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Abstract—We design intervention schemes to control informa-
tion spread in multi-agent systems. We consider two information
spread models: linear distributed averaging and virus spread
dynamics. Using the framework of differential games, we design
a dynamical optimization framework that produces strategies
that are robust to adversarial intervention. For linear dynamics,
we show that optimal strategies make connection to potential-
theory. In the virus spread case, we show that optimal controllers
exhibit multiple switches. Moreover, we establish a connection
between game theory and dynamical descriptions of network
epidemics, which provides insights into decision making in
infected networks. Finally, we present initial building blocks for
network controllability using a limited number of controls.

I. INTRODUCTION

Various global patterns in computer, social, and biological
networks stem from local interactions among nodes. Examples
include birds flying in formation, propagation of rumors and
computer viruses, and epidemics. While a large body of
literature is dedicated to modelling information diffusion in
networks, controlling the diffusion subject to the network
dynamics received limited attention. A common practice has
been to design static controllers or to assume that all the nodes
in the network can be controlled.

Interesting problems in social and biological networks as
well as multi-agent systems have been studied in the literature.
In [1], Kempe, Kleinberg, and Tardos have studied the problem
of finding the optimal set of nodes to maximize the spread
of influence in a social network. They have proposed a
polynomial-time algorithm based on submodular functions that
finds a near-optimal solution. A rumor source estimator based
on the infected nodes and the underlying network structure
was obtained in [2]. Limiting behavior of the voter model
and opinion dynamics in the presence of stubborn agents was
investigated in [3], [4]. In [5], the epidemic threshold in the
models where the curing rate is proportional to the degree of
the node was analyzed. A competition between two opposing
campaigns to influence the largest set of nodes was studied in
[6], where a greedy algorithm was proposed to find the best
set of nodes for one campaign to limit the influence of the
other.
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The controlled parameters in all the above problems are
chosen at the initial time and are left static thereafter. These de-
signs, therefore, cannot handle dynamically changing networks
or the presence of other strategic players in the network. In
fact, the proper framework to construct controllers suitable for
competitive dynamic environments is differential game theory.
Moreover, a common theme in current research is to assume
that the network designer can control all the nodes in the
network in order to limit the infection’s spread. In reality,
such freedom in placing controllers may not be possible. As
networks grow in size to include millions of nodes, reducing
the number of controllers required to counter the infection’s
spread will result in vast cost reductions.

Motivated by the problems of controlling the spread of
influence and epidemics in networks, the main focus of this
paper is to construct dynamic control strategies capable of
controlling the information spread under practical constraints.
In our development, we will consider optimal control design
as well as state-feedback stabilization. In particular, we ask
the following questions:

• What are the optimal strategies for limiting or amplifying
the information diffusion in networks?

• Using a limited number of bounded controllers, when is
it possible to steer the state of the network to a desired
value?

To study these questions, we consider two models of infor-
mation spread. The first model is the linear continuous-time
distributed averaging algorithm, which is a popular informa-
tion spread model where an agent updates its value as a linear
combination of the values of its neighbors. Averaging dynam-
ics is the basic building block in many multi-agent systems,
and it is widely used whenever an application requires multiple
agents, who are graphically constrained, to synchronize their
measurements. Examples include formation control, coverage,
distributed estimation and optimization, and flocking [7], [8],
[9]. The second model is a nonlinear one, and it was recently
proposed to describe virus spread in networks [10].

In practice, communication among agents performing aver-
aging is prone to different types of non-idealities which can
affect the convergence properties of the associated distributed
algorithms. Transmission delays [11], noisy links [12], [13],



and quantization [14] are some examples of non-idealities that
are due to the physical nature of the application. In addition to
physical restrictions, researchers have also studied averaging
dynamics in the presence of malicious nodes in the network
[15], [16].

In our work, we study the interaction between an adversary
and a network designer over a network of nodes performing
distributed averaging. The adversary is capable of discon-
necting certain links in the network, while the designer can
change the weights of certain links. Both the adversary and
the designer are constrained by their physical capabilities,
e.g., battery life and communication range. To capture such
constraints, we allow the adversary and the designer to affect
only a fixed number of links. In [17], we derived the worst-case
attack on the network in the absence of a network designer.

Such an interaction between a network designer and an
adversary can occur in various practical applications. For
example, in a wireless network, the adversary can be a jammer
who is capable of breaking links by injecting high noise
signals that disrupt the communication among nodes. The
link weights in such a network represent the capacities of
the corresponding links. The designer can modify the rate
of a certain link using various communication techniques
such as introducing parallel channels between two nodes as
in orthogonal frequency division multiple access (OFDMA)
networks [18].

Our model is different from the models in the current
literature in two ways: (i) the adversary and the designer
compete over a dynamical network. This is different from
the problems studied in the computer science and economics
communities where the network is usually static [19]; (ii)
the players in our model are constrained and do not have an
infinite budget. This enables us to model practical scenarios
more closely rather than allowing the malicious behaviour to
be unrestricted as in [15], [20], [21].

The second model we study is a nonlinear one that has been
recently proposed to model virus spread in networks. Viruses,
misinformation, and rumors can diffuse rapidly through a net-
work via local interactions. Modeling the spread of misinfor-
mation in networks as well as the control of such phenomena
have received wide interest in the literature [22], [23], [24],
[10], [25], [26]. A typical approach for modeling the spread of
infection has been via describing the local interactions among
individuals within the network. An example of such models is
the so-called n-intertwined Markov model [10], which belongs
to the susceptible-infected-susceptible (SIS) class where each
node can either be healthy or infected.

The flow that prescribes the evolution of the n-intertwined
model is nonlinear. When the curing rate is high, the states
of the individual nodes are provably convergent to the healthy
state. When the curing rates are low, however, a strictly pos-
itive equilibrium point arises in the n-intertwined dynamics,
which is referred to as the “metastable” state in the literature.
At this stage, a residual infection will persist in the network.
One main focus of our work is characterizing the stability
properties of this equilibrium, which has not been addressed

in the literature.
By formulating a decentralized control system, we also

study the case where the curing rates at a limited number of
nodes can be controlled. We identify conditions under which
the network can be stabilized to the origin. In particular, for
path, star, and tree graphs, we characterize sufficient conditions
for stabilization of the infection dynamics. Moreover, we
propose a dynamic optimization framework that allows for
designing controllers that minimize the total infection in the
network at minimum cost. Several simulations illustrate our
results.

Organization

The rest of this paper is organized as follows. In Section II,
we formulate and solve two Stackelberg games for information
spread control over distributed averaging networks. Section III
discusses the stability properties of the n-intertwined model.
We also present stabilizing and optimal controllers for infected
networks. Future research directions and concluding remarks
are presented in Section IV.

Notation and Terminology

We denote the set of edges in a graph G by E(G). When
clear from the context, we will drop the argument of any set
defined on a graph. To emphasize the effect of link removal by
the adversary, we will sometimes write G(u(t)) to denote the
graph resulting after the adversary acts at time t ∈ R≥0 with
action u(t). We will use

∑
j>i(.) to mean

∑n
j=2

∑j−1
i=1 (.), [.]T

to denote the transpose of a vector or a matrix [.], and 1 to
denote the n-dimensional column vector of 1’s. We denote the
set cardinality operator by card{.}. The Euclidean norm of a
vector is denoted by ||.||2, the `1-norm of a vector is denoted
by ||.||1, and the absolute value of a real number is denoted by
|.|. The (i, j)-th element of a matrix X is denoted by Xij . We
will often use x to refer to a function or its value at a given
time instant; the context should make the distinction clear.

For a real vector function f : Rn → R, the k-th derivative
with respect to xi, i.e., ∂k

∂xk
i

f(x), is denoted by ∇ki f(x).
We denote the i-th eigenvalue of a matrix X by λi(X).
The identity matrix is denoted by I . We will use the words
“strategy” and “action” interchangeably; since we are seeking
optimal open-loop strategies in this paper, both terms are
equivalent. We use the game theoretic notation x−i to refer
to the vector comprised of the optimization variables of all
players except that of player i.

We call a directed graph weakly connected, if it contains a
path between every two nodes when all the edges are viewed as
undirected ones. A directed acyclic graph (DAG) is a directed
graph with no directed cycles.

II. ROBUST DISTRIBUTED AVERAGING

The main goal of this section is to introduce the distributed
averaging problem in the presence of an adversary, and to
derive optimal strategies for the designer and the adversary
who have conflicting objectives. Because the order in which
the players act affects the resulting utilities, we formulate two



problems based on the order of play, allowing each player to
have the first-move-advantage in the two problems. The proofs
of the results presented in this section can be found in [17],
[27].

Consider a connected network of n nodes and m links
described by a weighted undirected graph G = (N , E) with
vertex set N , |N | = n, and edge set E , |E| = m. The value,
or state, of the nodes at time instant t ∈ R≥0 is given by
x(t) = [x1(t), ..., xn(t)]T . The nodes start with an initial value
x(0) = x0, and they are interested in computing the average
of their initial measurements, xavg = 1

n

∑n
i=1 xi(0), via

local averaging. We consider the continuous-time averaging
dynamics given by

ẋ(t) = Ax(t), x(0) = x0, (1)

where the matrix A, Aij = aij , has the following properties:

A = AT , A1 = 0,

Aij ≥ 0, Aij = 0 ⇐⇒ {i, j} /∈ E , i 6= j.

Define x̄ = 1xavg and let M = 11T

n . A well-known result
states that, under the above assumptions, the nodes will reach
consensus as t → ∞, i.e., limt→∞ x(t) = x̄ [7]. To achieve
their respective objectives, the designer and the adversary
control the elements of A as we describe next. This will render
the matrix A to be time-varying.

The adversary attempts to slow down convergence by break-
ing at most ` ≤ m links at each time t. Let uij(t) ∈ {0, 1}
be the weight the adversary assigns to link {i, j} at time t.
He breaks link {i, j} when uij(t) = 1. Define r :=

(
n
2

)
. The

action set of the adversary can then be written as

U = {w ∈ Rr : w = [w12, ..., w1n, w23, ..., w(n−1)n]T ,

wij ∈ {0, 1}, wij = 0 if {i, j} /∈ G, ||w||1 ≤ `}.

The set of admissible controls, U , consists of all functions that
are piecewise continuous in time and whose range is U . Given
a time interval [0, T ], we can formally write

U = {u : [0, T ]→ U | u is a piecewise continuous
function of t} .

We introduce a network designer who attempts to accelerate
convergence by controlling the weights of the edges. The
designer can change the weight of a given link by adding
vij(t) to its weight aij . We assume that vij(t) ∈ {0, b} and that
the number of links the designer modifies is at most ` ≤ m.
Given the above specifications, we can write down the {i, j}-
th element, i 6= j, of the matrix A(u(t), v(t)) as

Aij(u(t), v(t)) = (aij + vij(t))(1− uij(t)).

We require that the resulting matrix is a negative Lapla-
cian of the graph; hence, we must have Aii(u(t), v(t)) =
−
∑
j 6=iAij(u(t), v(t)), for all i. With this definition, we can

view the actions of the players as switches among the possible
Laplacian matrices resulting from modifying the links. More-
over, the capability of the designer and the adversary to change

the system matrix renders it as “switched” one. The optimal
controllers for such systems can exhibit Zeno effect, i.e., they
may switch infinitely many times over a finite interval. In order
to explicitly eliminate the possibility of infinite switching,
we make the following assumption in the remainder of this
section.

Assumption 1. Let r1 < . . . < rKu be the switching times
of u and s1 < . . . < sKv be those of v, where (u, v) is an
arbitrary pair of controllers. Assume that Ku, Kv are finite,
and that there exists a globally minimum dwell time τ > 0
such that

τ ≤ min {ri+1 − ri, si+1 − si, |ri − sj | : 1 ≤ i ≤ Ku,

1 ≤ j < Kv} , (2)

over which the system matrix A(u, v) is time-invariant.

Given a time interval [0, T ], introduce the following func-
tional:

J(u, v) =
1

2

∫ T

0

k(t) ||x(t)− x̄||22 dt,

where the kernel k(t) is positive and integrable over [0, T ].
This constitutes the utility function of the adversary, and that
of the designer is −J(u, v). We will study two problems. In
the first one, the adversary acts first by selecting the links he is
interested in breaking. Then, the network designer optimizes
his choices over the resulting graph G(u(t)). In this case, the
action set of the designer can be written as

V (u(t)) =
{
w ∈ Rr : w = [w12, ..., w1n, w23, ..., w(n−1)n]T ,

wij ∈ {0, b}, wij = 0 if {i, j} /∈ G(u(t)), ||w||1 ≤ b`} .

The set of admissible controls for the designer, V(u), consists
of all piecewise continuous functions whose range is V (u).
Formally, we define

V(u) = {v : [0, T ]→ V (u(t)) | v is a piecewise
continuous function of t} .

The max–min problem can now be formally written as1

sup
u∈U

inf
v∈V(u)

J(u, v)

subject to ẋ(t) = A(u(t), v(t))x(t), x(0) = x0.

In the second problem, the order is reversed. Because the
designer acts first in this problem, he can optimize over the
entire graph G. Thus, the action set of the designer in this
problem is V := V (0) and the set of its admissible controls
is V := V(0); the sets of actions and admissible controls of
the adversary remain the same. We can then write

inf
v∈V

sup
u∈U

J(u, v)

subject to ẋ(t) = A(u(t), v(t))x(t), x(0) = x0.

1Even though existence of a maximum and a minimum has not yet
been shown at this stage, we will still call this the “max–min” problem in
anticipation of such an existence result later in the paper. The formal definition
below is still in terms of sup and inf. The same argument applies to the min–
max problem to be introduced shortly.



In a computer network, the max–min problem allows the
network designer (who is the maximizer here) to architect
networks that are robust against strategic virus diffusion. The
min–max problem finds applications in army combat situations
where the designer (the minimizer) attempts to counter the
attacks of the enemy intending to disrupt the communication
among agents. For both problems, we make the following
assumption:

Assumption 2. The initial matrix A(0, 0), the time interval
[0, T ], the values ` and b, and the initial state x0 are common
information to both players.

The following remark is now in order.

Remark 1. (Problem Complexity) Let us consider the problem
of the adversary for a given strategy of the designer. Assume
that the adversary can act at K given time instances over the
interval [0, T ]. Then, for ` ≤ m, assuming that ||u(t)||1 = `
for all t, the total number of links that need to be tested in a
brute-force approach is(

m

`

)Ku

≥
(m
`

)`Ku

. (3)

Clearly, the brute-force approach leads to an exponential num-
ber of computations as a function of K. The same argument
applies to the problem faced by the network designer.

A. Optimal Strategies

We will now present the solutions to the two problems intro-
duced above by working directly with the objective functional.
In what follows, we will often drop the time index and other
arguments for notational simplicity. We will be using the term
“connected component” to refer to a set of connected nodes
which have the same values.

The following quantities will be central to the derivation of
the optimal strategies:

νij := −(xi − xj)2, wij := (aij + vij)νij . (4)

Define the set operator Φ : S(G′) ⊂ R → E(G′) ⊂ E(G) that
returns the links in E(G′) that correspond to the elements of
S(G′). Also, define Φi : S(G′)→ E(G′) that returns the links
in E(G′) corresponding to the smallest i elements of the set
S(G′). When card{S(G′)} < i, we set Φi(S(G′)) = Φ(S(G′)).
We also adopt the convention Φ0(.) = {∅}.

The Min–Max Problem

Let L(v) = {(aij + vij)νij : {i, j} ∈ E(G)} and define the
set L`(v) = Φ`(L(v)). 2 By a possible abuse of notation, we
let the k-th element of L`(v), L`,k(v), correspond to the link
{i, j} ∈ L`(v) and to the value (aij + vij)νij associated with
it; the context should make it clear as to which attribute of
L`,k(v) we are referring to. We assume that L`,1(v) ≥ . . . ≥

2It should be noted that although {i, j} and {j, i} belong to E(G), we
include (aij + vij)νij only once in L(v). This applies to all the definitions
to follow.

L`,`(v). Further, define the sets P(v) = {aijνij : {i, j} /∈
L`(v)} and P(v) = {νij : {i, j} /∈ L`(v)}. We also define

[vS(b)]ij =

{
b, {i, j} ∈ S
0, {i, j} /∈ S

The following theorem presents the optimal strategy of the
adversary in the min–max problem.

Theorem 1. Under Assumptions 1 and 2, and for a fixed
strategy v of the designer, the optimal strategy of the adversary
in the min–max problem is

u?ij(v) =

{
1, {i, j} ∈ L`(v)
0, {i, j} /∈ L`(v)

If the adversary has an optimal strategy of breaking fewer
than ` links, then either G has a cut of size less than ` or
the nodes have reached consensus by time t. In either of these
cases, breaking ` links is also optimal.

Consider the following numerical example for the worst-
case attack in the absence of the network designer. We study
a complete graph with n = 4. The matrix A(0, 0) is generated
at random and is equal to

A(0, 0) =


−2.1293 0.0326 0.5525 1.5442
0.0326 −1.2191 1.1006 0.0859
0.5525 1.1006 −3.1447 1.4916
1.5442 0.0859 1.4916 −3.1217


We fix ` = 2, T = 2, and x0 = [1, 2, 3, 4]T – hence,
xavg = 2.5. We computed the optimal control using Theorem
1, which was found to be u?(t) = [0, 1, 0, 1, 0, 0]T for
t ∈ [0, 2]. Indeed, at t = 0, the highest wij values are
w13(0) = 2.2101 and w14(0) = 13.8979 which confirms the
conclusion of Theorem 1. In this particular example, w13, w1,4

remain dominant throughout the problem’s horizon, and hence
the control is stationary. Fig. 1 simulates the network at hand
with and without the presence of the adversary. Note that the
adversary was successful in delaying convergence.

The following theorem presents the optimal strategy of the
designer in the min–max problem.

Theorem 2. In the min-max problem, and under Assumptions
1 and 2, the optimal strategy of the designer is to run
Algorithm I in Table I, and to set v?ij ∈ {0, b} if νij = 0.
Further, it is optimal for the designer to modify ` links.

The Max–Min Problem

Let F(G′) = {νij : {i, j} ∈ E(G′)} for some graph G′ and
let F`(G′) = Φ`(F(G′)). Then, F`(G′) is the set containing
the smallest ` values in F(G′). Also, define the set D(G′) =
{aijνij : {i, j} ∈ E(G′)}∪{(aij + b)νij : {i, j} ∈ E(G′)} and
let D`(G′) = Φ`(D(G′)). The following theorems specify the
optimal strategies of the adversary and the designer.

Theorem 3. Under Assumptions 1 and 2, and for a fixed
strategy u of the adversary, the optimal strategy of the network



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
1

1.5

2

2.5

3

3.5

4

t [seconds]

x
(t

)

 

 

Adversarial Network

Non-Adversarial Networkx4

x3

x2

x1

Fig. 1: Effect of adversary on the convergence to consensus.
T = 2, n = 4, ` = 2, and x0 = [1, 2, 3, 4].

TABLE I: Algorithm I: Computing the optimal strategy for
the minimizer in the min–max problem.

0: input: a strategy v with ||v||1 = 0

1: for i = ` ↓ 1

2: if ∃S ⊂ Φ(P(0)), |S| = i, L`,i(0) /∈ L`(vS(b))

3: Set v?ij = b, ∀{i, j} ∈ S∪Φ`−i
(
P(vS(b))

)
.

4: Exit for loop.
5: end
6: end
7: if ||v||1 = 0

8: Set v?ij = b for all {i, j} ∈ Φ`
(
P(0)

)
.

9: end

designer in the max–min problem is given by

v?ij(u) =

{
b, {i, j} ∈ F`(G(u))
0, {i, j} /∈ F`(G(u))

If the designer has an optimal strategy of modifying fewer than
` links, then either G has a cut of size less than ` or the nodes
have reached consensus by time t. In either of these cases,
breaking ` links is also optimal.

Theorem 4. In the max–min problem, and under Assumptions
1 and 2, the optimal strategy of the adversary is given by

u?ij(t) =

{
1, {i, j} ∈ D`(G)
0, {i, j} /∈ D`(G)

Further, it is optimal for the adversary to break ` links.

Remark 2. (Potential-Theoretic Analogy) When the graph is
viewed as an electrical network, aij + vij can be viewed as
the conductance of link {i, j}, and xi − xj as the potential
difference across the link. Therefore, according to Theorems 2
and 3, the optimal strategy of the designer in both problems
involves finding the links with the highest potential differ-
ence (or the lowest νij’s) and increasing the conductance
of those links by setting vij = b. This leads to increasing

the power dissipation across those links, which translates
to increasing the information flow across the network and
results in faster convergence. The optimal strategy of the
adversary should therefore involve breaking the links with the
highest power dissipation. But power dissipation is given by
(aij + vij)(xi − xj)2, and this is exactly what the adversary
targets according to Theorems 1 and 4.

B. Complexity of the Optimal Strategies

We next study the complexity of the optimal strategies. We
first start with the max–min problem. Assuming, as in Remark
1, that the players switch their strategies a total of K times
over [0, T ], we conclude that the worst-case complexity of the
strategy of either player is O(K ·m logm) as their strategies
involve merely the ranking of sets of size at most 2m. As
for the min–max problem, the complexity of the adversary’s
strategy is O(K ·m logm). The main bottleneck in the strategy
of the designer is step 2 in Algorithm I. The size of the set
P(0) is at most m − `; thus, the worst-case complexity for
the designer is K ·

∑m−`
i=1

(
m−`
i

)
≈ K ·

∑`
i=1(m − `)i. By

comparison with (3), we conclude that the derived optimal
strategies achieve vast complexity reductions.

C. A Sufficient Condition for the Existence of an Saddle-Point
Equilibrium

Recall the definition of a saddle-point equilibrium (SPE).

Definition 1 ([28]). The pair (u?, v?) constitutes an SPE if it
satisfies the following pair of inequalities

J(u, v?) ≤ J(u?, v?) ≤ J(u?, v), (5)

for u ∈ U , v ∈ V .

Thus far, we have solved the min–max and max–min problems
separately. To prove the existence of an SPE, it remains to
verify whether the pair of inequalities (5) can be satisfied under
some assumptions. Define γ :=

4||x0||2∞
ε2 , ε > 0. We assume

that ε is chosen to guarantee γ > 1.

Theorem 5. Given ε > 0, under Assumptions 1 and 2,
a sufficient condition for the existence of an SPE for the
underlying zero-sum game between the network designer and
the adversary is to select b such that

0 ≤ b ≤ min
{i,j},{k,l}∈E

|γaij − akl| , (6)

given that aij 6= akl and aij > γakl whenever aij > akl, for
all {i, j}, {k, l} ∈ E .

Remark 3. The condition derived in the above theorem
requires the network to be “sufficiently diverse” in the sense
that the weights of the links have to be not only different from
each other, but also apart by a factor of γ. This is because the
proof (as given in [27]) requires obtaining uniform bounds on
the νij’s defined in (4). If we allow b to vary with time, then
one can find less restrictive conditions to ensure the existence
of an SPE.



III. VIRUS SPREAD CONTROL

In this section, we study the problem of control design in
infected networks. Toward this goal, we start by introducing
a generic propagation model that describes the interaction
among nodes in an infected network as a noncooperative
game. This model provides a set of dynamical systems which
describe the propagation of infection over networks. We derive
a condition for the existence and uniqueness of Nash equilib-
rium, which can be checked distributedly. Interestingly, we
show that the n-intertwined model, a recently proposed model
that describes virus spread in networks, can be obtained as a
special case of our generic model.

Focusing on the n-intertwined model, we first start by study-
ing the local and global stability properties of its equilibrium
points. Then, we present preliminary results on the stabilizing
control design when the curing rates in the network are low.
In particular, we identify graph classes that can be stabilized
using a limited number of controllers. Finally, we present a
dynamic optimization framework that enables regulating the
infection levels over networks while minimizing the cost of
control. The proofs of the results we present in this section
can be found in [29].

A. Generic Dynamical Model for Infected Networks

Consider a network of n nodes that is described by a graph
G = (V, E), where V is the set of vertices, and E is the set
of edges. Let A be the adjacency matrix of the graph with
entries aij ∈ R≥0, where aij = 0 if and only if {i, j} /∈ E .
Let 0 ≤ xi ≤ 1 be the rate with which node i sends messages.
The objective function of each node i, denoted fi : Rn → R,
is comprised of a local utility function Ui : [0, 1] → R, and
a component that is influenced by the neighboring agents of
the node. The influence of node j on node i is described via
the function g̃ij : [0, 1] × [0, 1] → R. We can then write the
objective function of node i as

fi(xi, x−i) = Ui(xi) +
∑
j 6=i

g̃ij(xi, xj). (7)

An interesting form of the influence function g̃ij is the one
used in the following:

fi(xi, x−i) = Ui(xi) + xi
∑
j 6=i

aijgij(xj). (8)

The benefit of working with the particular structure in (8) is
twofold: (i) it highlights the fact that xi is a rate as it multiplies
the total influence of the neighboring nodes

∑
j 6=i aijgij(xj);

(ii) the second derivative of fi with respect to xi is independent
of x−i, which allows us to design concave games when Ui is
selected to be concave in xi.

Each node is interested in maximizing its own objective
function fi. Formally, we can write the problem of the i-th
agent as

max
0≤xi≤1

fi(xi, x−i), for each fixed x−i. (9)

When fi is concave in xi, and because the objective function

of each player depends on the actions of other players, problem
(9) describes a concave game [30]. The solution concept
we are interested in studying here is the pure-strategy Nash
equilibrium (PSNE).

Definition 2 ([28]). The vector x? constitutes a PSNE if

f(x?i , x
?
−i) ≥ f(xi, x

?
−i), ∀i ∈ {1, . . . , n}.

According to this definition, no agent has an incentive
to unilaterally deviate from the person-by-person optimal
solution x?. The next proposition establishes the existence
and uniqueness of the PSNE for the game in (9), when it
is concave.

Proposition 1 ([30]). Under the following diagonal domi-
nance condition:

2
∣∣∇2

iUi(xi)
∣∣ >∑

j 6=i

|∇j∇i(aij g̃ij(xi, xj) + ajig̃ji(xj , xi))| ,

(10)
the concave game in (9) admits a unique PSNE.

B. Stability of the n-intertwined Markov Model
In the remaining parts of this section, we take epidemic

networks as a specific example of infected networks, and we
assume that the graph G is connected (or weakly connected
if G is directed). In particular, we work with a recently
proposed virus spread model called the n-intertwined Markov
model [10], which we will first briefly review.

The proposed model is based on viewing each node in the
network as a Markov chain with two states: infected or cured.
The curing and infection of each node in the network are
described by two independent Poisson processes with rates
δi > 0 and βi > 0, respectively. The transition rates between
the two states depend on the infection probabilities of the
neighboring nodes as well as their curing and infection rates. A
mean-field approximation is made in [10] to capture the effect
of neighbors on a given node via the total expected infection.
This facilitates the derivation of an ODE that described the
evolution of the probability of infection of node i. Let pi(t) ∈
[0, 1] be the infection probability of node i at time t ∈ R≥0
and define p = [p1, . . . , pn]T . Let D = diag(δ1, . . . , δn),
P = diag(p1, . . . , pn), and B = diag(β1, . . . , βn). The n-
intertwined Markov model is then given by

ṗ(t) = (AB −D)p(t)− P (t)ABp(t). (11)

The n-intertwined Markov Model as a Concave Game
The following lemma establishes a relationship between

virus spread in networks and concave games.

Lemma 1. The dynamics of the n-intertwined Markov model
are best-response dynamics of a concave game whose players
are the nodes, and their objective functions are given by

fi(pi, p−i) = −δ
2
p2i + pi(1−

pi
2

)β
∑
j 6=i

aijpj . (12)

In the homogeneous case, i.e., when the curing and infection
rates do not vary per node, and when the graph is undirected,



it was shown in [10] that, starting from an arbitrary initial
infection profile, the state converges to zero exponentially fast
if

λ1(A) <
δ

β
, (13)

where λ1(A) is the largest eigenvalue of the adjacency matrix
A of the graph. By applying the diagonal dominance condition
in (10) to (12), we obtain

2δ > β
∑
j 6=i

aij(1− pi − pj).

Define Ri :=
∑
j 6=i aij . A sufficient condition for the above

inequality to hold is

1

2
max
i
Ri <

δ

β
. (14)

Note the similarities between (13) and (14). The two con-
ditions are related by the Gershgorin Circle Theorem which
states that every eigenvalue of A lies within at least one of
the Gershgorin discs D(aii, Ri) = {x ∈ R : |x− aii| ≤ Ri}.

While (14) is more restrictive than (13), it is easier to com-
pute and can be converted to a linear condition by requiring
1
2Ri < δ/β for all i. More importantly, when converted to the
linear version, condition (14) can be checked in a distributed
fashion.

In [31], the condition for exponential stability of the origin
was extended to the heterogeneous setting. In principle, the
following inequality provides a sufficient condition for stabil-
ity of the origin

λ1(AB −D) < 0. (15)

This condition is transformed into a centralized eigenvalue
equation in [31]. The extension of our condition to the
heterogeneous case is straightforward:

1

2

∑
j 6=i

aijβj < δi, i = 1, . . . , n.

Note that this general condition still maintains the same
attractive features of (14).

Stability

Under the assumption that the steady-state exists, the equi-
librium points of the dynamics (11) were derived in [10], [31].
Solving the equation

0 = (AB −D)p− PABp (16)

for the steady-state leads to a quadratic equation in pi which
can have multiple solutions. However, it was shown in [31]
that the origin p = 0 is the only nonnegative vector that solves
(16) when condition (15) is satisfied. Using the comparison
lemma, it was shown in [32] that the origin is globally
exponentially stable (GES) when (15) is satisfied, and we
provided a Lyapunov based proof for this result in [29]. The
following lemma provides a condition for the instability of the
origin.

Lemma 2. The origin is unstable when λ1(AB −D) > 0.

For directed graphs, we provide the following result for
weakly connected DAGs.

Lemma 3. In a weakly connected directed acyclic graph, the
origin is the unique equilibrium, and it can be stabilized by
assigning an arbitrarily small but positive curing rate δi to
every node.

Interestingly, when condition (15) is violated, another valid
probability vector arises in addition to the origin. This other
equilibrium point is called the “metastable” state; we denote
it by p?. The metastable state has the property that p?i > 0 for
all i. This clearly shows that there will be a residual epidemic
when the ratio δi/βi is below a certain threshold. Henceforth
in this section, we assume that δi > 0 and βi > 0 for all
i. The existence of this equilibrium is established in [10],
[31]. The next theorem provides the stability properties of this
equilibrium point.

Theorem 6. Assume that p(0) 6= 0, the graph G is connected,
and λ1(AB −D) > 0. Then, the metastable state p? is GAS.
Further, the metastable state p? is locally exponentially stable.

The following numerical experiments demonstrate the
global stability of p?. The infection rates, the edge weights,
and the initial infection profile were generated randomly. The
curing rates were selected in a way that violates (15).

Fig. 2 shows the state of a ring graph with 20 nodes.
The figure also plots the Lyapunov function V (p̃) = 1

2 p̃
T p̃,

where p̃ = p − p?. As claimed, the system converges to the
strictly positive state p?, and the Lyapunov function decays
monotonically to zero.
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Fig. 2: Stabilization of a ring graph with 20 nodes.

Fig. 3 shows the same simulation for a random graph with
100 nodes. The probability that an edge occurs in the graph
was selected to be 3/10. The specific graph realization used
in this experiment contained 1704 edges. Again, we observe
that the state converges to p?. It is interesting to note that
convergence here is faster than the case of the ring graph.
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Fig. 3: Stabilization of a random graph with 100 nodes and
1704 edges.

C. Control Design

We now investigate the possibility of reducing the infection
across the network by altering the curing rates at a limited
number of nodes belonging to a set Scontrol ⊂ V . Toward
this end, throughout this section, we replace δi with ui(t),
where i ∈ Scontrol. Given the necessary conditions presented
in the recent paper [33], we will use the assumption that there
exists a small curing rate of αi at any node in F = V\Scontrol.
This amount of self healing may, however, not be enough to
stabilize the system to the origin. By construction, we have
Scontrol ∩ F = ∅ and Scontrol ∪ F = {1, . . . , n}. Let U(t)
be a diagonal matrix such that Uii(t) = ui(t) if and only if
i ∈ Scontrol and zero otherwise. Similarly, let Γ be a diagonal
matrix such that Γii = αi if and only if i ∈ F and zero
otherwise. The dynamics can then be written as:

ṗ(t) = (AB − Γ− U(t))p(t)− P (t)ABp(t), (17)

We will now provide stabilization and dynamic optimization
frameworks for infected networks.

Stabilization

We are interested in answering the following question: When
condition (15) is initially violated, can we stabilize the system
to the origin by controlling the nodes in Scontrol only? Note
that the system (17) is affine in controls. To see this, define
h(p) = (AB − Γ)p − PABp and gi(p) := −piei, where
{e1, . . . , en} is the fundamental basis. We can then write

ṗ = h(p) +
∑

i∈Scontrol

gi(p)ui.

When zero is unstable for the drift vector field ṗ = h(p), the
only feasible design problem, when the controllers must be
bounded, is to find a control u that would drive p? as close as
possible to zero. We are currently investigating this question.

In what follows we consider two special cases for which a
limited number of controllers can stabilize the system.

Lemma 4. The star graph can be stabilized by placing an
appropriate controller at the root node and arbitrarily small
α-self-loops everywhere else.

Lemma 5. In an odd (or even) length path graph, a maximum
of (n− 1)/2 (or n/2) controllers are required to stabilize the
network, provided that all other nodes implement arbitrarily
small α-self-loops.

Similar results can be obtained for other classes of graphs.
The key idea behind the above results is to place the controllers
in such a way that no path can be drawn between two nodes
in F without passing through a node in Scontrol. For example,
in a tree with an even number of levels, stabilization can be
achieved by controlling the nodes in every other level, and
placing arbitrarily small α-self-loops everywhere else.

Next, we will compare the performance of Sontag’s uni-
versal controller to a constant controller based on the cost of
control as given by

∫ T
0
ui(t)dt. The horizon of the simulation,

T , is chosen to be 100. Consider a star graph with 10 nodes.
By Lemma 4, we know that it suffices to control the root
node to stabilize the network. Let node 1 be at the root.
We assume that the remaining nodes implement a self loop
α = 0.1. Fig. 4 illustrates the performance of a constant
controller u1 = 8, while the performance of Sontag’s universal
controller is shown in Fig. 5. We observe that the stabilization
properties of both controllers are similar. However, Sontag’s
universal controller incurs a lower cost compared to the
constant controller; the total cost incurred under the constant
controller is 800, while that incurred under Sontag’s controller
is 738.6.
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Fig. 4: A star graph with a constant controller implemented
at the root. n = 10.

Optimal Control

We now focus on designing optimal controllers for infected
networks. We assume that the designer can control the curing
rates of all nodes, i.e., F = ∅; however, there is a cost
associated with increasing the curing rate of any node. We
assume that there are minimum and maximum curing rates
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Fig. 5: A star graph with Sontag’s universal controller
implemented at the root. n = 10.

such that u ≤ ui(t) ≤ u, for all i. The set of admissible
controls, U , consists of all functions that are piecewise con-
tinuous over [0, T ], where T is given. The designer aims to
reduce the infection probabilities across the network, while
minimizing the cost associated with modifying the curing
rates. Let c ∈ Rn×1≥0 be the cost associated with the state,
and let d ∈ Rn×1≥0 be the cost associated with the control.

In order to minimize the cost associated with the state, the
designer must attempt to stabilize the state to the origin. To
this end, we will linearize the dynamics around the origin to
obtain ṗ = (AB−U)p. Consider the following optimal control
problem:

inf
u∈U

J(u) =

∫ T

0

[cT p+ dTu]dt

subject to ṗ = (AB − U)p, p(0) = p0.

The Hamiltonian associated with this problem is

H(p, q, u) = cT p+ dTu+ qT (AB − U)p,

where q is the costate vector. Assuming an optimal controller
exists, the Pontryagin’s Minimum Principle (PMP) [34] states
that there exists a costate vector q satisfying the following
conical equations along the optimal trajectory:

ṗ? = (AB − U?)p?, p?(0) = p0,

q̇? = − ∂

∂p
H = −(AB − U?)T q? − c, q?(T ) = 0.

Further, by PMP the optimal control minimizes the Hamilto-
nian:

u? = arg min
u≤ui≤u

H(p?, q?, u),

which yields, for i = 1, . . . , n,

u?i =

 u, di − p?i q?i < 0
u, di − p?i q?i > 0
{u, u}, otherwise

(18)

Using the continuity of q? and the terminal condition imposed

1 2 3
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5

Fig. 6: An infected graph with node 3 having high
probability of infection and high cost on control.

on it, we conclude that u? = u1 over [T − ε, T ], where ε > 0
is small.

Consider the network shown in Fig. 6, and let d =
[1, 1, 10, 1, 1]T such that node 3 has a high control cost. Also,
let p(0) = [0.1, 0.01, 0.9, 0.01, 0.01]T , where we assigned a
high probability of infection to node 3. Let u = 0.1, u = 1,
T = 100, and c = 1. Unity infection rates were assigned to
all the nodes, and the edge weights were generated randomly.

Fig. 7 shows the state of the network above after implement-
ing the controller given in (18). Note that u3 = u throughout
[0, T ] because controlling this node is expensive. Nevertheless,
although the neighboring nodes have low initial probability of
infections, the optimal controllers intelligently increases the
curing rates of these nodes, who enjoy low control cost, in
order to help cure node 3. It is interesting to note that all
the controllers, except u3, exhibit multiple switches between
u and u.
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Fig. 7: State and optimal control of a network with a highly
infected node whose control cost is high.

IV. CONCLUSION

In this paper, we focused on designing optimal and stabi-
lizing controllers for the purpose of controlling information
spread in networks. As representative of our recent work in
this area, we considered two models to describe information
spread: linear distributed averaging and the n-intertwined



model. Designing controllers with practical constraints was
the main feature of our designs for both dynamical models.

For distributed averaging networks, we considered an adver-
sarial attack whose objective is to slow down the convergence
of the computation at the nodes to the global average. We
introduced a network designer whose objective is to assist
the nodes reach consensus by countering the attacks of the
adversary. The adversary and the network designer are capa-
ble of targeting links. We have formulated and solved two
Stackelberg games that capture the competition between the
players in this attack. The derived strategies were shown to
exhibit a low worst-case complexity and admit a potential-
theoretic analogy. Also, we provided a sufficient condition for
the existence of a pure strategy saddle-point equilibrium.

For infected networks, we considered a dynamical model
that describes the interaction among nodes as a concave
game and demonstrated that the n-intertwined model is a
special case of it. This alternative description provides a new
condition, which can be checked collectively by agents, for the
stability of the origin. When the curing rates in the network
are low, we showed that the metastable state p? is GAS and
locally exponentially stable. We proposed a method that allows
for stabilizing the state to the origin using a limited number
of controllers. We further provided a dynamical optimization
approach to regulate infection probabilities across the network
while minimizing the cost of control and demonstrated that the
optimal controllers may exhibit multiple switches.

Future work will focus on studying decentralized informa-
tion spread controllers. Another potential research direction
is studying the fundamental limits of network controllability
using a limited number of controllers.

ACKNOWLEDGMENT

The first author would like to thank Dr. Behrouz Touri
and Prof. Bahman Gharesifard for valuable comments and
discussions throughout the development of this work.

REFERENCES
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[27] A. Khanafer, B. Touri, and T. Başar, “Robust distributed averaging on
networks with adversarial intervention,” in Proc. 52nd IEEE Conf. on
Decision and Control (CDC), December 2013, pp. 7131–7136.
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