiseless or noisy operator
with two operands. Let {xi}i=1:n ⊂ Ω be an unordered set of
n operands. We define:

ω ({xi}i=1:n) = ω(· · · (ω(xπ(1), xπ(2)), · · · ), xπ(n)), (8)

where π is a random permutation of 1, . . . , n.

1For instance, (dn − 1) additions – where dn denotes the degree of the
variable-node n – are required in order to compute each αm,n message.

Algorithm 1 Noisy Min-Sum (Noisy-MS) decoding

Input: y = (y1, . . . , yN ) ∈ YN ◃ received word
Output: x̂ = (x̂1, . . . , x̂N ) ∈ {−1,+1}N ◃ estimated codeword

Initialization
for all n = 1, . . . , N do γn = q(yn);
for all n = 1, . . . , N and m ∈ H(n) do αm,n = γn;

Iteration Loop
for all m = 1, . . . ,M and n ∈ H(m) do ◃ CN-processing

βm,n = xpr
(
{sgn(αm,n′)}n′∈H(m)\n

)
·mpr

(
{|αm,n′ |}n′∈H(m)\n

)
;

for all n = 1, . . . , N and m ∈ H(n) do ◃ VN-processing
αm,n = apr

(
{γn} ∪ {βm′,n}m′∈H(n)\m

)
;

αm,n = sM (αm,n) ;
for all n = 1, . . . , N do ◃ AP-update

γ̃n = apr
(
{γn} ∪ {βm,n}m∈H(n)

)
;

for all {vn}n=1,...,N do x̂n = sgn(γ̃n); ◃ hard decision

if x̂ is a codeword then exit iteration loop ◃ syndrome check
End Iteration Loop

D. Noisy Min-Sum Decoder

We consider a finite-precision MS decoder, in which the a
priori information (γn) and the exchanged extrinsic messages
(αm,n and βm,n) are quantized on q bits. The a posteriori
information (γ̃n) is quantized on q̃ bits, with q̃ > q (usually
q̃ = q + 1, or q̃ = q + 2). We also denote by M the alphabet
of the a priori information and of the extrinsic messages, and
by M̃ the alphabet of the a posteriori information. Thus:

• M = {−Q, . . . ,−1, 0,+1, . . . , Q}, where Q = 2q−1−1;
• M̃ = {−Q̃, . . . ,−1, 0,+1, . . . , Q̃}, where Q̃ = 2q̃−1−1.

We further consider a quantization map q : Y → M, where
Y denotes the channel output alphabet. The quantization map
q determines the q-bit quantization of the decoder soft input.

The noisy finite-precision MS decoder is presented in Al-
gorithm 1. We assume that q̃-bit adders are used to compute
both αm,n messages in the VN-processing step, and γ̃n values
in the AP-update processing step. This is usually the case in
practical implementations, and allows us to use the same type
of adder in both processing steps. This assumption explains
as well the q-bit saturation of αm,n messages in the VN-
processing step. Note also that the saturation of γ̃n values
is actually done within the adder (see Equation (5)).

Finally, we note that the hard decision and the syndrome
check steps in Algorithm 1 are assumed to be noiseless. We
note however that the syndrome check step is optional, and
if missing, the decoder stops when the maximum number of
iterations is reached.

E. Sign-Preserving Properties

Let U denote any of the VN-processing or CN-processing
units of the noiseless MS decoder. We denote by Upr the
corresponding unit of the noisy MS decoder. We say that
Upr is sign-preserving if for any incoming messages and any
noise realization, the outgoing message is of the same sign as
the message obtained when the same incoming messages are
supplied to U.



Clearly, CNpr is sign-preserving if and only if the XOR-
operator is noiseless (px = 0). In case that the noisy XOR-
operator severely degrades the decoder performance, it is
possible to increase its reliability by using classical fault-
tolerant techniques (as for instance modular redundancy, or
multi-voltage design by increasing the supply voltage of the
corresponding XOR-gate). The price to pay, when compared
to the size or the energy consumption of the whole circuit,
would be reasonable.

Concerning the VN-processing, it is worth noting that the
VNpr is not sign-preserving, even if the noisy adder is so. This
is due to the fact that multiple adders must be “nested” in order
to complete the VN-processing. However, a sign-preserving
adder might have several benefits. First, the error probability
of the sign of variable-node messages would be lowered, which
would certainly help the decoder. Second, if the noisy adder is
sign-preserving and all the variable-node incoming messages
have the same sign, then the VNpr does preserve the sign of the
outgoing message. Put differently, in case that all the incoming
messages agree on the same hard decision, the noisy VN-
processing may change the confidence level, but cannot change
the decision. This may be particularly useful, especially during
the last decoding iterations.

Finally, the motivation behind the sign-preserving noisy
adder model is to investigate its possible benefits on the
decoder performance. If the benefits are worth it (e.g. one can
ensure a target performance of the decoder), the sign-bit of
the adder could be protected by using classical fault-tolerant
techniques.

III. DENSITY EVOLUTION

First, we note that our definition of symmetry is slightly
more general than the one used in [6]. Indeed, even if the
error injection models satisfy the symmetry condition from
Equation (4), the noisy MS decoder does not necessarily
very the symmetry property2 from [6]. Nevertheless, the
concentration and convergence properties proved in [6] for
symmetric noisy message-passing decoders, can easily be
generalized to our definition of symmetry.

The density evolution technique allows to recursively com-
pute the probability mass functions of the exchanged extrinsic
messages (αm,n and βm,n) and of the a posteriori information
(γ̃n), through the iterative decoding process. This is done
under the independence assumption of exchanged messages,
holding in the asymptotic limit of the code length, in which
case the decoding performance converges to the cycle-free
case. Due to the symmetry of the decoder, the analysis can
be further simplified by assuming that the all-zero codeword
is transmitted through the channel.

Due to space limitations, density evolution equations for
the noisy MS decoder are not included here, but we only
provide the notation and definitions required to understand
the asymptotic analysis of the noisy MS decoder conducted

2However, this property is verified in case of highly symmetric fault
injection.

in Section IV. We note however that the density evolution
equations we provided in [10] can be ready generalized to the
error models used in this paper.

A. Error Probability, Useful and Target Error-Rate Regions

1) Decoding Error Probability: The error probability at
decoding iteration ℓ ≥ 0, is defined as:

P (ℓ)
e =

−1∑
z̃=−Q̃

C̃(ℓ)(z̃) +
C̃(ℓ)(0)

2
, (9)

where C̃(ℓ)(z̃) := Pr(γ̃(ℓ) = z̃) is the probability mass
function of a posteriori information3 at decoding iteration ℓ.
Hence, in the asymptotic limit of the code-length, P (ℓ)

e gives
the probability of the hard bit estimates being in error at
decoding iteration ℓ.

The following lower bounds can be derived from the prob-
ability of error injection within the last of the nested adders
used to compute the a posteriori information value.

Proposition 1: The error probability at decoding iteration ℓ
is lower-bounded as follows:
(a) For the sign-preserving noisy adder: P (ℓ)

e ≥ 1

2Q̃
pa.

(b) For the full-depth noisy adder: P (ℓ)
e ≥ 1

2
pa +

1

4Q̃
pa.

Noiseless decoders exhibit a threshold phenomenon, sepa-
rating the region where the decoding error probability goes to
zero (as the number of decoding iterations ℓ goes to infinity),
from that where it is bounded above zero [12]. Things get more
complicated in case of noisy decoders. First, the decoding
error probability has a more unpredictable behavior. It does
not always converge and it may become periodic when the
number of iterations goes to infinity (this will be discussed in
Section IV). Second, the decoding error probability is always
bounded above zero if pa > 0 (Proposition 1), since there
is a non-zero probability of fault injection at any decoding
iteration. Hence, a decoding threshold, similar to the noiseless
case, cannot longer be defined.

Following [6], we define below the notions of useful decoder
and target error rate threshold. We consider a channel model
depending on a channel parameter χ, such that the channel
is degraded by increasing χ (for example, the crossover
probability for the BSC, or the noise variance for the BI-
AWGN channel). We will use subscript χ to indicate a quantity
that depends on χ. Hence, in order to account for the fact that
P

(ℓ)
e depends also on the value of the channel parameter, it

will be denoted in the following by P
(ℓ)
e,χ.

2) Useful Region: The first step is to evaluate the channel
and hardware parameters yielding a final probability of error
(in the asymptotic limit of the number of iterations) less than
the input error probability. The latter probability is given by
P

(0)
e,χ =

∑−1
z=−Q C(z) + 1

2C(0), where C is the probability
mass function of the quantized a priori information of the
decoder (γ = q(y), see Algorithm 1).

3We drop the variable-node index from the notation, in order to indicate
the value of the a posteriori information γ̃n for a random variable-node n



Following [6], the decoder is said to be useful if
(
P

(ℓ)
e,χ

)
ℓ>0

is convergent, and:

P (∞)
e,χ

def
= lim

ℓ→∞
P (ℓ)
e,χ < P (0)

e,χ (10)

The ensemble of the parameters that satisfy this condition
constitutes the useful region of the decoder.

3) Target Error Rate Threshold: For noiseless-decoders,
the decoding threshold is defined as the supremum channel
noise, such that the error probability converges to zero as the
number of decoding iterations goes to infinity. However, for
noisy decoders this error probability does not converge to zero,
and an alternative definition of the decoding threshold has been
introduced in [6]. Accordingly, for a target bit-error rate η, the
η-threshold is defined by:

χ∗(η) = sup
{
χ | P (∞)

e,χ exists and P (∞)
e,χ < η

}
(11)

IV. ASYMPTOTIC ANALYSIS OF THE NOISY MIN-SUM
DECODER

We consider the ensemble of regular LDPC codes with
variable-node degree dv = 3 and check-node degree dc = 6.
The following parameters will be used throughout this section
with regard to the finite-precision MS decoder:
• The a priori information and extrinsic messages are quan-

tized on q = 4 bits; hence, Q = 7 and M = {−7, . . . ,+7}.
• The a posteriori information is quantized on q̃ = 5 bits;

hence, Q̃ = 15 and M̃ = {−15, . . . ,+15}.
We restrict our analysis to the BSC channel with crossover
probability p0, and further assume that the channel input and
output alphabet is Y = {−1,+1}. For each µ ∈ {1, . . . , Q}
we define the quantization map qµ : Y → M by:

qµ(−1) = −µ and qµ(+1) = +µ (12)

Thus, the a priori information of the decoder γn ∈ {±µ}. The
parameter µ will be referred to as the channel-output scale
factor, or simply the channel scale factor.

The infinite-precision MS decoder is known to be inde-
pendent of the scale factor µ. This is because µ factors out
from all the processing steps of the decoding algorithm, and
therefore does not affect in any way the decoding process.
This is no longer true for the finite precision decoder (due to
saturation effects), and we will show shortly that even in the
noiseless case, the scale factor µ may significantly impact the
performance of the finite precision MS decoder.

We start by analyzing the performance of the MS decoder
with channel scale factor µ = 1, and then we will analyze its
performance with an optimized value of µ.

A. Min-Sum Decoder with Channel Scale Factor µ = 1

The case µ = 1 leads to an “unconventional” behavior, as in
some particular cases the noise introduced by the device can
help the MS decoder to escape from fixed points attractors,
and may actually result in an increased correction capacity
with respect to the noiseless decoder. This behavior will be
discussed in more details in this section.

We start with the noiseless decoder case. In this case,
the decoder exhibits a classical threshold phenomenon: there
exists a threshold value pth, such that P

(∞)
e = 0 for any

p0 < pth. This threshold value, which can be computed
by density evolution, is pth = 0.039. Now, we consider a
p0 value slightly greater than the threshold of the noiseless
decoder, and investigate the effect of the noisy adder on
the decoder performance. Let us fix p0 = 0.06. Figure 1
shows the decoding error probability at iteration ℓ, for different
error probability parameters pa ∈ {10−30, 10−15, 10−5} of the
noisy adder. For each pa value, there are two superimposed
curves, corresponding to the full-depth (“fd”, solid curve)
and sing-preserving (“sp”, dashed curve) error models of the
noisy adder. The error probability of the noiseless decoder
is also plotted (solid black curve): it can be seen that it
increases rapidly from the initial value P

(0)
e = p0 and closely

approaches the limit value P
(∞)
e = 0.323 after a few number

of iterations. When the adder is noisy, the error probability in-
creases during the first decoding iterations, behaving similarly
to the noiseless case. It may approach the limit value from
the noiseless case, but starts decreasing after some number
of decoding iterations. However, note that it remains bounded
above zero (although not apparent in the figure), according to
the lower bounds from Proposition 1, and it can actually be
numerically verified that these bounds are nearly tight.

The above behavior of the MS decoder can be explained by
examining the evolution of the probability mass function of the
a posteriori information, denoted by C̃(ℓ) (see Section III), for
ℓ ≥ 0. In the noiseless case, C̃(ℓ) reaches a fixed point of
the density evolution for ℓ ≈ 20. Note that since all variable-
nodes are of degree dv = 3, it can be easily seen that for ℓ ≥ 1,
C̃(ℓ) is supported only on even values of M̃. These “gaps”
in the support of the probability mass function seem to lead
to favorable conditions for the occurrence of density-evolution
fixed points. In the noisy case, C̃(ℓ) evolves virtually the same
as in the noiseless case during the first iterations. However, the
noise present in the adder progressively fills the “gaps” in the
support of C̃(ℓ), which allows the decoder to escape from the
fixed point attractor.

It is worth noting that neither the noisy comparator nor the
XOR-operator can help the decoder to escape from these fixed-
point attractors, as they do not allow “filling the gaps” in the
support of C̃(ℓ).

We focus now on the useful region of the noisy MS decoder.
We assume that only the adder is noisy, while the comparator
and the XOR-operator are noiseless. The useful useful region
for the sign-protected noisy adder model is shown in Figure 2.
The useful region is shaded in gray and delimited by either
a solid black curve or a dashed red curve. Although one
would expect that P

(∞)
e = p0 on the border of the useful

region, this equality only holds on the solid black border.
On the dashed red border, one has P

(∞)
e < p0. The reason

why the useful region does not extend beyond the dashed
red border is that for points located on the other side of this
border the sequence (P

(ℓ)
e )ℓ>0 is periodic, and hence it does
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Figure 4. Decoding error probability P
(ℓ)
e of the noisy MS decoder, for p0 = 0.03 and sign-preserving noisy adder with various pa values

not converge. The region shaded in brown in Figure 2 is the
non-convergence region of the decoder. Note that the non-
convergence region gradually narrows in the upper part, and
there is a small portion of the useful region delimited by the
non-convergence region on the left and the black border on
the right. Finally, we note that points with pa = 0 (noiseless
decoder) and p0 > 0.039 (threshold of the noiseless decoder) –
represented by the solid red line superimposed on the vertical
axis in Figure 2 – are excluded from the useful region. Indeed,
for such points P

(∞)
e > p0; however, for pa greater than but

close to zero, we have P
(∞)
e ≈ pa

2Q̃
.

We exemplify the decoder behavior on four points located
on one side and the other of the left and right boundaries of the
non-convergence region. These points are indicated in Figure 2
by A,B,C, and D. For all the four points p0 = 0.03, while
pa = 0.027, 0.03, 0.039, and 0.042, respectively. The error
probability (P

(ℓ)
e )ℓ>0 is plotted for each one of these points in

Figure 4. The point A belongs to the useful region, and it can
be seen from Figure 4(a) that (P (ℓ)

e )ℓ>0 converges to P
(∞)
e =

9.11× 10−4 < p0. For the point B, located just on the other
side of the dashed red border of the useful region, (P (ℓ)

e )ℓ>0

exhibits a periodic behavior (although we only plotted the first
500 iterations, we verified the periodic behavior on the first 5×
104 iterations). Crossing the non-convergence region from left
to the right, the amplitude between the inferior and superior
limits of (P (ℓ)

e )ℓ>0 decreases (point C), until it reaches again
a convergent behavior (point D). Note that D is outside the
useful region, as (P (ℓ)

e )ℓ>0 converges to P
(∞)
e = 0.0605 > p0.

The non-convergence region gradually narrows in the upper
part, and for 0 ≤ pa < 0.01 it takes the form of a discontinuity
line: P (∞)

e takes values close to 10−4 just below this line, and
values greater than 0.05 above this line.

Note that points (pa, p0) with p0 < pa

2Q̃
= pa

30 cannot belong

to the useful region, since from Proposition 1 we have P
(∞)
e ≥

pa

2Q̃
> p0. Moreover, we note that the bottom border of the

useful region (solid black curve) is virtually identical to, but
slightly above, the line defined by p0 = pa

2Q̃
.

B. Optimization of the Channel Scale Factor

In this section we show that the decoder performance can
be significantly improved by using an appropriate choice of
the channel scale factor µ. Figure 3 shows the threshold values
for the noiseless and several noisy decoders with channel scale
factors µ ∈ {1, 2, . . . , 7}. For the noisy decoders, the threshold
values are computed for a target error probability η = 10−5

(see Equation (11)).
The solid black curve in Figure 3 correspond to the noiseless

decoder. The solid red curve and the dotted blue curve
correspond to the MS decoder with sign-preserving noisy
adder and full-depth noisy adder, respectively. The adder error
probability4 is pa = 10−4 for the sign-preserving noisy adder,
and pa = 10−5 for the full-depth adder. The two curves are

4According to Proposition 1, a necessary condition to achieve a target error
probability P

(∞)
e ≤ η = 10−5 is pa ≤ 2Q̃η = 3 × 10−4 for the signed-

protected adder, and pa ≤ 2η 2Q̃+1

2Q̃
= 2.07×10−5 for the full-depth adder.



superimposed for 1 ≤ µ ≤ 6, and differ only for µ = 7. The
corresponding threshold values are equal to those obtained in
the noiseless case for µ ∈ {2, 4, 6}. For µ ∈ {1, 3, 5}, the MS
decoders with noisy-adders exhibit better thresholds than the
noiseless decoder. This is due to the fact that the messages
alphabet M is underused by the noiseless decoder, since all
the exchanged messages are necessarily odd (recall that all
variable-nodes are of degree dv = 3). For the MS decoders
with noisy adders, the noise present in the adders leads to a
more efficient use of the messages alphabet, which allows the
decoder to escape from fixed-point attractors and hence results
in better thresholds (Section IV-A).

Figure 3 also shows a curve corresponding to the MS
decoder with a noisy comparator having pc = 0.005, and two
curves for the MS decoder with noisy XOR-operators, having
respectively px = 2× 10−4 and px = 3× 10−4.

Concerning the noisy XOR-operator, it can be seen that
the threshold values corresponding to px = 2 × 10−4 are
very close to those obtained in the noiseless case, except
for µ = 7 (the same holds for values px < 2 × 10−4).
However, a significant degradation of the threshold can be
observed when slightly increasing the XOR error probability
to px = 3×10−4. Moreover, although not shown in the figure,
it is worth mentioning that for px ≥ 5 × 10−4, the target
error probability η = 10−5 can no longer be reached (thus, all
threshold values are equal to zero).

Finally, we note that except for the noisy XOR-operator with
px = 3× 10−4, the best choice of the channel scale factor is
µ = 6. For the noisy XOR-operator with px = 3 × 10−4, the
best choice of the channel scale factor is µ = 3. This is rather
surprising, as in this case the messages alphabet is underused
by the decoder: all the exchanged messages are odd, and the
fact that the XOR-operator is noisy does not change their parity.
Assumption: In the following sections, we will investigate the
impact of the noisy adder, comparator and XOR-operator on
the MS decoder performance, assuming that the channel scale
factor is µ = 6.

C. Study of the Impact of the Noisy Adder (µ = 6)

In order to evaluate the impact of the noisy adder on the MS
decoder performance, the useful region and the η-threshold
regions have been computed, assuming that only the adders
within the VN-processing step are noisy (pa > 0), while
the CN-processing step is noiseless (px = pc = 0). This
regions are represented in Figure 5 and Figure 6, for the sign-
preserving and the full-depth noisy adder models, respectively.

The useful region is delimited by the solid black curve.
The vertical lines delimit the η-threshold regions, for η =
10−3, 10−4, 10−5, 10−6 (from right to the left).

Note that unlike the case µ = 1 (Section IV-A), there is no
non-convergence region when the channel scale factor is set
to µ = 6. Hence, the border of the useful region corresponds
to points (pa, p0) for which P

(∞)
e = p0. However, it can be

observed that there is still a discontinuity line (dashed red
curve) inside the useful region. This discontinuity line does not
hide a periodic (non-convergent) behavior, but it is due to the

occurrence of an early plateau phenomenon in the convergence
of (P (ℓ)

e )ℓ. This phenomenon is illustrated in Figure 8, where
the error probability (P

(ℓ)
e )ℓ is plotted as a function of the

iteration number ℓ, for the two points A and B from Figure 5.
For the point A, it can be observed that the error probability
P

(ℓ)
e reaches a first plateau for ℓ ≈ 50, and then drops to

3.33 × 10−6 for ℓ ≥ 250. For the point B, P (ℓ)
e behaves in

a similar manner during the first iterations, but it does not
decrease below the plateau value as ℓ goes to infinity. Although
we have no analytic proof of this fact, it was numerically
verified for ℓ ≤ 5× 105.

In Figure 10, we plotted the asymptotic error probability
P

(∞)
e as a function of p0, for the noiseless decoder (pa = 0),

and for the sign-preserving noisy adder with error probability
values pa = 10−4 and pa = 0.05. In each plot we have
also represented two points p

(U)
0 and p

(DL)
0 , corresponding

respectively to the values of p0 on the upper-border of the
useful region, and on the discontinuity line. Hence, p

(DL)
0

coincides with the classical threshold of the MS decoder
in the noiseless case, and it can be seen as an appropriate
generalization of the classical threshold to the case of noisy
decoders. In the following, p

(DL)
0 will be referred to as the

functional threshold of the noisy decoder, and the sub-region
of the useful region located below the discontinuity line will
be referred to as the functional region. Within this region, if
the adder error probability is small enough, it can be observed
that the lower-bounds provided in Proposition 1 are tight.

D. Study of the Impact of the Noisy XOR-operator (µ = 6)

The useful region and the η-threshold regions of the de-
coder, assuming that only the XOR-operator used within the
CN-processing step is noisy, are plotted in Figure 7. Similar
to the noisy-adder case, a discontinuity line can be observed
inside the useful region, which delimits the functional region
of the decoder.

Comparing the η-threshold regions from Figures 5, 6 and
7, it can be observed that in order to achieve a target error
probability P

(∞)
e ≤ 10−6, the error probability parameters of

the noisy adder and of the noisy XOR-operator must satisfy:
• pa < 1.17× 10−6, for the full-depth noisy-adder;
• pa < 3× 10−5, for the sign-protected noisy-adder;
• px < 7× 10−5, for the noisy XOR-operator.

(moreover, values of px up to 1.4× 10−4 are tolerable if
p0 is sufficiently small)

The most stringent requirement concerns the error probability
of the full-depth noisy-adder, thus we may consider that it has
the most negative impact on the decoder performance. On the
other hand, the less stringent requirement concerns the error
probability of the noisy XOR-operator.

Finally, it is worth noting that in practical cases the value
of px should be significantly lower than the value of pa (given
the high number of elementary gates contained in the adder).
Moreover, since the XOR-operators used to compute the signs
of CN messages represent only a small part of the decoder, this
part of the circuit could be made reliable by using classical
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Figure 10. Asymptotic error probability P
(∞)
e as a function of p0; noiseless and noisy MS decoder with sign-protected noisy adder

fault-tolerant methods, with a limited impact on the overall
decoder design.

E. Study of the Impact of the Noisy Comparator (µ = 6)

This section investigates the case when comparators used
within the CN-processing step are noisy (pc > 0), but
pa = px = 0. Contrary to the previous cases, this case exhibits
a “classical” threshold phenomenon, similar to the noiseless
case: for a given pc > 0, the exists a p0-threshold value,
denoted by p(TH)

0 , such that P (∞)
e = 0 for any p0 < p(TH)

0 .

The threshold value p(TH)
0 is plotted as a function of pc

in Figure 9. The functional region of the decoder is located
below the threshold curve, and P

(∞)
e = 0 for any point within

this region. In particular, it can be seen that P
(∞)
e = 0 for

any p0 / 0.039 and any pc > 0. Although such a threshold
phenomenon might seem surprising for a noisy decoder, it can
be easily explained. The idea behind is that in this case the
crossover probability of the channel is small enough, so that
in the CN-processing step only the sign of check-to-variable



messages is important, but not their amplitudes. In other words
a decoder that only computes (reliably) the signs of check-
node messages and randomly chooses their amplitudes, would
be able to perfectly decode the received word.

Finally, we note that the useful region of the decoder extends
slightly above the threshold curve: for pc close to 0, there
exists a small region above the threshold curve, within which
0 < P

(∞)
e < p0.

V. FINITE LENGTH PERFORMANCE OF THE NOISY
MIN-SUM DECODER

The goal of this section is to corroborate the asymptotic
analysis from the previous section, through finite-length simu-
lations. Unless otherwise stated, the (3, 6)-regular LDPC code
with length N = 1008 bits from [13] will be used throughout
this section.

A. Early stopping criterion

As described in Algorithm 1, each decoding iteration also
comprises a hard decision step, in which each transmitted bit is
estimated according to the sign of the a posteriori information,
and a syndrome check step, in which the syndrome of the
estimated word is computed. Both steps are assumed to be
noiseless, and the syndrome check step acts as an early stop-
ping criterion: the decoder stops when whether the syndrome
is +1 (the estimated word is a codeword) or a maximum
number of iterations is reached. We note however that the
syndrome check step is optional and, if missing, the decoder
stops when the maximum number of iterations is reached.

The reason why we stress the difference between the MS
decoder with and without the syndrome check step is because,
as we will see shortly, the noiseless early stopping criterion
may significantly improve the bit error rate performance of
the noisy decoder in the error floor region.

Unless otherwise stated, the MS decoder is assumed to
implement the noiseless stopping criterion (syndrome check
step). The maximum number of decoding iterations is fixed to
100 throughout this section.

B. Finite-length performance for various channel scale factors

Figure 11 shows the bit error rate (BER) performance of the
finite-precision MS decoder (both noiseless and noisy) with
various channel scale factors. For comparison purposes, we
also included the BER performance of the Belief-Propagation
decoder (solid black curve, no markers) and of the infinite-
precision MS decoder (dashed blue curve, no markers).

It can be observed that the worst performance is achieved by
the infinite-precision MS decoder (!) and the finite-precision
noiseless MS decoder with channel scale factor µ = 1
(both curves are virtually indistinguishable). The BER per-
formance of the latter improves significantly when using a
sign-preserving noisy adder with error probability pa = 0.001
(dashed red curve with empty circles).

For a channel scale factor µ = 6, both noiseless and
noisy decoders have almost the same performance (solid and
dashed green curves, with triangular markers). Remarkably,

the achieved BER is very close to the one achieved by the
Belief-Propagation decoder!

These results corroborate the asymptotic analysis from
Section IV-B concerning the channel scale factor optimization.

C. Error floor performance

Surprisingly, the BER curves of the noisy decoders from
Figure 11 do not show any error floor down to 10−7. However,
according to Proposition 1, the decoding error probability
should be lower-bounded by P

(ℓ)
e ≥ 1

2Q̃
pa = 3.33 × 10−5

(see also the η-threshold regions in Figure 5).
The fact that the observed decoding error probability may

decrease below the above lower-bound is due to the early
stopping criterion (syndrome check step) implemented within
the MS decoder. Indeed, as we observed in the previous
section, the above lower-bound is tight, when ℓ (the itera-
tion number) is sufficiently large. Therefore, as the iteration
number increases, the expected number of erroneous bits gets
closer and closer to 1

2Q̃
paN = 0.034, and the probability of

not having any erroneous bit within one iteration approaches(
1− 1

2Q̃
pa

)N

= 0.967. As the decoder performs more and
more iterations, it will eventually reach an error free iteration.
The absence of errors is at once detected by the noiseless
syndrome check step, and the decoder stops.

To illustrate this behavior, we plotted the Figure 12 the
BER performance of the noisy MS decoder, with and without
early stopping criterion. The noisy MS decoder comprises
a sign-preserving noisy adder with pa = 0.001, while the
comparator and the XOR-operator are assumed to be noiseless
(pc = px = 0). Two codes are simulated, the first with length
N = 1008 bits, and the second with length N = 10000 bits. In
case that the noiseless early stopping criterion is implemented
(solid curves), it can be seen that none of the BER curves show
any error floor down to 10−8. However, if the early stopping
criterion is not implemented (dashed curves), corresponding
BER curves exhibit an error floor at ≈ 3.33 × 10−5, as
predicted by Proposition 1.

D. Finite-length performance for various parameters of the
probabilistic error models

In this section we investigate the finite-length performance
when all the MS components (adder, comparator, and XOR-
operator) are noisy. In order to reduce the number of simu-
lations, we assume that pa = pc ≥ px. Concerning the noisy
adder, we evaluate the BER performance for both the sign-
preserving and the full-depth error models. Simulation results
are presented in Figures 13–16.

In case the noisy-adder is sign-preserving, it can be seen
that the MS decoder can provide reliable error protection for
all the noise parameters that have been simulated. Of course,
depending on the error probability parameters of the noisy
components, there is a more or less important degradation of
the achieved BER with respect to the noiseless case. But in
all cases the noisy decoder can achieve a BER less than 10−7.
This is no longer true for the full-depth noisy adder: it can
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Figure 13. BER performance, noisy MS, sign-
preserving noisy adder, pc = pa, px = 0.0001
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Figure 14. BER performance, noisy MS, full-
depth noisy adder, pc = pa, px = 0.0001
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Figure 15. BER performance, noisy MS, full-
depth noisy adder, pc = pa, px = 0.001
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Figure 16. BER performance, noisy MS, sign-
preserving noisy adder, pc = pa, px = 0.001

be seen that for pc = pa ≥ 0.005, the noisy decoder cannot
achieve bit error rates below 10−2.

VI. CONCLUSION

This paper investigated the asymptotic and finite length
behavior of the noisy MS over the BSC channel. We demon-
strated the impact of the channel scale factor on the decoder
performance, both for the noiseless and for the noisy decoder.
We also highlighted the fact that an inappropriate choice the
channel scale factor may lead to an unconventional behavior,
in the sense that the noise introduce by the device may actually
result in an increased correction capacity with respect to the
noiseless decoder. We analyzed the asymptotic performance
of the noisy MS decoder in terms of useful regions and
target-BER thresholds, and further revealed the existence of
a different threshold phenomenon, which was referred to
as functional threshold. Finally, we also corroborated the
asymptotic analysis through finite-length simulations.
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