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Abstract—We give explicit expressions, upper and lower
bounds on the total variation distance between P and (Q in
terms of the distribution of the random variables log %(X )

and log %(Y), where X and Y are distributed according to P
and @ respectively.

I. INTRODUCTION

Two popular gauges of the distinctness between a pair of
probability measures (P, Q) defined on the same measurable
space (A, F) are:

Total Variation Distance

[P — Q[ =2sup |[P(A) — Q(A)] (D
AeF

Relative Entropy

D(P||Q) =Elp(X)] 2)

if P < ) (which we assume throughout the paper),
where we have denoted the relative information by

dpP

pq(a) = log @(a) 3)

The most important relationship between those two quan-
tities, sometimes referred to as “Pinsker’s inequality” (see
Appendix):

1
5IP = Q*loge < D(P| Q) “)
The factor of % is the best possible in the sense that
L DPQ) 1
inf m = ilog e (5)

In this paper, we explore upper bounds, lower bounds and
exact expressions for [P — @] in terms of the distributions of
the random variables

* 1pQ(X)

* wje(Y)
where X and Y are random variables (from a primeval
measurable space to (A, F)) distributed according to P and
@, respectively. The most direct nexus between total variation
distance and the distributions of the relative informations
follows from the fact that the supremum in (1) is achieved
by the event

A" ={a € A:p|g(a) > 0} (6)

and, therefore,

%IP — Q=P [1p(Y) <0] =P [tpo(X) <0] (7
=P [ZPHQ(X) > O] —-P [ZPHQ(Y) > 0] ©))
Furthermore, it is also easy to show
[P —Q|=E[|1 —exp(epo(Y))]]
=E [|1 — exp(—2p)o(X))]]

where (10) follows under the additional assumption that @ <
P.

In addition to (4) and various refinements (see Appendix),
some exisiting bounds in the spirit of this work are:

(©))
(10)

Theorem 1. [5] For any p > 0,
1 o
“|P-Q|<—+P X 11
51P =l < 4 Pl >4 (D

Theorem 2. [6] Suppose that P and @) are distributions on
a finite set A. Then

min Q(a) D(P(|Q) < |P - Q[*loge (12)
II. EXACT EXPRESSIONS
Theorem 3.
SIP =@l = B[l - exp(-ippo(X)F] ()
= E [[1 —exp(ipjo(Y))]"]. (14)
= E [[1 — exp(epq(¥))]*] (15)
1
P [zPHQ(Y) < log B] dg (16)

1
1
P {ZHQ(X) > log 3 3, (17
0

[[1 — exp(—1py(X))] ] (18)

where [a]t = al{a > 0}, [a]- = al{a < 0}, and (18)
follows under the additional assumption that Q@ < P.

§
y

Proof: By change of measure, we obtain (13):

E [[1 — exp(—1pq(X))]*]
=K [(1 — eXp(flpHQ(X))l{ZPHQ(X) > O}]
=P [1p)o(X) > 0] =P [1po(Y) > 0]

19)
(20)



Similarly, we obtain (14), and since [a]™ + [a]” =
follows from (9).
We abbreviate Z = exp(1p|g(Y’)). To show (16) note that

al, (15)

E[(Z—l)l{Z>1}]:/OCIP’[Z>B]dﬂ 21
1

- [ riz<mas 22)

—E[1-2)1{Z<1)] (23

where

e (22) <= adding [, P[Z > (] 3 to both sides makes
them equal to 1 since E[Z] = 1,

1

e (21)and (23) <= if V > 0, then E[V] = fooo PV > t]d¢;
Finally, to show (17), consider
1
/ P |:ZPIQ(X) > log ,8:| dg
0
! 1
/1@[1{z>ﬁ} }dg 24)
! 1
// ]P’{{ }Z>t]dtdﬂ (25)
o Jo

1 1 [e%s)
; ﬂP{Z>B}d/@+/O /1/6P[Z>t]dtd5 (26)
1

*|7>

1 1 ee} 1

:/0 pz>}dﬁ+/l (1—5>}P’[Z>ﬁ]dﬂ
27)

=/1°°P[Z>mdﬁ

/OIP[ZSB}dﬁ

where

(28)

(29)

e (24) <= change of measure;
e (27) <= swapping the order of integration in the second
integral;
¢ (28) <= change of variable of integration % «— (3 in the
first integral;
e 29 <= E[Z]=1.
Finally, under the additional assumption @) < P, (18) follows
from (10) and (13). [ |

III. UPPER BOUNDS ON |P — Q|

Often, the exact expressions for |P — Q| in (7)-(9) are
hard to evaluate precisely. In particular, except in elementary
settings, it is not always easy to get a handle on both relative
information distributions as required in (7). Extremely useful
as it is, (4) is inoperative when the relative entropy is larger
than 2 nats. Moreover, sometimes to show convergence in total
variation distance, instead of attempting to show the stronger
result in relative entropy, it is simpler to use a bound such as
(11), for an appropriately shrinking sequence of .

Our first new upper bound refines the bound by Pinsker
(49), and in fact it can be sharper than (4).

Theorem 4.
[P = Qlloge < D(P|Q) +E [lipo(X)]]  (30)
Proof: For all z € [—00, +],
(1 —exp(—2))1{z >0} < @ 1{z > 0} 31

Letting z < 2p|o(X), and taking expectation of both sides
with respect to X, the right side of (31) becomes one half of
the right side of (30) (in nats), while the expectation of the
left side of (31) is equal to %|P — Q)| as we showed in (13).

|
The following result strengthens Theorem 1:
Theorem 5.
—|P-Q| < (1- 0
| Q< min {(1-50)P [tpo(X) = 0]
1
+ (= B im0 > g -] | @
and
dpP
-1
=sup —(a (33)
AT g

with $1 = 0 if the relative information is unbounded from
above.
Furthermore,

IP Q< min_{(1—0G)P[ipje(Y) < 0]

B2<Bo<1
+ (Bo— B2) P [1p oY) <logfBo]} (34
and
. . dP
B2 {1123@(“) (35)
Proof: Since the integrand in (17) is monotoni-

cally increasing with (3, we may upper bound it by
P |1p)o(X) > log %} when 01 < B < [y and by
Plopjo(X) > O] when 3y < # < 1. The same reasoning
applied to (16) yields (34). [ |

Note that we can get a simple upper bound on |P — Q| by
simply dropping the second term in the right side of (8). A
tighter result ensues by choosing the left-most value in (32):

%|P— QI <1 —p)Pipje(X) >0].

IV. LOWER BOUNDS ON |P — Q)

(36)

For any 0 < 7, we can find a pair of distributions such that
|P— Q| < 7and D(P| Q) = +oco. Consequently, we cannot
find a general lower bound on the total variation distance as a
function of the relative entropy only. Nevertheless, it is indeed
possible to make some progress in this direction. The first
lower bound we offer is the counterpart of Theorem 4.

Theorem 6. If P <> Q, then

[P —Qlloge > E [lipo(X)|] - D(P|Q)  (37)



Proof: We reason in parallel to the proof of Theorem 4.
For all z € [—o0, +00],

[1 —exp(—2)] loge > [z]™ (38)

Letting z = 2p|o(X), and taking expectation of both sides
with respect to X, the right side of (38) becomes one half of
the right side of (37), while the expectation of the left side of
(38) is equal to |P — Q|loge because of (18). [

If the pair of distributions is such that their relative infor-
mation is bounded, small total variation distance does imply
small relative entropy, as we see next.

Theorem 7. With 31 < 1 defined in (33), we have
1—p

1
5IP—@Ql> T D(PQ) (39)
OgﬁT
> V0 piegg) 0
oge
zlog z

Proof: The function === is monotonically increasing
for z > 1. Therefore, for 0 < z < Bfl,

1—
611 zlogz < [z — 1] (41)
logﬂ—1

Substituting z « exp(2p|o(Y’)) and taking expectations of
both sides of (41), we obtain (39) because of (15). Further-
more, (40) follows because for 0 < z < 1,

Vi <

(42)

log, x

|

Another lower bound on total variation distance based on

the distribution of the relative information is given by the
following result.

Theorem 8.
P -Q| > sup (1 —exp(=n)) P [lupq(X)| > n] ~ (43)
Proof: For any n > 0,
[P — Q| =E[[exp(—1p)(X)) — 1] (44)

> E [|exp(—tp)q(X)) — 1| 1{|tp)o(X)] > n}]
(45)

> (1 —exp(—=n)) P [|ep)o(X)| > 7] (46)

because if |z| > 7, then |exp(—z) — 1| > 1 —exp(—n). N

If either P [zPHQ(X) > log %} or P [1po(Y) < log B8] are
known for at least one value of 3, then we get the following
lower bounds on |P — Q| simply by invoking the exact

expressions for as a function of the distribution of the relative
information in Theorem 3.

Theorem 9. For any 0 < 5y < 1,

[P—Q|>2(1-06)P |:ZP|Q(X) >log% 47
[P — Q| >2(1—Bo)P [1pq(Y) < log B (48)

V. APPENDIX: “PINSKER’S INEQUALITY”

The folklore in information theory is that the bound (4) is
due to Pinsker [1], albeit with a suboptimal constant. Leaving
aside the inessential aspect that Pinsker considered information
density in lieu of relative information (i.e. Pxy < Px X Py
instead of P < ()), he proved (in nats)

%|P ~ QI <E [lipo(X)]]
E [lipjo(X)[] < D(P|IQ) +10v/D(P|Q)

Capitalizing on the fact that |P — Q| < 2, it can be shown that
putting together (49) and (50) yields

D(P|Q) _ loge

|P — Q? 408
The proof of (4) is due to Csiszar [2] and Kullback [3], with
Kemperman [4] independently a bit later. Further refinements
of (4) can be found in [7] and [8] which gives the following
parametric expression (in nats) for the minimal relative entropy
compatible with a given total variation distance (which was
originally considered in [9]):

L(z(t)) = 1o > + tcoth(t) —

(49)
(50)

(D

t 2
& (sinh(t) (52)

z(t) =t — % (t coth(t) — 1)°

sinh?(t)
(53)
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